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Abstract In this paper, we study the chromatic numbers of suborbital graphs for Hecke groups H(
√
2)

and H(
√
3). We decompose each suborbital graph into disjoint isomorphic subgraphs and show that each

subgraph is homomorphic to the Farey graph. Finally, we show that each suborbital graph has chromatic

number 2 or 3.

MSC: 05C15; 20H10; 05C25

Keywords: Hecke group; suborbital graph; chromatic number

Submission date: 15.03.2020 / Acceptance date: 25.06.2020

1. Introduction

For each integer q ≥ 3, the Hecke group H(λq) is the group of transformations on the

extended complex plane C = C∪ {∞} generated by S(z) = − 1
z and T (z) = z+ λq where

λq = 2 cos(πq ) [1]. In the cases q = 3, 4, or 6, the elements of H(1), H(
√

2), and H(
√

3)

are completely describable. For m ∈ {1, 2, 3}, the Hecke group H(
√
m) consists of the

transformations

(1) T1(z) =
a
√
mz + b

cz + d
√
m

where a, b, c, d ∈ Z and adm− bc = 1, and

(2) T2(z) =
az + b

√
m

c
√
mz + d

where a, b, c, d ∈ Z and ad− bcm = 1.

Each H(
√
m) acts transitively on the set

√
mQ̂ = { rs

√
m | rs ∈ Q} ∪ {∞} by the action

T · z = T (z).
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A graph G consists of a vertex set V (G) 6= ∅ and an edge set E(G) ⊆ V (G) × V (G).
If V (G) is finite, we say that G is finite. Otherwise, we say that G is infinite. We denote
a directed edge (v, w) ∈ E(G) by v → w. Given m ∈ {1, 2, 3} and u

N ∈ Q, the suborbital

graph G(∞, uN
√
m) is the infinite graph consisting of the vertex set

√
mQ̂ and the edge set

{T (∞)→ T ( uN
√
m) | T ∈ H(

√
m)}. In other words, the edges in the graph G(∞, uN

√
m)

are the images of the edge ∞→ u
N

√
m under the action of H(

√
m). We use the letters u

and N in order to be consistent with [2–4] and we reserve the lower case n for the divisors
of N . For more introductory and comprehensive treatments of suborbital graphs, we refer
the reader to [5, Chapter 5], [6, Chapter 4], and [7, Chapter 1.11]; there they are called
orbital graphs.

We will visualize the graph G(∞, uN
√
m) by drawing it on the closed upper half-plane

H = {z ∈ C | Im(z) ≥ 0} ∪ {∞}. For an edge T (∞) → T ( uN
√
m), if one endpoint is

∞, the edge is represented by the vertical straight line in H meeting the other endpoint
on R. Otherwise, both endpoints are in R and we represent this edge by the half-circle
in H centered on R meeting both endpoints. For example, consider the suborbital graph
G(∞, 1) where the edges are the images of ∞ → 1 under all transformations in H(1).
This graph, also known as the Farey graph, is visualized as shown in Figure 1.

Figure 1. G(∞, 1).

The suborbital graphs for the modular group H(1) were first studied by Jones, Singer-
man, and Wicks [2]. Many properties of the suborbital graphs G(∞, uN ) were investigated
by Jones et al. They gave sufficient and necessary conditions for the existence of an edge
in G(∞, uN ) and conjectured conditions for each suborbital graph to be a forest. The
conjecture was later proven by Akbas [4]. Keskin extended their works to the suborbital

graphs for H(
√

2) and H(
√

3) [3]. Some of their results that are relevant to our work
are restated or rephrased in this section. Throughout this paper, we always assume that

a fraction x
y in Q̂ is reduced, i.e., gcd(x, y) = 1. The element ∞ is represented by the

fractions 1
0 and −10 .
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Theorem 1.1 ([3, Theorems 1, 2]). Let m = 1, 2, or 3.
If gcd(m,N) = 1, then the edge r

s

√
m→ x

y

√
m is in G(∞, uN

√
m) if and only if either

(G1.1) ry − sx = ±N , x ≡ ±ur (mod N), y ≡ ±us (mod N), m | s; or
(G1.2) ry − sx = ±N , x ≡ ±mur (mod N), y ≡ ±mus (mod N), m | y.
If gcd(m,N) = m, then the edge r

s

√
m→ x

y

√
m is in G(∞, uN

√
m) if and only if either

(G2.1) ry − sx = ±N , x ≡ ±ur (mod N), y ≡ ±us (mod N), m | s; or
(G2.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), y ≡ ±us (mod N).

The signs are the same at every occurence of ± in the same line.

For example, if Theorem 1.1(G1.1) holds, then there are two possibilities:

(1) ry − sx = N , x ≡ ur (mod N), y ≡ us (mod N), m | s; or
(2) ry − sx = −N , x ≡ −ur (mod N), y ≡ −us (mod N), m | s.

Note that if N < 0, then −u
−N = u

N with −N > 0. So we may assume that N > 0.

Furthermore, observe that if v ≡ u (mod N), then the conditions in Theorem 1.1 for
G(∞, vN

√
m) are equivalent to those for G(∞, uN

√
m). Consequently, we may assume

that 0 ≤ u < N .
Graph coloring is the process of assigning color to each vertex in a graph such that no

adjacent vertices have the same color. If we can color a graph G with k colors, we say that
G is k-colorable. We define the chromatic number of G to be the smallest positive integer
k such that G is k-colorable. If G has chromatic number k, we say that G is k-chromatic.
The chromatic number of a graph can be obtained through certain properties of the graph
itself, or by relating it to another graph under certain mappings.

For any two vertices v and w in a graph, other than referring to the directed edge from
v to w itself, we also write v → w to indicate the existence of the edge when no confusion
can arise. Moreover, we use the expression v 
 w to indicate that v → w or w → v.
A circuit of length l in a graph is a sequence of distinct vertices v1, v2, . . . , vl such that
v1 
 v2 
 · · ·
 vl 
 v1 where l ≥ 3. A circuit of length 3 is called a triangle. A graph
that contains no circuits is called a forest and has chromatic number at most 2. Under the
axiom of choice, we can weaken the assumption by requiring only that the graph contains
no circuits of odd lengths. On the other hand, a graph that contains a triangle is at least
3-chromatic. Sufficient and necessary conditions regarding these properties were given in
[3] and we rephrase them as follows.

Theorem 1.2 ([3, Theorems 4-6, Corollary 1]). Let N > 1. Then

(1) G(∞, uN ) has at most circuits of length 3, and G(∞, uN ) contains a triangle if

and only if u2 ± u+ 1 ≡ 0 (mod N);

(2) G(∞, uN
√

2) has at most circuits of length 4;

(3) G(∞, uN
√

3) has at most circuits of lengths 3 and 6, and G(∞, uN
√

3) contains

a triangle if and only if u2 ± u+ 1 ≡ 0 (mod N) and 3 | N .

A homomorphism from graph G to graph H is a function ϕ : V (G) → V (H) such
that if (u, v) ∈ E(G), then (ϕ(u), ϕ(v)) ∈ E(H). If there exists a homomorphism from
G to H, we say that G is homomorphic to H. In this case, the chromatic number of G
is at most that of H. An isomorphism between G and H is a bijective homomorphism
from G to H such that its inverse is a homomorphism. Clearly, isomorphisms preserve
chromatic numbers. Let G be a graph and {Gi}i be a family of graphs. If V (G) and
E(G) are the unions of pairwise disjoint sets {V (Gi)}i and {E(Gi)}i, respectively, we say
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that G is the disjoint union of {Gi}i. Moreover, if all graphs Gi are isomorphic, then the
chromatic numbers of Gi and G are equal. We shall see that the suborbital graphs admit
such decompositions.

Next, we discuss how we can decompose suborbital graphs into disjoint isomorphic
subgraphs using certain equivalence relations on the vertex sets. Keskin [3] gave a class
of H(

√
m)-invariant equivalence relations and we briefly discuss their characterizations

here. For each N ∈ N and m = 1, 2, or 3, define Hm
0 (N) to be the set consisting of

T ∈ H(
√
m) where

T (z) =
az + b

√
m

c
√
mz + d

or T (z) =
a
√
mz + b

cz + d
√
m

such that c ≡ 0 (mod N).

Then there is an H(
√
m)-invariant equivalence relation ≈N on

√
mQ̂ given by

r
s

√
m ≈N x

y

√
m ⇐⇒ T−1S ∈ Hm

0 (N)

where

T (z) =
rz + ∗

(s/m)
√
m+ ∗

if m | s, T (z) =
r
√
m+ ∗

sz + ∗
otherwise,

and

S(z) =
xz + ∗

(y/m)
√
m+ ∗

if m | y, S(z) =
x
√
m+ ∗

yz + ∗
otherwise.

We can characterize this relation by

r
s

√
m ≈N x

y

√
m ⇐⇒

{
ry−sx
m ≡ 0 (mod N), if m | s and m | y;

ry − sx ≡ 0 (mod N), otherwise.

If gcd(m,N) = 1, then the statements ry−sx
m ≡ 0 (mod N) and ry− sx ≡ 0 (mod N) are

equivalent and the relation can be reduced to

r
s

√
m ≈N x

y

√
m ⇐⇒ ry − sx ≡ 0 (mod N).

All vertex-induced subgraphs of G(∞, uN
√
m) by each equivalence class of ≈N are isomor-

phic. In the case that gcd(m,N) = 1, if there is an edge r
s

√
m→ x

y

√
m in G(∞, uN

√
m),

then ry− sx = ±N . So, rs
√
m ≈N x

y

√
m. This means that each connected component of

G(∞, uN
√
m) lies in a single equivalence class of ≈N . It follows that G(∞, uN

√
m) is the

disjoint union of vertex-induced subgraphs by each equivalence class. Let F (∞, uN
√
m)

denote the vertex-induced subgraph of G(∞, uN
√
m) by the equivalence class [∞]≈N

=
{xy
√
m : y ≡ 0 (mod N)}. We obtain that G(∞, uN

√
m) is a disjoint union of subgraphs

each isomorphic to F (∞, uN
√
m). From Theorem 1.1, we can characterize the existence

of an edge in F (∞, uN
√
m) as follows.

Theorem 1.3. Let m = 1, 2, or 3. If gcd(m,N) = 1, then the edge r
s

√
m→ x

y

√
m is in

F (∞, uN
√
m) if and only if either

(F1.1) ry − sx = ±N , x ≡ ±ur (mod N), mN | s, N | y; or
(F1.2) ry − sx = ±N , x ≡ ±mur (mod N), N | s, mN | y.

The signs are the same at every occurence of ± in the same line.
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We emphasize here that the graphs F (∞, uN
√
m) have yet to be defined for the case

gcd(m,N) = m > 1. In that case, the relation ≈N may not guarantee that the edge sets
of the subgraphs are disjoint. Instead, we will use ≈N/m and similarly define F (∞, uN

√
m)

for each G(∞, uN
√
m).

Recall that any suborbital graph G(∞, uN
√
m) is identical to G(∞, v

|N | ) where 0 ≤
v < |N | and v ≡ u (mod N). So we may assume that 0 ≤ u < N . Keskin showed that
the graphs F (∞ u

N

√
m) and F (∞, N−uN

√
m) where gcd(m,N) = 1 are reflections of each

other across the vertical line meeting 1
2

√
m.

Lemma 1.1 ([3, Lemma 6]). If gcd(m,N) = 1, then F (∞, uN
√
m) is isomorphic to

F (∞, N−uN
√
m) by the mapping v 7→

√
m− v.

Jones et al. gave sufficient conditions for any two graphs F (∞, uN ) and F (∞, un ) to be
homomorphic.

Lemma 1.2 ([2, Lemma 5.3(ii)]). If n | N , then F (∞, uN ) is homomorphic to F (∞, un )

by the mapping v 7→ N
n v.

In the case that m = 1, the chromatic numbers for G(∞, uN ) were obtained by Tapanyo
and Jaipong. They first proved that the Farey graph F (∞, 1) has chromatic number 3
then applied the previous lemma to give an upper bound for the chromatic number for
every graph F (∞, uN ). Finally, they extended their results to the graphs G(∞, uN ).

Theorem 1.4 ([8, Theorem 8]). The Farey graph is 3-chromatic.

Corollary 1.3 ([8, Corollary 11]). Let χ denote the chromatic number of G(∞, uN ). Then

(1) χ = 2 if N - (u2 ± u+ 1), and
(2) χ = 3 if N | (u2 ± u+ 1).

Our work concerns the remaining cases m = 2 or 3. Here, we state our main theorem
and describe our approach to obtain the chromatic number of the suborbital graphs
G(∞, uN

√
2) and G(∞, uN

√
3). Note that the statement gcd(m,N) = m is equivalent to

m | N and we use them interchangeably.

Main Theorem.

(1) G(∞, uN
√

2) has chromatic number 2.

(2) Let χ be the chromatic number of G(∞, uN
√

3).
(a) If 3 - N , then χ = 2.
(b) If 9 - N and 3 | N , then

(i) χ = 2 if N - (u2 ± u+ 1), and
(ii) χ = 3 if N | (u2 ± u+ 1).

(c) If 9 | N , then χ = 2.

Outline of the proof. We begin by decomposing G(∞, uN
√
m) into disjoint isomorphic

subgraphs using an H(
√
m)-invariant equivalence relation on the vertex set. As the

chromatic numbers of each decomposed subgraph are equal to the chromatic number of
G(∞, uN

√
m), we focus on one special subgraph, which we denote by F (∞, uN

√
m). We

show that each F (∞, uN
√
m) is homomorphic to the Farey graph F (∞, 1), thereby making

the graph at most 3-chromatic. Then, we investigate the exact chromatic numbers for
each case.
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2. Main Results

This section is divided into three parts. Subsection 2.1 begins with the decomposition
of suborbital graphs G(∞, uN

√
m) where m | N into disjoint subgraphs. Subsection 2.2

then discusses homomorphisms and shows that all graphs F (∞, uN
√
m) are homomorphic

to the Farey graph F (∞, 1). Finally, Subsection 2.3 studies the chromatic numbers of the
graphs G(∞, uN

√
m).

2.1. Graph Decompositions

Our goal is to decompose the suborbital graphs G(∞, uN
√
m) where m | N into disjoint

subgraphs induced by the equivalence classes of ≈N/m. Recall that

r
s

√
m ≈N/m x

y

√
m ⇐⇒

{
ry−sx
m ≡ 0 (mod N

m ), if m | s and m | y;

ry − sx ≡ 0 (mod N
m ), otherwise.

We first verify that every edge r
s

√
m→ x

y

√
m in G(∞, uN

√
m) has endpoints in the same

class. If N = m, then the relation is trivial and there is only one equivalence class. Next,
suppose N > m. In order to verify the relation ≈N/m, we have to know whether or not
m | s and m | y hold simultaneously. We show that m | s and m | y if Theorem 1.1(G2.1)
holds, and m - s or m - y if Theorem 1.1(G2.2) holds.

Suppose Theorem 1.1(G2.1) holds. Then

ry − sx = ±N, x ≡ ±ur (mod N), y ≡ ±us (mod N), and m | s.
From y ≡ ±us (mod N), we can write y = ±us + Nk for some k ∈ Z. Since m divides
both s and N , we have m also divides y. From ry−sx = ±N , it follows that ry−sx

m = ±Nm .
So r

s

√
m ≈N/m x

y

√
m and both endpoints belong to the same equivalence class of ≈N/m.

On the other hand, suppose Theorem 1.1(G2.2) holds. Then

ry − sx = ±Nm , x ≡ ±ur (mod N
m ), and y ≡ ±us (mod N).

Suppose for sake of contradiction that m | s and m | y. Then equality ry − sx = ±Nm
implies that ry−sx

m = ± N
m2 . From the relation y ≡ ±us (mod N), we get y

m ≡ ±u
s
m

(mod N
m ). Then

ry−sx
m = r ym −

s
mx ≡ r(±u

s
m )− s

m (±ur) ≡ 0 (mod N
m ).

However, this contradicts ry−sx
m = ± N

m2 . Therefore, m - s or m - y. Since ry − sx = ±Nm ,
we have r

s

√
m ≈N/m x

y . So both endpoints are in the same equivalence class of ≈N/m.

In either case, any edge in G(∞, uN
√
m) where m | N has both endpoints contained

in the same equivalence class of ≈N/m. This means that all subgraphs induced by the

equivalence classes of ≈N/m are disjoint. We consider the subgraph of G(∞, uN
√
m)

induced by the equivalence class [∞]≈N/m
and denote this subgraph by F (∞, uN

√
m).

Next, we will find sufficient and necessary conditions for the existence of an edge in
F (∞, uN

√
m) where m | N . Observe that

1
0

√
m ≈N/m x

y

√
m ⇐⇒

{
y
m ≡ 0 (mod N

m ), if m | y;

y ≡ 0 (mod N
m ), otherwise.

If m2 - N , then gcd(m, Nm ) = 1 and the relation can be reduced to

1
0

√
m ≈N/m x

y

√
m ⇐⇒ y ≡ 0 (mod N

m ).
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On the other hand, if m2 | N , then the second case is impossible (Nm | y but m - y) while
the first case is equivalent to y ≡ 0 (mod N). In this case, we have

1
0

√
m ≈N/m x

y

√
m ⇐⇒ y ≡ 0 (mod N).

As the relation ≈N/m behaves differently depending on whether m2 divides N or not,

we consider the subgraphs F (∞, uN
√
m) with m2 - y and with m2 | y separately. From

Theorem 1.1(G2.1) and (G2.2), we obtain the following characterization of F (∞, uN
√
m)

where m2 - N .

Lemma 2.1. If m | N and m2 - N , then the edge r
s

√
m → x

y

√
m is in F (∞, uN

√
m) if

and only if either

(F2.1) ry − sx = ±N , x ≡ ±ur (mod N), N | s, N | y; or
(F2.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), N
m | s,

N
m | y, y ≡ ±us (mod N).

The signs are the same at every occurence of ± in the same line.

Proof. From Theorem 1.1, the edge r
s

√
m→ x

y

√
m is in F (∞, uN

√
m) if and only if N

m | s
and N

m | y and either

(G2.1) ry − sx = ±N , x ≡ ±ur (mod N), y ≡ ±us (mod N), m | s; or
(G2.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), y ≡ ±us (mod N).

Since gcd(m, Nm ) = 1, the condition that N
m | s and m | s is equivalent to N | s. Recall

that (G2.1) implies m | y. Likewise, we can replace the condition that N
m | y and m | y by

N | y. Consequently, the requirement that y ≡ ±us (mod N) is redundant. Therefore,
(G2.1) together with N

m | s and N
m | y is equivalent to (F2.1). On the other hand, (F2.2)

is a restatement of (G2.2) with N
m | s and N

m | y.

Figure 2. F (∞, 13
√

3).

An example of a graph F (∞, uN
√
m) with m | N and m2 - N is F (∞, 13

√
3) which

is pictured in Figure 2. Looking at this graph, one may wonder of the possibility of
decomposing it further. Indeed, this is the case for graphs F (∞, uN

√
m) where m | N and

m2 - N . Denote the vertex set and the edge set of F (∞, uN
√
m) by V and E, respectively.
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The set E can be partitioned into disjoint sets E1 and E2 where

E1 = {v → w ∈ E : (F2.1) holds for v → w} and

E2 = {v → w ∈ E : (F2.2) holds for v → w}.

Let F1(∞, uN
√
m) and F2(∞, uN

√
m) denote the edge-induced subgraphs of F (∞, uN

√
m)

by E1 and E2, respectively. The vertex sets of F1(∞, uN
√
m) and F2(∞, uN

√
m), denoted

by V1 and V2, respectively, are given by

V1 = {v ∈ V : v → w is in E1 or w → v is in E1 for some w ∈ V } and

V2 = {v ∈ V : v → w is in E2 or w → v is in E2 for some w ∈ V }.

Then we have the following result.

Lemma 2.2. Suppose m | N and m2 - N . Then F (∞, uN
√
m) is the disjoint union of

F1(∞, uN
√
m) and F2(∞, uN

√
m) with an edgeless graph.

Proof. The graph F (∞, uN
√
m) is the union of F1(∞, uN

√
m) and F2(∞, uN

√
m) with the

edgeless graph having vertex set V − (V1 ∪ V2). We already know that E1 ∩ E2 = ∅.
It suffices to show that V1 ⊆ V −V2 which would imply V1∩V2 = ∅. Let r

s

√
m be a vertex

in V1. Then it is the case that N | s (Lemma 2.1(F2.1)).
If r

s

√
m → x

y

√
m is an edge in E2, then y ≡ ±us ≡ 0 (mod N) and ry − sx = ±Nm

(Lemma 2.1(F2.2)). However, the relations s ≡ 0 (mod N) and y ≡ 0 (mod N) imply
that ry − sx ≡ 0 (mod N) contradicting ry − sx = ±Nm .

If x
y

√
m → r

s

√
m is an edge in E2, then ±uy ≡ s ≡ 0 (mod N) and ry − sx = ±Nm

(Lemma 2.1(F2.2)). Since gcd(u,N) = 1, we have y ≡ 0 (mod N). Similarly, we obtain
that ry − sx ≡ 0 (mod N) which contradicts ry − sx = ±Nm .

Therefore, r
s

√
m is not a vertex in V2.

The decomposition of F (∞, 13
√

3) into F1(∞, 13
√

3) and F2(∞, 13
√

3) is shown in Fig-
ures 3 and 4. This lemma allows us to study F1(∞, uN

√
m) and F2(∞, uN

√
m) separately

because the chromatic number of F (∞, uN
√
m) is the maximum of the two disjoint sub-

graphs.

Figure 3. F1(∞, 13
√

3).



Chromatic Numbers of Suborbital Graphs for Some Hecke Groups 733

Figure 4. F2(∞, 13
√

3).

Next, we find sufficient and necessary conditions for the existence of an edge in the
suborbital graphs F (∞, uN

√
m) where m2 | N . Recall that the equivalence class [∞]≈N/m

consists of vertices x
y

√
m where N | y. One property regarding F (∞, uN

√
m) is that they

do not contain edges of the second condition. In particular, we have the following lemma.

Lemma 2.3. If m2 | N , then the edge r
s

√
m→ x

y

√
m is in F (∞, uN

√
m) if and only if

(F3.1) ry − sx = ±N , x ≡ ±ur (mod N), N | s, N | y.
The signs are the same at every occurence of ± in the same line.

Proof. From Theorem 1.1, the edge r
s

√
m→ x

y

√
m is in F (∞, uN

√
m) if and only if N | s

and N | y and either

(G2.1) ry − sx = ±N , x ≡ ±ur (mod N), y ≡ ±us (mod N), m | s; or
(G2.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), y ≡ ±us (mod N).

As N | s implies m | s, the latter is redundant. Similarly, the condition that N divides
both s and y implies the relation y ≡ ±us (mod N), thereby making it redundant. So
can rewrite the conditions as

(F3.1) ry − sx = ±N , x ≡ ±ur (mod N), N | s, N | y; or
(F3.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), N | s, N | y.

However, (F3.2) never holds because N dividing both s and y implies ry−sx ≡ 0 (mod N)
which contradicts ry − sx = ±Nm .

Observe that the edge conditions for F1(∞, uN
√
m) (Lemma 2.1(F2.1)) are identi-

cal to those for F (∞, uN ) (Theorem 1.3(F1.1)). On the other hand, the conditions for
F2(∞, uN

√
m) (Lemma 2.1(F2.2)) are exactly those for F (∞, u

N/m ) with an extra condi-

tion (Theorem 1.3(F1.2)). As we can identify Q̂ with
√
mQ̂ by mapping x

y ↔
x
y

√
m, we

obtain the following lemma.

Lemma 2.4. If m | N and m2 - N , then

(1) F1(∞, uN
√
m) is isomorphic to F (∞, uN ), and

(2) F2(∞, uN
√
m) is homomorphic to F (∞, u

N/m ).

If m2 | N , then F (∞, uN
√
m) is isomorphic to F (∞, uN ).
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In other words, F1(∞, uN
√
m) is the graph F (∞, uN ) scaled by a factor of

√
m while

F2(∞, uN
√
m) is a scaled copy of F (∞, u

N/m ) where some edges are removed.

2.2. Graph Homomorphisms

In this subsection, we show how some suborbital graphs might be homomorphic to
other suborbital graphs. We then extend this result to show that each F (∞, uN

√
m) is

homomorphic to the Farey graph F (∞, 1). This tells us that the chromatic number of
F (∞, uN

√
m) is at most 3. Throughout this subsection, we assume that m = 2 or 3. So

the statement gcd(m,N) = 1 is equivalent to m - N and we use them interchangeably.

Lemma 2.5. Supposem - N . If n | N , then F (∞, uN
√
m) is homomorphic to F (∞, un

√
m)

by the mapping v 7→ N
n v.

Proof. We first verify that v 7→ N
n v maps [∞]≈N

into [∞]≈n . Let r
s

√
m ∈ [∞]≈N

from

which it follows that N | s. We must find the reduced form of Nr
ns . Observe that

Nr
ns = r

n(s/N) . Since 1 ≤ gcd(r, n s
N ) ≤ gcd(r, n s

N
N
n ) = gcd(r, s) = 1, the fraction r

n(s/N)

is reduced. Clearly, n s
N ≡ 0 (mod n). So, Nr

ns ∈ [∞]≈n .
Next, we verify that the mapping is a homomorphism. Let r

s

√
m→ x

y

√
m be an edge

in F (∞, uN
√
m). Then, by Theorem 1.3(1), either

(F1.1) ry − sx = ±N , x ≡ ±ur (mod N), mN | s, N | y; or
(F1.2) ry − sx = ±N , x ≡ ±mur (mod N), N | s, mN | y.

In a way similar to the previous paragraph, we can show that r
n(s/N) and x

n(y/N) are the

reduced forms of Nrns and Nx
ny , respectively. Suppose (F1.1) holds. We can rewrite mN | s

as (mnNn ) | (n s
N
N
n ). It follows that mn | (n s

N ). Next,

r(n y
N )− (n s

N )x = ry−sx
N/n = ±n.

Finally, n | N and N | (x ∓ ur) imply n | (x ∓ ur). So, x ≡ ±ur (mod n). By
Theorem 1.3(F1.1), Nrns

√
m→ Nx

ny

√
m is an edge in F (∞, un

√
m). If (F1.2) holds, a similar

proof applies.

Observe that the homomorphisms are, in fact, scalings. So, if gcd(m,N) = 1 and
n | N , then F (∞, uN

√
m) is a scaled copy of F (∞, un

√
m) where some edges are removed.

For instance, the graph F (∞, 13
√

2) (Figure 5) is the graph F (∞,
√

2) (Figure 6) scaled

by a factor of 1
3 with some edges removed.

Figure 5. F (∞, 13
√

2).
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Figure 6. F (∞,
√

2).

Lemma 2.6. F (∞,
√
m) is homomorphic to F (∞, 1).

Proof. One can verify directly from Theorem 1.3 that the conditions for F (∞,
√
m) are

those for F (∞, 1) with extra conditions.

Theorem 2.1. F (∞, uN
√
m) is homomorphic to F (∞, 1).

Proof. If m - N , then there are homomorphisms ϕ1 (Lemma 2.5) and ϕ2 (Lemma 2.6) as
follows:

F (∞, uN
√
m)

ϕ1−−−−−→ F (∞,
√
m)

ϕ2−−−−−→ F (∞, 1).

The composition ϕ2 ◦ ϕ1 then is a homomorphism from F (∞, uN
√
m) to F (∞, 1).

If m | N and m2 - N , then there are homomorphisms ϕ1, ψ1 (Lemma 2.4) and ϕ2, ψ2

(Lemma 1.2) as follows:

F1(∞, uN
√
m)

ϕ1−−−−−→ F (∞, uN )
ϕ2−−−−−→ F (∞, 1),

F2(∞, uN
√
m)

ψ1−−−−−→ F (∞, u
N/m )

ψ2−−−−−→ F (∞, 1).

Then ϕ2 ◦ ϕ1 is a homomorphism from F1(∞, uN
√
m) to F (∞, 1), and ψ2 ◦ ψ1 from

F2(∞, uN
√
m) to F (∞, 1). Since F1(∞, uN

√
m) and F2(∞, uN

√
m) share no vertices and

contain all edges of F (∞, uN
√
m), we can naturally extend ϕ2 ◦ ϕ1 and ψ2 ◦ ψ1 to a

homomorphism from F (∞, uN
√
m) to F (∞, 1).

If m2 | N , then there are homomorphisms ϕ1 (Lemma 2.4) and ϕ2 (Lemma 1.2) as
follows:

F (∞, uN
√
m)

ϕ1−−−−−→ F (∞, uN )
ϕ2−−−−−→ F (∞, 1).

It follows that ϕ2 ◦ ϕ1 is a homomorphism from F (∞, uN
√
m) to F (∞, 1).

Corollary 2.7. G(∞, uN
√
m) is at most 3-chromatic.

Next, we extend Lemma 1.1 to the casem | N . In particular, we show that F (∞, uN
√
m)

and F (∞, N−uN
√
m) where m | N are reflections of each other across the vertical line

meeting 1
2

√
m.

Lemma 2.8. If m | N , then F (∞, uN
√
m) is isomorphic to F (∞, N−uN

√
m) by the map-

ping v 7→
√
m− v.

Proof. There are two cases: m2 - N or m2 | N , both of which can be proved similarly. We
give a proof for the former case. If m2 - N , then F (∞, uN

√
m) and F (∞, N−uN

√
m) have

the same vertex set [∞]≈N/m
. Given r

s

√
m ∈ [∞]≈N/m

, the fraction
√
m− r

s

√
m has the

reduced form s−r
s

√
m which belongs to [∞]≈N/m

. So, v 7→
√
m− v indeed maps [∞]≈N/m

to itself. Let r
s

√
m→ x

y

√
m be an edge in F (∞, uN

√
m). Then either
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(F2.1) ry − sx = ±N , x ≡ ±ur (mod N), N | s, N | y; or
(F2.2) ry − sx = ±Nm , x ≡ ±ur (mod N

m ), N
m | s,

N
m | y, y ≡ ±us (mod N).

We show that s−r
s

√
m → y−x

y

√
m is an edge in F (∞, N−uN

√
m). Suppose that (F2.2)

holds. Then

(s− r)y − s(y − x) = −(ry − sx) = ∓Nm
and

y − x ≡ ∓ur ≡ ∓(N − u)(s− r) (mod N
m )

and

y ≡ ±us ≡ ∓(N − u)s (mod N).

The statements N
m | s and N

m | y are vacuously true. By Lemma 2.1(F2.2), the edge
s−r
s

√
m→ y−x

y

√
m is in F (∞, N−uN

√
m). If (F2.1) holds, a similar proof applies.

As a consequence of Lemmas 1.1 and 2.8, the we obtain the following result. For a real
number x, we denote the greatest integer not exceeding x by bxc.

Corollary 2.9.

(1) If N = 1, then F (∞, uN
√
m) is isomorphic to F (∞,

√
m).

(2) Otherwise, F (∞, uN
√
m) is isomorphic to F (∞, vN

√
m) for some 1 ≤ v ≤ bN2 c.

Proof. Recall that we may assume N ≥ 1. It can be easily seen from Theorem 1.3 and
Lemma 2.1 that F (∞, uN

√
m) = F (∞, vN

√
m) for u ≡ v (mod N). If N = 1, choose

v = 1. Otherwise, choose v such that 0 ≤ v < N . Since N > 1, the condition (v,N) = 1
forces v ≥ 1. The corollary then follows from Lemma 1.1 and Lemma 2.8.

2.3. Chromatic Numbers

In this subsection, we apply our preceeding results to prove our main theorem. The
suborbital graphs G(∞, uN

√
2) are all 2-chromatic which follows readily from Theorem 1.2.

As for the graphs G(∞, uN
√

3), we separate them into three classes: 3 - N , 3 | N and
9 - N , and 9 | N . First, we consider the case 3 - N .

Lemma 2.10. If 3 - N , then G(∞, uN
√

3) is 2-chromatic.

Proof. If G(∞, uN
√

3) is a forest, then the graph is 2-chromatic. Otherwise, G(∞, uN
√

3)
contains triangles or circuits of length 6 (Theorem 1.2). We show that the graph cannot
contain triangles which would imply that it has chromatic number 2.

Suppose there exists a triangle r
s

√
3 
 x

y

√
3 
 u

v

√
3 
 r

s

√
3 in G(∞, uN

√
3). This

triangle must be in one of the disjoint subgraphs induced by equivalence classes of [∞]≈N

Since all subgraphs are isomorphic, we may assume that the triangle is in F (∞, uN
√

3).
From Theorem 1.3, there must be a pair of adjacent vertices in the triangle with denomi-
nators divisible by mN . We may assume the pair to be r

s

√
3 and x

y

√
3 since we can always

rearrange the circuit. But mN | s and mN | y implies that ry − sx 6= N , contradicting
the adjacency of both vertices (Theorem 1.3).

Next, we consider the case 9 | N .

Lemma 2.11. If 9 | N , then G(∞, uN
√

3) is 2-chromatic.
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Proof. We will consider the subgraph F (∞, uN
√

3). Since 9 | N , F (∞, uN
√

3) is homo-

morphic to F (∞, u9
√

3). We will show that F (∞, u9
√

3) is 2-chromatic.
By Corollary 2.9, we may assume that 1 ≤ u ≤ 4. Since gcd(u, 9) = 1, the possible

values for u are 1, 2, and 4. By computation, all values of u do not satisfy N | (u2±u+1).
By Theorem 1.2(3), F (∞, u9

√
m) is a forest.

Finally, we prove our main theorem. In the remaining case that 3 | N and 9 - N , if

the graph G(∞, uN
√

3) contains a triangle, then it is 3-chromatic. Otherwise, the graph
is 2-chromatic.

Theorem 2.2.

(1) G(∞, uN
√

2) has chromatic number 2.

(2) Let χ be the chromatic number of G(∞, uN
√

3).
(a) If 3 - N , then χ = 2.
(b) If 9 - N and 3 | N , then

(i) χ = 2 if N - (u2 ± u+ 1), and
(ii) χ = 3 if N | (u2 ± u+ 1).

(c) If 9 | N , then χ = 2.

Proof. The graph G(∞, uN
√

2) either is a forest or contains no circuits of odd lengths

(Theorem 1.2). So G(∞, uN
√

2) is 2-chromatic. Next, we consider the graph G(∞, uN
√

3).
The cases 3 - N and 9 | N follow from Lemmas 2.10 and 2.11, respectively.

Suppose 3 | N and 9 - N . If N | (u2 ± u + 1), then G(∞, uN
√

3) contains a triangle
(Theorem 1.2). This and Corollary 2.7 imply that the graph is 3-chromatic. On the other

hand, if N - (u2 ± u + 1), then G(∞, uN
√

3) either is a forest or contains only circuits of
length 6 (Theorem 1.2). In either case, the graph is 2-chromatic.
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