
ISSN 1686-0209

Thai Journal of Mathematics

Volume 19 Number 3 (2021)

Pages 739–751

http://thaijmath.in.cmu.ac.th

TARA: A Year in Review

Putt Sakdhnagool1, Manaschai Kunaseth1, Apivadee Piyatumrong1, Chompoonut Rungnim1, Viwan
Jarerattanachat1, Wirote Udomsiripinij1, Kittithorn Tharatipayakul2, Takdanai Suwan1 and Piyawut
Srichaikul1

1NSTDA Supercomputer Center (ThaiSC), National Science and Technology Development Agency (NSTDA),
Pathum Thani, 12120, Thailand
e-mail : thaisc@nstda.or.th
2Data Center and High-Performance Computing Management Section (DCM), National Science and
Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand

Abstract In 2018, National Science and Technology Development Agency (NSTDA) has initiated a

national project to establish National Science and Technology Infrastructure (NSTI) to enabling advanced

scientific research and development in Thailand. As a result, the TARA cluster has been deployed and

operated by NSTDA Supercomputer Center (ThaiSC) since February 2019. The cluster is a heterogeneous

cluster with a theoretical peak performance of 500 teraflops. The key mission of TARA is to support

large-scale computing demand from wide range of computational science applications in Thailand. In this

paper, we describe the detailed cluster information and service operation of TARA cluster in the past

year including the design criteria, hardware specification, management, and user support and experience.

We also discuss about the challenges we encountered, and lesson learned from these experiences.

MSC: 68-00

Keywords: Supercomputer center, Deployment and Design, High performance computing

Submission date: 26.04.2021 / Acceptance date: 03.08.2021

1. Introduction

During the past few years, advances in computational science disciplines, such as com-
putational material science, bioinformatics, and artificial intelligence, have gained major
attentions from Thai government to help solving problems in the country. However,
lack of existing advanced computing infrastructure prevents Thailand to progress in such
direction. Therefore, In 2018, National Science and Technology Development Agency
(NSTDA) initiated a project to build a national infrastructure for high performance com-
puting (HPC) in Thailand. As a result, NSTDA Supercomputer Center (ThaiSC) is
officially established from this initiative to provide HPC infrastructure service to acceler-
ate scientific research and development in Thailand.

TARA (Figure 1) is the first computing infrastructure project from ThaiSC with the
main mission to 1) provide HPC computing demand within NSTDA and 2) serve as a

Published by The Mathematical Association of Thailand.
Copyright c⃝ 2021 by TJM. All rights reserved.



740 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

Figure 1. TARA Cluster. Left: A containment for the TARA cluster.
Right: Racks with computing nodes.

proof-of-concept platform before the development of national-scale HPC cluster after-
ward. Hardware acquisition of TARA was completed in January 2019, while the actual
deployment was begun in February 2019.

In this paper, we describe our experiences with TARA – from the design, deployment,
management, to user supports and experiences. The key objective is to provide technical
configuration, deployment information, and the lesson learned from various challenging
issues for any institutions who want to start building HPC infrastructure from scratch.
The paper is organized as follows. Section 2 describes the requirements and technical
specification of TARA. Section 4 reviews the management of the TARA cluster. In
Section 5, we discuss user support operation. Section 6 reviews our lesson learned from
operating TARA for a year. Lastly, Section 7 concludes the paper with a future plan for
the TARA cluster.

2. TARA Cluster Design

One of TARA cluster’s goals is to support research activities within NSTDA. We
designed the cluster based on the applications and research fields gathered from the
questionnaires and interviews with NSTDA research staffs. We identified the following
requirements based on application types.

(1) Computational Science: Majority of computation researches fall into this cat-
egory. The major applications are from computational chemistry, material sci-
ence, and engineering. These applications are compute-intensive and requires
low-latency communication overhead. While GPU implementations are available
for some applications, they are not widely adopted by our users or well-prepared
for production uses. As a result, users from this group still prefer a homogeneous,
multi-core cluster with low-latency network over accelerator-based clusters.

(2) Artificial Intelligence (AI) and Data Analytics: Users from this group
mainly use computing resources for model training, which is highly efficient on
accelerator-based system such as GPUs. In addition, a large high-performance
storage is needed to store large training datasets.

(3) Bioinformatics: Most of NSTDA’s bioinformatics researches focus on de novo
genome assembly and sequence analysis, which process massive amount of data.
These applications are memory-intensive, requiring large memory capacity, I/O
and network bandwidth, and storage space. Computing power is less important,
so does low-latency network as most of them do not scale across nodes.



TARA: A Year in Review 741

To satisfy the requirements, we designed TARA to be a heterogeneous cluster with
low-latency, high-bandwidth network and a high-performance parallel storage. Table 1
shows an overview of TARA cluster.

Table 1. TARA Cluster Overview

Type Target Workload Nodes
Count

Total
Cores

Total
Memory

Total
GPUs

Rpeak

Compute Generic HPC 60 2400 11.25TB - 184.32 TFlops
Memory Memory intensive 8 1536 24.00TB - 103.22 TFlops
GPU GPU development 2 80 0.75TB 4 28.00 TFlops
DGX GPU-intensive 3 120 1.50TB 24 187.20 TFlops

Total 502.74 TFlops

2.1. Computing Nodes

TARA has four types of computing node: Compute, Memory, GPU, and DGX. The
specifications of each node are as follows.

(1) Compute Node: The compute node is designed for generic HPC workload,
which majority of scientific applications falls into this category. Each compute
node has two 20-core Intel Xeon Gold 6148, 192 GB DDR4-2666 ECC RAM, and
an EDR Infiniband card. There are 60 compute nodes in TARA cluster.

(2) Memory Node: The memory node is designed for memory-intensive workload.
This type of workload has large memory footprint, which could get performance
benefit from large memory pool. Each memory node has eight 24-core Intel Xeon
Platinum 8160, 3 TB DDR4-2666 ECC RAM, and two EDR Infiniband cards.
There are 8 memory nodes in the cluster.

(3) GPU Node: The GPU node is designed for GPU application development and
testing. It consists of two 20-core Intel Xeon Gold 6148 processors, 384 GB
DDR4-2666 ECC RAM, an EDR Infiniband card, and two Nvidia Tesla V100
GPUs with 16GB memory. TARA cluster has two nodes of this type.

(4) DGX Node: The dgx node is an Nvidia DGX-1 server, a specialized machine
designed for GPU-intensive workload. Each machine has two 20-core Intel Xeon
E5-2698 v4 processors, 512 GB DDR4-2666 ECC RAM, and four EDR Infiniband
card, and eight Nvidia Tesla V100 GPUs with 32GB memory. The cluster has
three DGX node; two are dedicated for bioinformatics and the remaining one is
for general usage.

Node specifications are summarized in Table 2. All computing nodes run CentOS
Linux version 7.6.

In addition to the computing nodes, TARA has two frontend nodes for user access
and administration node for cluster services, such as node deployment, job scheduler,
authentication system, license managers. The services are deployed on virtual machines
running in the administration node, which uses VMware ESXi 6.7 as the hypervisor.

2.2. Parallel Storage

The cluster has 780TB of shared parallel file storage, running IBM Spectrum Scale
parallel file system (also known as IBM General Parallel File System or GPFS). The



742 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

Table 2. TARA Node Specification

Type Processor CPUs Cores/

CPU

Memory GPU Network

Compute Intel Xeon Gold
6148

2 20 192GB - 1x EDR IB

Memory Intel Xeon Plat.

8160

8 24 3TB - 2x EDR IB

GPU Intel Xeon Gold

6148

2 20 384GB 2x Nvidia Tesla V100

16GB

1x EDR IB

DGX Intel Xeon
E5-2698v4

2 20 512GB 8x Nvidia Tesla V100
32GB

4x EDR IB

storage system consists of five I/O management nodes for Spectrum Scale service, four
Lenovo DS6200 storage systems, and two SAN switches. The I/O management nodes and
the storage systems are connected via two SAN switches for redundancy.

The file system is also configured with Declustered RAID [3] providing similar fault-
tolerance level as RAID6 with faster rebuilding time.

2.3. Networks

TARA consists of three networks: Infiniband, Service, and Management networks.

(1) Infiniband network: This network is used for inter-process communication,
data transfer, and parallel file system access. The network is a fat tree network [6]
utilizing a low-latency, high-bandwidth, EDR Infiniband. All computing nodes,
frontend nodes, administration node, and I/O management nodes are connected
to this network.

(2) Service network: The service network is used for cluster services, e.g. job
scheduling, authentication, license management, and etc. The network is a gigabit
Ethernet connecting all servers in the cluster.

(3) Management network: The management network is a gigabit Ethernet net-
work connecting baseboard management controllers(BMC) of all servers in the
cluster for out-of-band management.

All nodes in the cluster do not have Internet access excepts the frontend and adminis-
tration nodes, which are connected to external network via 10 gigabit Ethernet.

3. Data Center Preparation

Hosting an HPC cluster is challenging for existing data centers due to its power con-
sumption and heat generation. While NSTDA has several data centers available across its
research centers, all of them are designed for enterprise workloads, such as web services
and databases. Hosting an HPC cluster on such facility was challenging since enterprise
workloads typically require less power.

To accommodate HPC clusters, we upgraded the latest data center; doubling its power
and air cooling capacity to 120kW and 146kW, respectively. We also expanded contain-
ment’s wireways to support cables from cluster networks. The data center upgrade began
a month before TARA’s commission and continued until TARA’s equipment arrived.

Even with the upgrade, power density of HPC cluster is still a challenge. The server
racks in the data center each has 10kW power capacity; however, a dense HPC cluster



TARA: A Year in Review 743

could easily draws 40kW of power per rack. As a result, TARA cluster could only utilizes
half of each server rack due to power capacity, keeping remaining half emptied. We also
moved an existing cluster to another data center, clearing up ten server racks, to make
space available for TARA. Overall, TARA takes nearly 35% of the new data center’s
server racks.

4. Cluster Management

4.1. Node Provisioning

We use xCAT [13], an open-source software for automating deployment and manage-
ment of HPC clusters, for node provisioning. All computing nodes, except DGX nodes,
and frontend nodes are provisioned by xCAT.

To perform node provisioning, xCAT requires machine definition – including machine
information and network configuration. Machine information, e.g. model and serial num-
ber, are collected by xCAT’s automatic hardware discovery. Network configurations, such
as IP addresses and hostname, are manually assigned after the definition is created by
hardware discovery. This assignment was done by the vendor with our configuration for
IP addresses. The final xCAT definitions were exported to an xCAT’s stanza file for
future use.

OS provisioning and machine configuration were done through xCAT automatic de-
ployment. We defined a list of RPM packages to be installed during the OS installations
and a set of post-installation scripts for setting services including job scheduler, paral-
lel file systems, and so on. xCAT follows these configurations to installing OS on the
machines.

4.2. Job Scheduling

TARA uses SlurmWorkload Manager [14] for job scheduling and resource management.
Slurm tracks cluster resource availability such as CPU cores, memory, and GPUs, and
allocates them to jobs waiting in queues based on the job’s priority. We built Slurm to
use PMIx [2] as default process manager with UCX [11] for communication framework.
TARA uses PMIx 3.1.4 [9] and OpenUCX 1.6 [12].

We created Slurm partitions (Slurm’s term for job queue) for each computing node
types in Section 2.1, namely compute, memory, gpu, and dgx. Table 3 summarizes par-
tition configuration. The compute partition consists of 58 of 60 compute nodes. The
remaining 2 nodes are reserved for development purpose. All memory and GPU nodes
are available for the memory and gpu partition, respectively. For the dgx partition, only
one DGX node is available. The remaining twos are reserved for bioinformatics workload.
If users do not specify a partition for running a job, the job will run in the compute
partition.

The granularity of resource allocation is at core-level for the compute and memory
partition, and at node-level for the gpu and dgx partition. In these partitions, jobs can
reserve the resources up to 5 days. We set the maximum wall time to 5 days based on the
input from users. During the first year of operation, we observed a reasonable turn-over
time for jobs. The cluster achieved 69.63% annual utilization with 93.90% daily utilization
at peak usage.

In addition to the type-based partitions, we deployed three additional partitions: two
preemptive partitions and one development partition. The preemptive partitions targets



744 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

computing nodes in the memory and dgx partition for encouraging users to use under-
utilized resources. The partitions are named memory-preempt and dgx-preempt, respec-
tively. These partitions have the same setting as their non-preemptive counterparts except
jobs submitted to these partitions will have lower priority and can be killed by higher
priority jobs (i.e. jobs submitted to memory and dgx partitions). The memory-preempt
partition is available on three memory nodes. The dgx-preempt partition is available on
the two reserved DGX nodes.

The development partition, named devel, is designed for debugging and interactive
jobs. The partition uses two reserved compute nodes. The job’s wall time is limited
to 2 hours allowing fast turn-over rate. We created a wrapper script for submitting an
interactive job, called sinteract∗. This script automatically set Slurm’s flags to puts
task zero in pseudo terminal and enable X11 support for an interactive job. The script
also checks for Slurm’s account the job will charge from. If none is specified, it will ask
users for the account.

Table 3. TARA Job Partitions

Partition Node Type #N Max. Walltime Preemptive SU Charge

devel
compute

2 2 hours No 1 SU/core-min
compute 58 5 days No 1 SU/core-min

memory
memory

8 5 days No 1.25 SU/core-min
memory-preempt 8 5 days Yes 0.50 SU/core-min

gpu GPU 2 5 days No 130 SU/node-min

dgx
DGX

1 5 days No 815 SU/node-min
dgx-preempt 2 5 days Yes 400 SU/node-min

Job’s priority is computed by Slurm’s multifactor priority plugin based on several
factors, e.g. job size, age, and account’s fair-share. Fair-share is prioritized for job’s
priority while other factors are weighted equally. The scheduler give higher priory to
large jobs. Job age in the partition also contributes to job’s priority. The job age factor
will reach its maximum after 7 days of waiting in the queue. We set partition priority
factors to be equal on all partition except the preemptive ones, which has lower priority.
We do not use quality-of-service for our priority factor. In addition to multifactor priority,
we put a hard limit on resource usage. Each project’s account can use up to 1,000 cores
and run 100 jobs simultaneously. This configuration prevents cluster monopolization
caused by users.

4.3. Accounting

Jobs running on TARA are charged for its resource usage. Instead of using a real
currency, TARA uses Service Unit (SU), which is equivalent to a core-minute of a compute
node. For example, a job requesting 20 cores of a compute node for 15 minutes will be
charged 300 SUs when the job is finished. We set the SU charge for each partitions,
based on the cost of acquiring and operating nodes in each partition. Special discount
is applied to preemptive partitions for encouraging users to use under-utilized resource.
Table 3 summarizes SU charge.

To implement this accounting mechanism, we use Slurm accounting service called Slurm
Database Daemon (SlurmDBD). The service keeps record of resource usage by each project

∗https://github.com/thaisc-hpc/slurm-sinteract

https://github.com/thaisc-hpc/slurm-sinteract


TARA: A Year in Review 745

and prevents jobs from running when the usage exceeds the available budget. We imple-
ment this mechanism using Slurm components (displaying with monospaced, hereafter)
as described below.

After user submit a project proposal and is approved, we create an account for the
project along with users for the project’s members. These users are linked to the
account, creating an association. A user without association cannot run any jobs
on the cluster. A Quality of Service (QoS) is created along with the account and
set as the account’s default QOS. We use this default QoS to apply resource limits to the
account, acting as the project’s wallet.

Resource limitation is configured through a QOS parameter called GrpTRESMins. The
parameter indicates the numbers of trackable resource (TRES) minutes that can be used by
jobs throughout the lifetime of the QOS. As SU does not exist in Slurm, we use billing –
a type of TRES – to represent SUs. By setting GrpTRESMins with an amount of billing
equal to the project’s SU budget, we could use the QOS as the project’s wallet. The QOS

flag is set with a NoDecay flag, preventing QOS usage to be decayed. As a result, resource
usage will keep accumulating in the QOS when jobs are running from the QOS. A job’s
billing usage is calculated based on the partition it runs on and the execution time of
the job. When the resource usage reaches GrpTRESMins, users cannot run any job from
the account unless additional budget is provided.

For checking project’s SU balance, we have developed a utility, called sbalance†. The
utility displays the remaining balance in a user-friendly format (Figure 2), compared to
Slurm’s scontrol utility. In addition, the utility can show a breakdown of SU usage by
users and export the results to a file either in CSV or JSON format.

Account Description Allocation(SU) Remaining(SU) Remaining(%) Used(SU)

-----------------------------------------------------------------------------------

proj2032 refai 33333333 33009296 99.03 324037

proj2120 graph 100001002 30092076 30.09 69908926

Figure 2. Example sbalance Output

4.4. File Systems

TARA uses IBM Spectrum Scale [10](also known as IBM General Parallel File System)
for its parallel file system. IBM Spectrum Scale is high-performance clustered file system
designing for providing rapid accesses to large data in parallel. The parallel file system
has /tarafs path prefix and is organized as shown in Table 4.

(1) Home: Each user has a personal directory in this path for storing user’s files and
codes. The quota for each user is 50GB.

(2) Project: Each project has a project directory for sharing data among its mem-
bers, such as software, data sets, and etc. The default quota is 200GB but can
be increased upon user request.

(3) Scratch: Scratch space is a fast, high-performance storage, made of solid-state
drives (SDD). It is designed for temporary files that require I/O performance,
e.g. application cache, short-term data sets, and etc. The files are shared with

†https://github.com/thaisc-hpc/slurm-sbalance

https://github.com/thaisc-hpc/slurm-sbalance


746 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

project members and will be purged if there is no access in the past 60 days. We
do not put any limit for this file system.

(4) Large: This storage space is a specialized storage designed for storing large files.
The file system use large block size for improving performance. The file system
is created as a part of special agreement and can be accessed by only a member
of designated group.

(5) Utility: The utility space is an administrator-only storage for storing system-
wide modules, applications, and system configurations.

Table 4. TARA File Systems

File
System

/tarafs Path Total Size Quota Block
Size

Disk
Type

home /data/home
300TB

50GB/user 4MB NL-SAS
project /data/project 200GB/project.

Expandable upon request
4MB NL-SAS

scratch /scratch 80TB Unlimited for projects.
Purges every 60 days

4MB SSD

large /large 400TB Restricted access 8MB NL-SAS

utility /utils 10TB Administrator only 4MB NL-SAS

4.5. Software Environment

TARA provides software to users through a module system, called Lmod [7]. Users
access applications by loading modules, a configuration file containing instructions for
setting user’s environment. Lmod automatically configures user environment and removes
conflicting libraries based on the instructions contain in the module. This allows the
cluster to provide multiple versions of the same application.

To build modules, we use EasyBuild [4], a framework for building and installing soft-
ware on HPC cluster. EasyBuild automatically builds software and generating module
file from easyconfig file, a configuration file containing instructions for building software
and creating module file. We have built and installed 231 modules, including applications
and libraries.

In the first year of operations, we focused on providing the basic development environ-
ment, which includes compilers and libraries. Users were responsible for building their
own applications. We focused on two major aspects for the development stack: com-
patibility and performance. For compatibility, we provide a foss (stands for Free and
Open Source Software) toolchain. The toolchain consists of open source software, such
as GNU compilers, OpenMPI, and OpenBLAS, which are a common development tools
for open source applications. For performance, we have a intel toolchain consisting of
component from Intel Parallel Studio XE, including compilers, MPI, and MKL. These
tools are highly optimized for Intel processors, which used in TARA computing nodes. In
addition, we also provide CUDA and Python for AI development.

To provide portability and reproducibility of software, computer scientists and software
developers have shifted their development environment toward container-based systems,



TARA: A Year in Review 747

especially in the field of AI. To accommodate this change, TARA provides a container-
based system, called Singularity [5]. Singularity is a file-based container system de-
signed for HPC clusters. We decide to use Singularity instead of industry standard, i.e.
Docker [8], due to its integration with job scheduler and its security features.

5. User Support

During the first year of service, we had 54 registered projects across various research
disciplines, such as computational chemistry, material science, bioinformatics, and artifi-
cial intelligence. Majority of these users have limited experience in a time-sharing HPC
cluster, leading to a high expectation for user support for the new cluster.

In this section, we will explain the design and the implementation of both user training
(Section 5.1) and issue management (Section 5.2). Section 5.3 ends this section with user
satisfaction from TARA users.

5.1. User Training

Primary focus of user training is to introduce how to use TARA as a scientific tool. In
this regard, we did a survey on users, who express their interest in using TARA, about
their past experience with HPC clusters. The results show a wide variety of experience,
ranging from a complete novice to an expert. Some users never have access to any HPC
clusters, while some are seeking to expand their computing capacity. This gives us a basis
for designing user training.

We derived the training plan based on the finding. The courses are split between entry
and advance courses in order to engage different level of users and increase the potential
to utilize TARA efficiently. Table 5 shows the sessions we provided throughout the year
of 2019, in total of 14 sessions.

Table 5. TARA User Training Sessions in 2019

Level Sessions #Session

Information TARA Information Session 6
Entry HPC School - Getting Started on TARA 4
Advance Introduction to HPC Programming 1

TARA Best Practice 1
Intel AI workshop 1
NVIDIA workshop 1

Total 14

Information sessions aim to introduce TARA and bring general awareness to the re-
search community. Entry-level training focuses on how to use an HPC cluster, including
basic Linux command and basic job submission. Advance-level sessions bring a more
in-depth training to the users, such as programming and how to use the cluster more
efficiently. Some of the sessions are provided by hardware vendors, which focus on a more
specific topic like AI and GPU computing.

Overall, we have seen a steady growth in the number of users during the year coming
from different research areas.



748 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

5.2. Issue Management

Issue management is another important function to support users. Our team consists of
both HPC and domain experts, covering most research areas done by our users. However,
we only have an expert for each field. Accordingly, the expert may not response to user’s
need in a timely manner due to their availability. To handle the time of our team more
effectively, we categorize issues submitted to us into three levels.

The first level (L1) is defined for trivial issues, ranging from resetting password to
fixing obvious mistake in user’s job submission script. If an issue requires more than a
working week to resolve, software development, or cluster reconfiguration, it will escalate
to a second level support (L2). Feature and application requests are an example of an
L2 issue. If the issue involves service and operation policy, it will be classified as a third
level issue (L3). L3 issues are handled through meeting among decision makers. For this
L3, time cannot be guaranteed.

The designed workflow of issue management is materialized with the concept of Kanban
board of 7 columns: Issue, Pending Acknowledgement, In Progress, Resolved, Waiting for
Users, Escalated to L3, and Closed. The board in implemented using Trello [1]. Our issue
management workflow is as follows.

When an issue is submitted through ThaiSC’s email account, the issue card will be
generated under column Issue. Our helpdesk person, who is also an expert for L1 issues,
will handle the issue by considering the severity of the problem. If the issue appears is
classified as L1 or L2, an expert will be notified and tagged to the card. After tagging
is done, the helpdesk moves the card to Pending Acknowledgement. This is where our
experts start working on the issue. The assigned expert acknowledge the issue by moving
the issue’s card to In Progress. When the issue is solved, the expert updates the card
with detail of solutions. An email will be sent to the issue’s owner filled with solutions or
information. After that, the card will be moved to the Resolve column.

Overall, the helpdesk person will monitor the progress of card daily. In particular,
those cards residing in the Resolved column will be followed up with the user if the issue
is truly solved. If the user replies with satisfaction or does not reply after three days,
then the card will be moved to Closed column. Otherwise, if the user gives feedback that
the issue still persists, the case will be returned to Pending Acknowledgement, restarting
the whole process again. If the issue requires managerial decision, it will be moved to
Escalated to L3.

Incorporating this workflow with Trello, we have less trouble when handling user issues.
Trello plays its role as a tool to hold information of issues, allowing our team to collaborate
on those information systematically. As a result, we can monitoring issue progress and
keep the issue to be responded and solved within a certain amount of time, setting Service
Level Agreements (SLAs) that can be expected by users.

5.3. User Satisfaction

To evaluate our service, we sent a questionnaire consists of seven questions to our
users: four for the cluster and the rest for user support. Cluster questions asked users
about system performance, stability, computing capacity, and satisfaction with system
performance. For user support, we asked about response time, troubleshooting capability,
and satisfaction with the support process. Users give a score ranging from 1 to 5 for each
question, where a score of 5 means very satisfied.



TARA: A Year in Review 749

The results of user satisfaction survey are shown in Table 6, with a response rate greater
than 50%. Overall, more than 80% of users surveyed were satisfied with the TARA service.
We got an average score of 4.54 across all areas. System performance received the highest
score with a score of 4.84. The lowest score belongs to computing capacity, with a score
of 4.04. This low score comes from the demand for more computing resources, especially
for compute and GPU nodes. From the survey, we gather user suggestions and deliberate
it as one of the key aspects for resource planning and service improvement.

Table 6. Summary of TARA’s user satisfaction

Category Question Score (out of 5.00)
Cluster Performance 4.84

Stability 4.28
Computing Capacity 4.04
Usage Satisfaction 4.48

Support Service Response Time 4.72
Troubleshooting Capability 4.72
Service Satisfaction 4.72

6. Lesson Learned

In this section, we will discuss lessons learned from our experience with TARA during
its first year of operation. We believe that these lessons are useful for anyone who try to
build a large-scale cluster without any prior system.

6.1. System Design

Designing a system with an uncommon hardware specification poses two major chal-
lenges: performance expectation and vendor competition. During TARA design process,
octa-socket machines were a desirable option for memory nodes because of large memory
with a benefit of a large core count. In reality, while the memory node has served its
purpose for memory-intensive application, we also observe that its parallel efficiency is
low for other interested applications. This makes the node less attractive for other uses,
resulting in under-utilization of computing resources. Such pitfall could be avoided if we
had its performance information at hand. However, the rarity of such machine makes
finding the performance information challenging.

Another challenge with octa-socket machine is that it significantly reduced a number
of participated vendors. Only a small number of vendors had such machine in their
catalogue. As a result, the procurement became less competitive. While we could not
gauge the impact, we saw several vendors dropped out after TARA specification was
published.

6.2. Cluster Management

Working with vendors is crucial for efficient deployment. We asked our vendor to
handle the parallel file system and administrative node while our team focused on HPC-
related systems, i.e. frontend and computing nodes, job scheduling, and module system.
This work distribution allowed us to focus on the core services and speed up the system
deployment.



750 Thai J. Math. Vol. 19 (2021) /P. Sakdhnagool et al.

Partnership with other HPC centers helps speedup the quality and features of HPC
services and operations. Our partners have taught us several best practices, which signif-
icantly reduce learning time. Slurm, EasyBuild, and Singularity were introduced to us as
a part of such collaboration. As a result, we had more time to spend on TARA-specific
issues, such as accounting and utilities. Moreover, the partners also help pointing out
several mistakes in their early stage.

Workforce is also an important factor for managing HPC clusters. Finding HPC experts
is hard while career support is not well established. As of now, we are in the process of
building up the career path for our HPC experts. On the other side, we are also developing
an on-boarding training to quickly introduced new non-expert members to catch up with
the team. While we are still in a learning and developing process for this aspect, we
believe that it is worth mentioning to raise an awareness for a new HPC center.

6.3. User Support

Good user experience with the cluster is as important as providing the cluster. User
experience can greatly varies. Some might have experience with large cluster while some
are only familiar with workstations and desktops. Moreover, users from different fields
also have different approaches and expectation for using the cluster. Thus, bringing a
good user experience cannot be done using a single holistic solution.

From our experience, getting start sessions are critical for raising awareness and bring-
ing users to the cluster. As majority of our users do not have experience with time-sharing
clusters, even after a getting start session, there are some barriers preventing them from
using the cluster. One example of such barriers is a convenience of self-managed ma-
chines, e.g. global software installation and root privilege, which is not possible for HPC
clusters. The users might also expect to access computing nodes in the same fashion
as their own desktop. Engineering support and software availability are another critical
barriers. Setting up development environments or installing software is too troublesome
for some users, especially with restrictions of time-sharing clusters.

What we have learned so far is that communication is crucial and an in-person consult-
ing is required to ultimately resolve the problem. As such, we found that having domain
experts in the team is critical to the success of this type of user support. While the
method might be inefficient and takes time, we have succeeded to bring in a few research
groups to use TARA.

We found that Trello [1] is a good beginner tools for issue management because of its
simplicity. While its functions might be limited and require manual management, it is
easy enough to introduce the tool with our support process to a new member. We have
also tried other helpdesk solutions but found that they have steep learning curve and are
too complex for our need. However, when our service is expanded nation-wide, we might
need to reconsider these options.

7. Conclusion

In this paper, we have described TARA, the first HPC cluster designed and operated
by NSTDA Supercomputer Center (ThaiSC), from its design and management to user
support and service operations. We also discussed lessons learned during our first year
of operating TARA. This paper started with the requirements gathered to design TARA
cluster accordingly. The result is a heterogeneous cluster combining with compute node,
memory node, gpu node, and dgx node designed to support a broad range of HPC and



TARA: A Year in Review 751

computational applications. In addition, we have presented the technical and policy
management of TARA cluster, along with our lesson learned during the first year of
operation. These information and experiences should be beneficial for HPC experts,
HPC centers, and IT facility staffs in general.

References

[1] Atlassian-Trello. About trello - what’s behind the boards, 2020.
[2] R.H. Castain, J. Hursey, A. Bouteiller, D. Solt, Pmix: Process management for

exascale environments, Parallel Computing 79 (2018) 9–29.
[3] M. Hennecke. DSS-G declustered raid technology and rebuild performance. Technical

report, Lenovo (2019).
[4] K. Hoste, J. Timmerman, A. Georges, S.D. Weirdt, Easybuild: Building software

with ease, In 2012 SC Companion: High Performance Computing, Networking Stor-
age and Analysis (2012) 572–582.

[5] G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: Scientific containers for mobility
of compute. PLOS ONE 12 (5) (2017) 1–20.

[6] C.E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing.
IEEE Transactions on Computers, C-34 (10) (1985) 892–901.

[7] R. McLay, K.W. Schulz, W.L. Barth, T. Minyard, Best practices for the deployment
and management of production hpc clusters, In SC ’11: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Storage and
Analysis (2011) 1–11.

[8] D. Merkel, Docker: Lightweight linux containers for consistent development and
deployment, Linux J. 239 (2014).

[9] PMIx-Process Manager Interface-Exascale. https://pmix.org/.
[10] F. Schmuck, R. Haskin. GPFS: A shared-disk file system for large computing clusters,

In Proceedings of the 1st USENIX Conference on File and Storage Technologies,
FAST 02, page 19–es, USA, 2002. USENIX Association.

[11] P. Shamis, M.G. Venkata, M.G. Lopez, M.B. Baker, O. Hernandez, Y. Itigin, M. Dub-
man, G. Shainer, R.L. Graham, L. Liss, Y. Shahar, S. Potluri, D. Rossetti, D. Becker,
D. Poole, C. Lamb, S. Kumar, C. Stunkel, G. Bosilca, A. Bouteiller, Ucx: An open
source framework for hpc network apis and beyond, In 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects (2015) 40–43.

[12] The Unified Communication X Library. http://www.openucx.org.
[13] xCAT-Extreme Cloud Administration Toolkit. https://xcat.org/.
[14] A.B. Yoo, M.A. Jette, M. Grondona, Slurm: Simple linux utility for resource manage-

ment, In D. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, pages 44–60, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

https://pmix.org/
http://www.openucx.org
https://xcat.org/

	Introduction
	TARA Cluster Design
	Computing Nodes
	Parallel Storage
	Networks

	Data Center Preparation
	Cluster Management
	Node Provisioning
	Job Scheduling
	Accounting
	File Systems
	Software Environment

	User Support
	User Training
	Issue Management
	User Satisfaction

	Lesson Learned
	System Design
	Cluster Management
	User Support

	Conclusion

