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1. Introduction

Fuzzy meaures and fuzzy integrals, which were originally introduced by Sugeno in 1974
[1], are important analytical methods of measuring uncertain information [2]. The study
of inequalities for Sugeno integrals was initiated by Román-Flores et al. [3–5] and then
followed by the authors [6–9].

Pseudo-analysis is a generalization of the classical analysis, where instead of the field
of real numbers a semiring is taken on a real interval [a, b] ⊆ [−∞,+∞] endowed with
pseudo-addition ⊕ and with pseudo-multiplication � [10–14]. Based on this structure,
there were developed the concepts of ⊕ measure (pseudo-additive measure), pseudo-
integral, pseudo-convolution, pseudo-Laplace transform, etc. The advantage of the pseudo-
analysis is that there are covers with one theory, and so with unified methods, problem
(usually nonlinear and under uncertainty) from many different fields (system theory, op-
timization, decision making, control theory, differential equation, etc.). Pseudo-analysis
uses many mathematical tools from different fields as functional equations, variational
calculus, measure theory, functional analysis, optimization theory, semiring theory, etc.

The classical Gauss-Winkler inequality provides the following inequality [15]:(∫ ∞
0

x2f(x)dµ

)2

≤ 5

9

(∫ ∞
0

f(x)dµ

)(∫ ∞
0

x4f(x)dµ

)
, (1.1)

where f : [0,∞)→ [0,∞) is decreasing. We suppose that all involved integrals exist.
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Example 1.1. Let f(x) =
1

1 + x6
. We have∫ ∞

0

x2f(x)dx =

∫ ∞
0

x2

1 + x6
dx =

π

6
,∫ ∞

0

f(x)dx =

∫ ∞
0

1

1 + x6
dx =

π

3
,∫ ∞

0

x4f(x)dx =

∫ ∞
0

x4

1 + x6
dx =

π

3
.

Finally (π
6

)2
≤ 5

9

(π
3

)(π
3

)
⇒ 0.0277 ≤ 0.0617.

In [16], Dug Hun Hong replaced the condition of decreasing with non-decreasing and
reduced the domain of the integrals into the interval [0, 1]. Then he showed that the
classical Gauss-Winkler inequality is not valid for the Sugeno integrals. In the continue,
he only obtained the lowest optimal value for the related Gauss-Winkler type inequality
for fuzzy version and showed, by an example that, the obtained optimum value in the
following Theorems are valid. D. H. Hong showed with an example that the bound is
obtained, is optimal. Let’s take a look at this example.

Example 1.2 ([16]). Let f(x) =

{
0
3.1731

x ∈ [0, 0.4255]
x ∈ (0.4255, 1]

. A simple calculation

shows that (
−
∫ 1

0

x2f(x)dµ

)2

=

(
−
∫ 1

0

3.1731x2dµ

)2

= (0.5745)2 = 0.3300,

−
∫ 1

0

f(x)dµ = −
∫ 0.4255

0

0dµ ∨ −
∫ 1

0.4255

3.1731dµ = 0.5745,

and

−
∫ 1

0

x4f(x)dµ = −
∫ 1

0

3.1731x4dµ = 0.4030.

Consequently,

0.3300 =

(
−
∫ 1

0

x2f(x)dµ

)2

≈ 1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
= 0.3300.

Therfore, the constant 1.4255 is optimal.

In the present paper, we prove related Gauss-Winkler type inequality for fuzzy and
pseudo-integrals. This paper is organized as follows: Section 2 contains some of the pre-
liminaries. Section 3 provides generalizations of the related Gauss-Winkler type inequality
for fuzzy and pseudo-integrals. Finally, we closed this paper by a conclusion.

2. Preliminary

We denote by R the set of all real numbers. Let X be a non-empty set and Σ be a
σ−algebra of subsets of X. Throughout this paper, all considered subsets are supposed
to be in Σ.
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Definition 2.1 (Ralescu and Adams [17]). A set function µ : Σ → [0,+∞) is called a
fuzzy measure if the following properties are satisfied:

(FM1) µ(∅) = 0,
(FM2) A ⊆ B ⇒ µ(A) ≤ µ(B),

(FM3) A1 ⊆ A2 ⊆ . . .⇒ limµ(Ai) = µ

( ∞⋃
i=1

Ai

)
,

(FM4) A1 ⊇ A2 ⊇ . . . and µ(A1) <∞⇒ limµ(Ai) = µ

( ∞⋂
i=1

Ai

)
.

When µ is a fuzzy measure, the triple (X,Σ, µ) is called a fuzzy measure space. If f is
a non-negative real-valued function on X, we will denote

Fα = Lαf = {x ∈ X | f(x) ≥ α} = {f ≥ α} ,

the α-level of f , for α > 0. We know that α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α} . If µ is a fuzzy
measure on X, we define Fσ(X) = {f : X → [0,∞)| f is µ−measurable} .

Definition 2.2 (Wang and Klir [18]). Let µ be a fuzzy measure on (X,Σ). If f ∈ Fµ(X)
and A ∈ Σ, then the Sugeno integral (or fuzzy integral) of f on A, with respect to the
fuzzy measure µ, is defined as

−
∫
A

fdµ =
∨
α≥0

(α ∧ µ(A ∩ Fα)) ,

where ∨ and ∧ denotes the operations sup and inf on [0,∞], respectively. In particular,
if A = X then

−
∫
X

fdµ = −
∫
fdµ =

∨
α≥0

(α ∧ µ(Fα)) .

The following properties of the Sugeno integral can be found in [18].

Proposition 2.3 (Wang and Klir [18]). Let (X,Σ, µ) be a fuzzy measure space, with
A,B ∈

∑
and f, g ∈ Fµ(X). We have

(1) −
∫
A
fdµ ≤ µ(A).

(2) −
∫
A
kdµ = k ∧ µ(A), for k non-negative constant.

(3) µ(A ∩ {f ≥ α}) ≤ α⇔ −
∫
A
fdµ ≤ α.

(4) µ(A ∩ {f ≥ α}) ≥ α⇔ −
∫
A
fdµ ≥ α.

(5) −
∫
A∪B fdµ ≥ −

∫
A
fdµ ∨ −

∫
B
fdµ.

In the following, we are going to review some well known results of pseudo-operations,
pseudo-analysis and pseudo-additive measures and integrals in details, we refer to [18–20].

Let [a, b] be a closed (in some cases can be considered semi-closed) subinterval of
[−∞,∞]. The full order on [a, b] will be denoted by �.

Definition 2.4 (Wang and Klir [18]). The operation ⊕ (pseudo-addition) is a function ⊕ :
[a, b]×[a, b]→ [a, b] which is commutative, non-decreasing (with respect to � ), associative
and with a zero (neutral) element denoted by 0, i.e., for each x ∈ [a, b],0 ⊕ x = x holds
(usually 0 is either a or b).

Let [a, b]+ = {x|x ∈ [a, b],0 � x}.
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Definition 2.5 (Wang and Klir [18]). The operation � (pseudo-multiplication) is a
function � : [a, b] × [a, b] → [a, b] which is commutative, positively non-decreasing, i.e.,
x � y implies x � z � y � z for all z ∈ [a, b]+, associative and for which there exists a
unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b],1� x = x.

We assume also 0 � x = 0 and that � is a distributive pseudo-multiplication with
respect to ⊕, i.e., x� (y ⊕ z) = (x� y)⊕ (x� z).

We shall consider the semiring ([a, b],⊕,�) for two important (with completely different
behavior) cases. The first case is when pseudo-operations are generated by a monotone
and continuous function g : [a, b]→ [0,∞), i.e., pseudo-operations are given with:

x⊕ y = g−1(g(x) + g(x)) and x� y = g−1(g(x)g(x)). (2.1)

Then, the pseudo-integral for a function f : [c, d]→ [a, b] reduces on the g−integral∫ ⊕
[c,d]

f(x)dx = g−1

(∫ d

c

g(f(x))dx

)
. (2.2)

More details on this structure as well as corresponding measures and integrals can be
found in [11]. The second class is when x⊕ y = max(x, y) and x� y = g−1(g(x)g(y)), the
pseudo-integral for a function f : R→ [a, b] is given by∫ ⊕

R
f � dm = sup

x∈R
(f(x)� ψ(x)) ,

where function ψ defines sup-measure m. Any sup-measure generated as essential supre-
mum of a continuous density can be obtained as a limit of pseudo-additive measures with
respect to generated pseudo-additine. Then any continuous function f : [0,∞] → [0,∞]

the integral
∫ ⊕

f � dm can be obtained as a limit of g-integrals.
We denote by µ the usual Lebesgue measure on R. We have m(A) = ess supµ(x|x ∈

A) = sup {a|µ(x|x ∈ A, x > a) > 0} .

Theorem 2.6 (Mesiar and Pap [20]). Let m be a sup-measure on ([0,∞],B[0,∞]), where
B([0,∞]) is the Borel σ-algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A), and ψ : [0,∞]→
[0,∞] is a continuous. Then for any pseudo-addition ⊕ with a generator g there exists a
family mλ of ⊕λ-measure on ([0,∞],B), where ⊕λ is a generated by gλ (the function g
of the power λ, λ ∈ (0,∞)) such that lim

λ→∞
mλ = m.

Theorem 2.7 (Mesiar and Pap [20]). Let ([0,∞], sup,�) be a semiring , when � is a
generated with g, i.e., we have x�y = g−1(g(x)g(y)) for every x, y ∈ (0,∞). Let m be the
same as in Theorem 2.6, Then there exists a family {mλ} of ⊕λ -measures, where ⊕λ is
a generated by gλ, λ ∈ (0,∞) such that for every continuous function f : [0,∞]→ [0,∞],∫ sup

f � dm = lim
λ→∞

∫ ⊕λ

f � dmλ = lim
λ→∞

(gλ)−1
(∫

gλ(f(x))dx

)
. (2.3)

Recall that, functions f, g : X → R are said to be comonotone if for all x, y ∈ X,

(f(x)− f(y)) (g(x)− g(y)) ≥ 0,

and f and g said to be countermonotone if for all x, y ∈ X,

(f(x)− f(y)) (g(x)− g(y)) ≤ 0.
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The comonotonicity of functions f and g is equivalent to the nonexistence of points
x, y ∈ X such that f(x) < f(y) and g(x) > g(y). Similarly, if f and g are countermonotone
then f(x) < f(y) and g(x) < g(y) cannot happen.

Now, we recall some integral inequalities at the following which are used in the next
section.

Theorem 2.8 (Fuzzy Chebyshev’s inequality [21]). Suppose that f, g are two real-valued
functions from [0, 1] to [0,∞) and that µ is the Lebesgue measure. If f and g are non-
decreasing functions, then the inequality

−
∫ 1

0

f · gdµ ≤
(
−
∫ 1

0

fdµ

)(
−
∫ 1

0

gdµ

)
, (2.4)

holds.

In [22], Xu and Ouyang proved the following lemma.

Lemma 2.9 (Xu and Ouyang [22]). Let (X,Σ, µ) be a fuzzy measure space, let A ∈ Σ
and let f : X → R be a measurable function such that −

∫
A
fdµ ≤ 1. Then for any s ≥ 1,

we have (
−
∫
A

fdµ

)s
≤ −
∫
A

fsdµ. (2.5)

Theorem 2.10 (Agahi, Mesiar and Ouyang [23]). Let u, v : [0, 1] → [a, b] be two mea-
surable functions and a generator g : [a, b] → [0,∞) of the pseudo-addition ⊕ and the
pseudo-multiplication � be an increasing function. If u and v are comonotone, then the
inequality ∫ ⊕

[0,1]

(u� v)dx ≥

(∫ ⊕
[0,1]

udx

)
�

(∫ ⊕
[0,1]

vdx

)
,

holds and the reverse inequality holds whenever u and v are countermonotone functions.

3. Main Results

In this section, as main results, we prove related Gauss-Winkler type inequalities for
fuzzy and pseudo-integrals.

3.1. Related Gauss-Winkler Type Inequalities for Fuzzy Integrals

In this part, we are going to prove Gauss-Winkler inequality for Sugeno integral.

Theorem 3.1. (Fuzzy Gauss-Winkler inequality: non-decreasing case). Let f : [0, 1] →
[0,∞) be a non-decreasing function and µ be the Lebesgue measure on R. Then the
inequality (

−
∫ 1

0

x2f(x)dµ

)2

≤ 1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
, (3.1)

holds.
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Proof. Since 1.4255 is greater than 1, it can be written:

1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
≥
(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
.

Now, from (2.4), we have:

1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
≥
(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4dµ

)(
−
∫ 1

0

f(x)dµ

)
=

(
−
∫ 1

0

f(x)dµ

)2(
−
∫ 1

0

(x2)2dµ

)
.

Now by using (2.5), we get:

1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
≥

(
−
∫ 1

0

f(x)dµ

)2(
−
∫ 1

0

x2dµ

)2

=

((
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x2dµ

))2

.

Applying (2.4), it follows that

1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
≥
(
−
∫ 1

0

f(x) · x2dµ
)2

.

Thereby, the theorem is proved.

Theorem 3.2. (Fuzzy Gauss-Winkler inequality: non-increasing case). Let f : [0, 1] →
[0,∞) be a non-increasing function and µ be the Lebesgue measure on R. Then the
inequality(

−
∫ 1

0

(1− x)2f(x)dµ

)2

≤ 1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

(1− x)4f(x)dµ

)
, (3.2)

holds.

Proof. The proof is similar to the proof of the Theorem 3.1.

In the following, we present an example to illustrate the validity of Theorem 3.1.

Example 3.3. Let f(x) =


x

1

2

0 ≤ x ≤ 1

2

1

2
< x ≤ 1

and µ be the Lebesgue measure on

R. A straightforward calculus shows that −
∫ 1

0
f(x)dµ = 0.5, −

∫ 1

0
x2f(x)dµ = 0.267 and

−
∫ 1

0
x4f(x)dµ = 0.202. Consequently

0.071 =

(
−
∫ 1

0

x2f(x)dµ

)2

≤ 1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
= 1.4255(0.5)(0.202) = 0.144.
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3.2. Related Gauss-Winkler Type Inequalities for Pseudo-Integrals

Now, we state and prove generalizations of the Theorems 3.1 and 3.2 for pseudo inte-
grals.

Theorem 3.4. (Gauss-Winkler type inequality for pseudo-integrals: non-decreasing case).
Let f : [0, 1] → [a, b] be a non-decreasing and measurable function and a generator
g : [a, b] → [0,∞) of the pseudo-addition ⊕ and the pseudo-multiplication � be an in-
creasing function and let µ be a Lebesgue measure. Then the inequality(∫ ⊕

[0,1]

(x2 � f(x))dµ

)2

≤

(∫ ⊕
[0,1]

f(x)dµ

)
�

(∫ ⊕
[0,1]

(x4 � f(x))dµ

)
, (3.3)

holds.

Proof. Set α =
(∫ ⊕

[0,1]
f(x)dµ

)
�
(∫ ⊕

[0,1]
(x4 � f(x))dµ

)
. From (2.1), we have

α =

(∫ ⊕
[0,1]

f(x)dµ

)
�

(∫ ⊕
[0,1]

(x4 � f(x))dµ

)

=

(
g−1

∫ 1

0

g(f(x))dx

)
�
(
g−1

∫ 1

0

g(x4 � f(x))dx

)
=

(
g−1

∫ 1

0

g(f(x))dx

)
�
(
g−1

∫ 1

0

g
(
g−1(g(x4)g(f(x))

)
dx

)
=

(
g−1

∫ 1

0

g(f(x))dx

)
�
(
g−1

∫ 1

0

(
g(x4)g(f(x))

)
dx

)
= g−1

(
g

(
g−1

∫ 1

0

g(f(x))dx

)
g

(
g−1

∫ 1

0

(
g(x4)g(f(x))

)
dx

))
= g−1

(∫ 1

0

g(f(x))dx

∫ 1

0

(
g(x4)g(f(x))

)
dx

)
.

Since g(x4) and g(f(x)) are comonotone, so by using Chebyshev’s inequality, we have

α ≥ g−1
[∫ 1

0

g(f(x))dx

∫ 1

0

g(x4)dx

∫ 1

0

g(f(x))dx

)
= g−1

[
gg−1

(∫ 1

0

g(f(x))dx

)
gg−1

(∫ 1

0

g(x4)dx

)
gg−1

(∫ 1

0

g(f(x))dx

))
= g−1

[
g

(∫ ⊕
[0,1]

f(x)dx

)
g

(∫ ⊕
[0,1]

x4dx

)
g

(∫ ⊕
[0,1]

f(x)dx

))

=

∫ ⊕
[0,1]

f(x)dx�
∫ ⊕
[0,1]

x4dx�
∫ ⊕
[0,1]

f(x)dx.

Using Theorem 2.10, we obtain that

α ≥
∫ ⊕
[0,1]

(
f(x)� x4 � f(x)

)
dx. (3.4)
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Now by using continuity and commutativity �, we get

α ≥
∫ ⊕
[0,1]

(
(x2)2 � (f(x))2

)
dµ

=

∫ ⊕
[0,1]

(
x2 � f(x)

)2
dµ. (3.5)

Applying Theorem 2.9, we get

α ≥

(∫ ⊕
[0,1]

(x2 � f(x))dµ

)2

.

Hence we have(∫ ⊕
[0,1]

(x2 � f(x))dµ

)2

≤

(∫ ⊕
[0,1]

f(x)dµ

)
�

(∫ ⊕
[0,1]

(x4 � f(x))dµ

)
.

Therefore we get the desired result.

In the following, we present an example to illustrate the validity of Theorem 3.4.

Example 3.5. Let f : [0, 1] → [a, b] be a non-decreasing and measurable function and
let g(x) = xα for some α ∈ (0,∞). The corresponding pseudo-operations are

x⊕ y = g−1 (g(x) + g(y)) = α
√
xα + yα,

x� y = g−1 (g(x)g(y)) = α
√
xαyα = xy.

Now, we have(∫ ⊕
[0,1]

(x2f(x))αdx

) 1
α

≤

(∫ ⊕
[0,1]

(f(x))αdµ

) 1
α
(∫ ⊕

[0,1]

(x4f(x))αdµ

) 1
α

.

Theorem 3.6. (Gauss-Winkler type inequality for pseudo-integrals: non-increasing case).
Let f : [0, 1] → [a, b] be a non-increasing and measurable function and let a generator
g : [a, b] → [0,∞) of the pseudo-addition ⊕ and the pseudo-multiplication � be an de-
creasing function and let µ be a Lebesgue measure. Then the inequality(∫ ⊕

[0,1]

((1− x)2 � f(x))dµ

)2

≤

(∫ ⊕
[0,1]

f(x)dµ

)
�

(∫ ⊕
[0,1]

((1− x)4 � f(x))dµ

)
,

holds.

Proof. The proof is similar to the proof of the Theorem 3.4.

In the sequal, we generalize the Gauss-Winkler type inequality by the semiring
([a, b],max,�), where � is generated.

Theorem 3.7. Let f : [0, 1] → [a, b] be a non-decreasing, measurable and continuous
function and � be represented by an increasing multiplicative generator g. Let m be the
same as in Theorem 2.6. Then the inequality(∫ sup

[0,1]

(x2 � f(x))� dm

)2

≤

(∫ sup

[0,1]

f(x)� dm

)
�

(∫ sup

[0,1]

(x4 � f(x))� dm

)
, (3.6)

holds.
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Proof. Set α =
(∫ sup

[0,1]
f(x)� dm

)
�
(∫ sup

[0,1]
(x4 � f(x))� dm

)
. From (2.3), we have

α =

(∫ sup

[0,1]

f(x)� dm

)
�

(∫ sup

[0,1]

(x4 � f(x))� dm

)

=

(
lim
λ→∞

∫ ⊕λ

[0,1]

f(x)� dmλ

)
�

(
lim
λ→∞

∫ ⊕λ

[0,1]

(x4 � f(x))� dmλ

)

=

(
lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
�
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ
(
x4 � f(x)

)
dx

))
=

(
lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
�
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ
((
gλ
)−1 (

gλ(x4)gλ(f(x)
)))

dx

)
=

(
lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
�
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

(
gλ(x4)gλ(f(x))

)
dx

))
=
(
gλ
)−1{

gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

(
gλ(x4)gλ(f(x))

)
dx

))}
.

Set β=
(
gλ
)−1{

gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0
gλ(f(x))

)
dx

)
gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

(
gλ(x4)gλ(f(x))

)
dx
))}

.

From Theorem 2.10, comonotonicity gλ(x4) and gλ(f(x)), and above relations, we obtain
that

β ≥
(
gλ
)−1{

gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

(
gλ(x4)gλ(f(x))

)
dx

))}
=
(
gλ
)−1{

gλ
(

lim
λ→∞

(
gλ
)−1(∫ 1

0

gλ(f(x))

)
dx

)
gλ
((

lim
λ→∞

(
gλ
)−1 ∫ 1

0

gλ(x4)dx

)(
lim
λ→∞

(
gλ
)−1 ∫ 1

0

gλ(f(x))dx

))}
=
(
gλ
)−1{

gλ

(∫ sup

[0,1]

f(x)dx

)
gλ

(∫ sup

[0,1]

x4dx

∫ sup

[0,1]

f(x)dx

)}

=
(
gλ
)−1{

gλ

(∫ sup

[0,1]

f(x)dx

)
gλ

(∫ sup

[0,1]

x4dx

)
gλ

(∫ sup

[0,1]

f(x)dx

)}

=

∫ sup

[0,1]

(
f(x)� x4 � f(x)

)
dx.

Using continuity and commutativity of �, we have(∫ sup

[0,1]

f(x)� dm

)
�

(∫ sup

[0,1]

(x4 � f(x))� dm

)
≥

∫ sup

[0,1]

(x4 � f2(x))� dm

=

∫ sup

[0,1]

(
x2 � f(x)

)2 � dm
≥

(∫ sup

[0,1]

(x2 � f(x))� dm

)2

.
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The proof is now complete.

Example 3.8. Let f : [0, 1] → [a, b] be a non-decreasing and measurable function,
gλ(x) = eλx and ψ(x) be the same as in Theorem 2.6. Then

x⊕ y = lim
λ→∞

(
1

λ
ln
(
eλx + eλy

))
= max(x, y),

x� y = lim
λ→∞

1

λ
ln
(
eλxeλy

)
= x+ y.

Therefore (3.6) reduces on the following inequality

sup
(
x2f(x) + ψ(x)

)2 ≤ ( sup (f(x) + ψ(x))
)(

sup
(
x4f(x) + ψ(x)

) )
.

Theorem 3.9. Let f : [0, 1] → [a, b] be a non-increasing, measurable and continuous
function and � be represented by a decreasing multiplicative generator g. Let m be the
same as in Theorem 2.6. Then the inequality(∫ sup

[0,1]

((1− x)2 � f(x))� dm

)2

≤

(∫ sup

[0,1]

f(x)� dm

)
�

(∫ sup

[0,1]

((1− x)4 � f(x))� dm

)
,

holds.

Proof. Using the same arguments in Theorem 3.7, the proof is obvious.

Example 3.10. Let gλ(x) = x−λ. We have

x⊕ y = (x−λ + y−λ)−1/λ and x� y = xy.

Therefore (3.7) reduces on the following inequality:

sup((1− x)2f(x) + ψ(x))2 ≤ (sup(f(x) + ψ(x)))(sup((1− x)4f(x) + ψ(x))),

where ψ is the same as in Theorem 2.6.

4. Conclusion

We have proved the related Gauss-Winkler type inequality for fuzzy and pseudo-
integrals. More precisely, we show that(

−
∫ 1

0

x2f(x)dµ

)2

≤ 1.4255

(
−
∫ 1

0

f(x)dµ

)(
−
∫ 1

0

x4f(x)dµ

)
,

holds where f : [0, 1]→ [0,∞) is a non-decreasing function and µ is the Lebesgue measure
on R and also(∫ ⊕

[0,1]

(x2 � f(x))dµ

)2

≤

(∫ ⊕
[0,1]

f(x)dµ

)
�

(∫ ⊕
[0,1]

(x4 � f(x))dµ

)
,

holds where f : [0, 1]→ [a, b] is a non-decreasing function and µ is the Lebesgue measure
on R.
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