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Abstract In this paper, we consider a splitting method combined with proximal methods for mini-
mizing the sum of convex functions, where the proximal operators are defined by the curvature-adapted
regularizations. In this paper, using properties of the resolvent on complete CAT(κ) space, we present
two theorems showing strong convergence of the splitting proximal algorithm under different hypotheses.
The first theorem assumes the local compactness property on the ambient space, while the second relies
on the uniform convexity of the objective function. We also apply our main results to solve convex
feasibility problems, centroid problems, and particularly the Karcher means. Finally, we include a series
of numerical implementations of our algorithms to approximate the Karcher means of some randomly
generated datasets fitted to the Lobachevskii plane.

MSC: 90C06; 90C25; 90C48
Keywords: CAT(κ) Space, Convex Optimization, Splitting Proximal Algorithms

Submission date: 11.02.2020 / Acceptance date: 03.06.2020

1. Introduction

The proximal algorithm has been one of the most earliest and successful approximation
scheme for convex and generalized convex optimization. The algorithm was first proposed
by Moreau [1] and became a keystone by the important study of Rockafellar [2] under the
context of a Hilbert space. The method was originally based on the first-order theory of
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convex functions, in particular the subdifferential theory, where the resolvent of the sub-
differential is applied iteratively. The resolvent was later realized in a minimization-based
formulation, which we call the proximal operator. Let us recall that the proximal opera-
tor is written solely in terms of the norm. In 2005, Combettes et al. [3] have shown the
splitting proximal algorithm on Hilbert spaces for solving convex optimization problems.
Later, the splitting methods was developed and applied to solve various optimization
problems [4–9]. In 1995 and 1998, Jost [10] and Mayer [11] independently extended the
proximal operator to a CAT(0) space by replacing the norm with the distance function.
In fact, if (X, d) is a complete CAT(0) space and f : X → (−∞,+∞], then the proximal
operator of f is the mapping Jf : X ( X defined by

proxf (x) = arg min
y∈X

[
f(y) +

1

2
d(x, y)

2

]
(1.1)

for all x ∈ X. If f is proper, (geodesically) convex, and lsc, then Jf is well-defined as a
single-valued mapping on the whole space X [10]. It was not until 2013 that this proximal
operator was applied to solve convex optimization in complete CAT(0) spaces by Bačák
[12]. The subdifferential approach to proximal operators was discussed in [13].

The needs for optimization over nonlinear spaces have been in an increasing trends,
e.g. in computational biology and data management, particularly in manifold-valued data
and image processing. In such applications, the objective function is usually expressed
as the sum of several loss functions, i.e. f :=

∑m
i=1 fi where fi : X → (−∞,+∞] for

i = 1, . . . ,m. This function can be extraordinarily large and costly to optimize, hence
leads to the use of splitting techniques in optimization. In [14], the author proposed a
splitting method which replaces the expensive computation of proxf with a bundle of
cheaper ones, i.e. proxfi for i = 1, . . . ,m. Such a method is called the splitting proximal
algorithm, and it was first proved to be strongly convergent to a minimizer of f in [14]
under the assumption that each component loss function fi is Lipschitz continuous and
the ambient space is locally compact. The proximal and splitting proximal algorithms
were further generalized to complete CAT(κ) spaces for any κ ∈ R by Ohta [15], with
an additional diametric condition for κ > 0. In these results, the ambient space X was
again restricted to the locally compact cases. To the best of our knowledge, the question
of possible relaxation of local compactness is still open until today [16].

In 2016, Kimura and Kohsaka [17] introduced a new concept of a proximal operator by
replacing the quadratic kernel t 7→ 1

2 t
2(·, ·), for t ≥ 0, with the curvature-adapted kernel

φ : R× [0,∞)→ [0,∞) given by

φκ(t) := φ(κ; t) :=


tan(t) sin(t) if κ > 0,
1
2 t

2 if κ = 0,

tanh(t) sinh(t) if κ < 0,

for each t ≥ 0. Let (X, d) be a complete CAT(κ) space with κ ∈ R and f : X → (−∞,+∞]
is proper convex lsc function, the novel proximal operator of f is mapping Rκf : X → X
such that

Rκf (x) := arg min
y∈X

[f(y) + φκ(d(y, x))]

for each x ∈ X. This mapping is well-defined as a single-valued mapping under the
admissibility condition of the ambient space X [17, 18]. In the case of κ > 0, the proximal
algorithm using this curvature-adapted kernel φκ was proved to be convergent (in a weaker
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sense) to a minimizer of f by Kimura and Kohsaka in [17] for constant step-sizes, and
later in [19] for variable step-sizes. Independently and unknowingly of the results in [19],
Espínola and Nicolae [20] adopted the idea of [17] and developed the proximal algorithm
using curvature-adapted kernel in the case κ > 0 and obtained similar convergence as
presented in [19]. In addition to this result, Espínola and Nicolae [20] also applied the
splitting technique of [14] to the curvature-adapted kernel and finally proved convergence
of the splitting proximal algorithm for this new type of proximal operator for component
loss functions fi being Lipschitz continuous on admissible compact CAT(κ) spaces, again,
with κ > 0.

Recently, Kajimura and Kimura [18] investigated on the proximal algorithms with
the operators Rκf in CAT(κ) spaces with κ < 0 and obtained the weak convergence of
the scheme. This result therefore completes the convergence behaviors of the proximal
algorithms with the operator Rκf for all cases of κ > 0, κ = 0, and κ < 0.

Motivated by the above studies, we show in this paper the convergence of splitting
proximal algorithms by using the new operator Rκf in complete locally compact CAT(κ)

spaces where κ < 0. This result, alongside with [14] and [20], would therefore com-
plete the study of splitting proximal algorithm of curvature-adapted proximals in CAT(κ)
spaces. In addition, we also show that if the total cost f is φκ-uniformly convex, then
the strong convergence of the splitting proximal algorithm remains valid without the lo-
cal compactness condition for any cases of κ ∈ R. In addition, we can also guarantee
the sublinear rate of convergence in this latter study. This result extends that of [15] to
curvature-adapted proximals and completes similar findings for all cases of κ ∈ R in the
noncompact settings. Finally, we discuss some possible applications where the splitting
proximal algorithms may be useful and demonstrate a numerical implementation applied
to solve Karcher mean problems, which is used in averaging nonlinear data sets.

2. Preliminaries

In this section, some basic concepts and useful lemmas necessary for the subsequent
results are given. Throughout this paper, the set of all positive integers and the set of all
real numbers are denoted by N and R, respectively.

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is a mapping
γ : [0, 1] → X such that γ(0) = x, γ(1) = y and d(γ(t1), γ(t2)) = d(x, y)|t1 − t2| for any
t1, t2 ∈ [0, 1]. We say that X is a (uniquely) geodesic metric space if any two points are
connected by a (unique) geodesic. If X is a uniquely geodesic, x, y ∈ X, and γ is the
geodesic path joining x to y, then we write [x, y] := γ([0, 1]) to denote the geodesic segment
of γ. In this case, we also use the notation (1− t)x⊕ ty := γ(t). Also recall that geodesic
triangle with vertices x, y, z ∈ X, denoted by ∆(x, y, z), is defined by [x, y]∪ [y, z]∪ [z, x].

Given κ ∈ R, themodel spaceM2
κ denotes the 2-dimensional complete simply-connected

Riemannian manifold with constant sectional curvature κ. On each model space M2
κ , its

Riemannian distance is denoted by dκ. If κ = 0, then M2
0 = E2 is the Euclidean plane.

For other κ, recall that Mκ can always be rescaled into M2
1 = S2 for κ > 0, and into

M2
−1 = H2 for κ < 0. Here, S2 and H2 denote the unit 2-sphere and Lobachevskii plane.

Hence, we can concentrate only on the cases κ = 0, κ = 1, and κ = −1. Denoted by Dκ,
we mean the diameter of the model space M2

κ , that is,
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Dκ :=

{
π√
κ

if κ > 0,

+∞ if κ ≤ 0.

A κ-comparison triangle for a geodesic triangle ∆(x1, x2, x3) inX is a triangle ∆(x1, x2, x3)
in M2

κ such that d(xi, xj) = dκ(xi, xj) for all i, j ∈ {1, 2, 3}. A κ-comparison triangle al-
ways exists provided that d(x1, x2) + d(x2, x3) + d(x3, x1) < 2Dκ and is unique up to
isometries. For any i, j ∈ {1, 2, 3}, let γ be the geodesic joining xi to xj and u := γ(t)
for some t ∈ [0, 1]. Then a point u := γ(t) is called the comparison point of u, where γ is
the geodesic joining xi to xj . A geodesic triangle ∆ in X is said to satisfy the CAT(κ)
inequality if the following inequality holds for all x, y ∈ ∆:

d(x, y) ≤ dκ(x, y),

where ∆ is the κ-comparison triangle of ∆ and x, y ∈ ∆ are the respective comparison
points of x and y. For κ ∈ R, a geodesic space X is called a CAT(κ) space if every
geodesic triangle satisfies the CAT(κ) inequality. A CAT(κ) space X is called admissible
if d(x, y) < Dκ/2 for all x, y ∈ X. It is immediate that every CAT(0) space is admissible.

Remark 2.1 (See [21]). In general, if κ > 0, then (X, d) is a CAT(κ) space if and only
if (X,

√
κd) is a CAT(1) space. Similarly for κ < 0, (X, d) is a CAT(κ) space if and only

if (X,
√
−κd) is a CAT(−1) space.

Let (X, d) be a uniquely geodesic metric space. A subset C ⊂ X is called convex if
[x, y] ⊂ X for all x, y ∈ C. and f : X → (−∞,+∞]. Recall that the effective domain of
f is defined by dom f := {x ∈ X | f(x) < +∞}. If dom f 6= ∅, we say that f is proper.
Moreover, we say that f is convex if

f((1− t)x⊕ ty) ≤ (1− t)f(x) + tf(y)

holds for all x, y ∈ X and t ∈ (0, 1).

Definition 2.2. Let X be a CAT(κ) space. A function f : X → (−∞,+∞] is said to be
uniformly convex if,

f((1− t)x⊕ ty) ≤ (1− t)f(x) + tf(y)− t(1− t)ϕ(d(x, y)) (2.1)

where ϕ is a function that is non−negative and vanishes only at 0, for all x, y ∈ X and
t ∈ [0, 1].

The rest of this section is devoted to collect useful lemmas for the future usages in the
subsequent sections. The following lemmas are already known in the literature.

Lemma 2.3. [16] Let (ak), (bk) and (ck) be sequences of nonnegative real numbers such
that ak+1 ≤ ak − bk + ck for all k ∈ N and

∑∞
k=1 ck < +∞ .Then (ak) converges and∑∞

k=1 bk < +∞.

Lemma 2.4. [21] Let X be a CAT(-1) space, x, y, z ∈ X and α ∈ [0, 1]. Then

cosh d (αx⊕ (1− α)y, z) sinh d(x, y) ≤ cosh d(x, z) sinhαd(x, y)

+ cosh d(y, z) sinh(1− α)d(x, y).

The next simple inequality is one of the key tools used in our main results.
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Lemma 2.5. For κ = ±1, the inequality

φκ (t) ≥ t2

2

holds for all t ∈ [0, Dκ/2).

Proof. First, we consider the case κ = 1. Notice that φ1 (t) = t2

2 at t = 0. Since both

functions are right continuous at t = 0, it is sufficient to show d
dt

(
φ1(t)− t2

2

)
≥ 0 for

t ∈ (0, π/2). Let t ∈ (0, π/2), we have

d

dt

(
φ1(t)− t2

2

)
=

d

dt

(
tan(t) sin(t)− t2

2

)
= sin(t) + tan(t) sec(t)− t
≥ tan(t) sec(t)− t. (2.2)

Also observe that
d

dt
(tan(t) sec(t)− t) = tan2(t) sec(t) + sec3(t)− 1

= sec(t)
(
1 + 2 tan2(t)

)
− 1

≥ 0.

Since tan(t) sec(t) − t is right continuous and equals to 0 at t = 0, the above inequality
yields

tan(t) sec(t)− t ≥ 0.

Combining this with (2.2), we obtain φ1(t) ≥ t2

2 for all t ∈
[
0, π2

)
.

Next, suppose that κ = −1. Using similar argument as in the previous case, it suffices
to show d

dt

(
φ−1(t)− t2

2

)
≥ 0 for t > 0. Indeed, let t > 0, we get sinh(t) ≥ t and

consequently

d

dt

(
φ−1(t)− t2

2

)
=

d

dt

(
tanh(t) sinh(t)− t2

2

)
= sinh(t)

(
1 +

1

cosh2(t)

)
− t

≥ 0.

The results are thus proved.

In view of Lemma 2.5, we immediately obtain the following conclusion.

Proposition 2.6. Let X be a complete admissible CAT(κ) space and f : X → (−∞,+∞].
If f is proper lsc and Kφ0−uniformly convex function with some K > 0,then f has a
unique minimizer.

Remark 2.7. In general, if κ > 0, then f is Kφκ−uniformly convex function if and only
if f is κKφ0−uniformly convex function. Similarly κ < 0, f is Kφκ−uniformly convex
function if and only if f is −κKφ0−uniformly convex function.

We regard the following lemma as a broader aspect of a statement in [22]. For com-
pleteness, we will include the proof as though the idea is pretty much the same.
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Lemma 2.8. Let X be a complete CAT(-1) space, f : X → (−∞,+∞] a proper lsc
convex function, and Rλf a resolvent of λf for λ > 0. Then the inequality

λ(f(Rλfx)− f(y)) ≤
(

1

cosh2 d(Rλfx, x)
+ 1

)
× (cosh d(x, y)− cosh d(Rλfx, x) cosh d(Rλfx, y))

holds for all x, y ∈ X and λ > 0.

Proof. Let λ > 0 and x, y ∈ X. Set zt = (1 − t)Rλfx ⊕ ty for t ∈ (0, 1) and let
D = d(Rλfx, y). By the definition of Rλ and the convexity of f , we have

λf(Rλfx) + tanh d(Rλfx, x) sinh d(Rλfx, x)

≤ λf(zt) + tanh d(zt, x) sinh d(zt, x)

≤ tλf(y) + (1− t)λf(Rλfx) + tanh d(zt, x) sinh d(zt, x)

and hence

λt(f(Rλfx)− f(y)) ≤ tanh d(zt, x) sinh d(zt, x)− tanh d(Rλfx, x) sinh d(Rλfx, x)

=

(
1

cosh d(Rλfx, x) cosh d(zt, x)
+ 1

)
× (cosh d(zt, x)− cosh d(Rλfx, x)) .

For convenience, put Ct := 1
cosh d(Rλfx,x) cosh d(zt,x) + 1. Multiply both sides of the above

inequality with (sinhD)/t and apply Lemma 2.4, we get

λ(f(Rλfx)− f(y)) sinhD

≤ Ct
t

(cosh d(zt, x) sinhD − cosh d(Rλfx, x) sinhD)

≤ Ct
t

(cosh d(y, x) sinh tD − cosh d(Rλfx, x)(sinhD − sinh(1− t)D))

=
Ct
t
· 2 sinh

(
t

2
D

)
×
(

cosh d(y, x) cosh

(
t

2
D

)
− cosh d(Rλfx, x) cosh

((
1− t

2

)
D

))
.

Letting t ↓ 0, we obtain

λ(f(Rλfx)− f(y)) sinhD ≤
(

1

cosh2 d(Rλfx, x)
+ 1

)
D

× (cosh d(x, y)− cosh d(Rλfx, x) cosh d(Rλfx, y)).

Since (sinh t)/t > 1 for t > 0, we conclude that

λ(f(Rλfx)− f(y)) ≤
(

1

cosh2 d(Rλfx, x)
+ 1

)
× (cosh d(x, y)− cosh d(Rλfx, x) cosh d(Rλfx, y)),

which proves the lemma.
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3. Main Results

In this section, we discuss the main results of this paper. Let us recall that we shall
show the convergence of splitting proximal algorithms with curvature-adapted proximals
and ultimately complete all the cases of κ ∈ R. Our first main result is considered in
the setting of complete locally compact admissible CAT(κ) spaces and the component
functions fi’s are proper, convex, and lsc. The second main result then simultaneously
relaxes the local compactness condition and induce a convergence estimation by adding
uniform convexity requirement on the total cost function.

We are now ready to state and prove our first main result.

Theorem 3.1 (Split Proximal Algorithm: Locally Compact Case). Let X be a com-
plete locally compact admissible CAT(κ) space and for each i = 1, . . . , N , let fi : X →
(−∞,+∞] be proper, convex, lsc functions which is L-Lipschitz on dom(f). Suppose that
f :=

∑N
i=1 fi has a minimizer. Given a starting point x0 ∈ X and a sequence (λk) of

positive real numbers with
∑∞
k=0 λk = +∞ and

∑∞
k=0 λ

2
k < +∞. For any k ∈ N ∪ {0}

and i ∈ {1, . . . , N}, define
xkN+i := Rκλkfi(x

kN+i−1).

Then, (xn) converges to a minimizer of f .

Proof. As discussed in Section 2, it is sufficient to consider only case κ = 0, 1,−1. The
cases where κ = 0 and κ = 1 have beed already proved in [16] and [20], respectively. Let
us now show the κ = −1 case. Let z ∈ arg minX f . By Lemma 2.8, we have

λk(fi(x
kN+i)− fi(z))

≤
(

1

cosh2 d(xkN+i, xkN+i−1)
+ 1

)
×
(
cosh d(xkN+i−1, z)− cosh d(xkN+i, xkN+i−1) cosh d(xkN+i, z)

)
.

Since 0 < t/sinh t < 1 and cosh t > 1 for all t > 0, the above inequality extends to

λk(fi(x
kN+i)− fi(z))

≤ 2(cosh d(xkN+i−1, z)− cosh d(xkN+i, xkN+i−1) cosh d(xkN+i, z))

≤ 2(cosh d(xkN+i−1, z)− cosh d(xkN+i, z))

which further implies

λk(fi(x
kN+i)− fi(z)) ≤ 2(cosh d(xkN+i−1, z)− cosh d(xkN+i, z)). (3.1)

By the definition of the proximal operator and Lemma 2.5, we have

λk[fi(x
kN+i−1)− fi(xkN+i)] ≥ tanh d(xkN+i, xkN+i−1) sinh d(xkN+i, xkN+i−1)

≥ d(xkN+i, xkN+i−1)2

2
.

Since fi is L-Lipschitz on dom fi, the above inequality simplifies to

d(xkN+i, xkN+i−1) ≤ 2Lλk. (3.2)
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By summing up (3.1) for i = 1, 2, ..., N gives

λk(f(xkN )− f(z)) ≤ 2(cosh d(xkN , z)− cosh d(xkN+N , z))

+ λk

N∑
i=1

(fi(x
kN )− fi(xkN+i))

≤ 2(cosh d(xkN , z)− cosh d(xkN+N , z))

+ λkL

N∑
i=1

d(xkN , xkN+i), (3.3)

where the rightmost summand can be further estimated by (3.2) as

d(xkN , xkN+i) ≤ d(xkN , xkN+1) + d(xkN+1, xkN+2) + ...+ d(xkN+i−1, xkN+i)

≤ 2Lλki.

Substitute the estimate into (3.3), we get

λk(f(xkN )− f(z)) ≤ 2(cosh d(xkN , z)− cosh d(xkN+N , z)) +N(N + 1)L2λk
2. (3.4)

Since z is a minimizer of f and by Lemma 2.3, the sequence (cosh d(xkN , z)) is conver-
gent and so does the sequence (d(xkN , z)). Moreover, we get that

∞∑
k=0

λk(f(xkN )− f(z)) < +∞.

Hence there must exists a subsequence (xklN ) of (xkN ) such that

lim
l→∞

f(xklN ) = f(z).

Since the sequence (xklN ) is bounded, it possesses a subsequence which converges to
a point ẑ ∈ X. The lower semicontinuity of f ensures that ẑ ∈ arg minX f . By the
convergence of (d(xkN , ẑ)) and of (xklN ) to ẑ, it must be the case that (xkN ) converges
also to ẑ. Finally the fact that (xkN+i) converges to ẑ for all fixed i = 1, . . . , N follows
from the inequality d(xkN+i, xkN+i−1) ≤ 2Lλk. This shows that the whole sequence (xn)
is convergent to ẑ ∈ arg minX f and the proof is complete.

In the next main result, we relax the local compactness condition in the ambient
space X by imposing uniform convexity assumption on the total cost f . The choice of
uniformity is chosen as φκ, accordingly to the upper curvature bound κ. It turns out
that such condition can also strengthen the convergence rate of the splitting proximal
algorithm. In this case, we can ensure that the convergence is at least of a sublinear rate.

Before going to our next result, let us prove the following useful lemma. Note that this
lemma is drawn from its variant appeared in [15].

Lemma 3.2. Let (tk) ⊂ (0, 1),
∑∞
k=0 tk = +∞, tk → 0 and M > 0. Let a0 > 0 and

define ak+1 := (1− tk)ak + t2kM,∀k ∈ N ∪ {0}, that is

ak+1 :=

k∏
i=0

(1− ti)a0 +M

 k∑
j=1

t2j−1

k∏
i=j

(1− ti)

+ t2k

 , (3.5)

where the convention
∑n
i=m bi = 0 for n < m is used. Then ak → 0.
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Proof. First, we prove lim infk→+∞ a = 0 by contradiction. Assume that there areM ≥ 0
and c > 0 such that for every k > M , we have ak > c and Mtk <

c
2 . Then

ak+1 = ak + tk(Mtk − ak) ≤ ak −
ctk
2
,

which is a contradiction, since
∑∞
k=0 tk = +∞.

Next we show that limk→+∞ = 0. If ak > tkM then clearly ak+1 < ak. On the other
hand, if we have ak ≤ tkM , then

ak+1 ≤ (1− tk)tkM + t2kM = tkM

and we consequently obtain
ak+1 ≤ max {ak, tkM}.

For any ` ≥ k, it follows that

a`+1 ≤ max {ak,M ·max {tk, tk+1, ..., t`}} ≤ max

{
ak,M · sup

j≥k
tj

}
.

Passing to the limits as `, k →∞, we obtain ak → 0.

Theorem 3.3 (Split Proximal Algorithm: Uniformly Convex Case). Let X be a complete
admissible CAT(κ) space and for each i = 1, . . . , N , let fi : X → (−∞,+∞] be proper,
convex, lsc functions which is L-Lipschitz on dom(f). Suppose that f :=

∑N
i=1 fi is Kφκ-

uniformly convex for some K > 0. Given a starting point x0 ∈ X and a sequence (λk) of
positive real numbers in the interval (0, 1/K) with λk → 0 and

∑∞
k=0 λk = +∞. For any

k ∈ N ∪ {0} and i ∈ {1, . . . , N}, define

xkN+i := Rκλkfi(x
kN+i−1).

Then, (xn) converges to the unique minimizer of f . Moreover, the following estimates
hold:

(i) If κ = 0, then d(xkN , z)2 ≤ ak holds with a0 := d(x0, z)2 and ak+1 := (1−λkK)ak+
2L2N(N + 1)λ2

k inductively, that is,

ak+1 :=

k∏
i=0

(1− λiK) a0 + 2L2N(N + 1)

 k∑
j=1

λ2
j−1

k∏
i=j

(1− λiK)

+ λ2
k

 .
(ii) If κ > 0, then 1 − cos

√
κd(xkN , z) ≤ ak holds with a0 := 1 − cos

√
κd(x0, z) and

ak+1 :=
(
1− λkK

2α

)
ak + 1

2ακL
2N(N + 1)λ2

k where α = 1 + 1
cos2(4L/

√
κ)

inductively, that
is,

ak+1 :=

k∏
i=0

(
1− λiK

2α

)
a0 +

1

2ακ
L2N(N + 1)

 k∑
j=1

λ2
j−1

k∏
i=j

(
1− λiK

2α

)+ λ2
k

 .
(iii) If κ < 0, then cosh

√
−κd(xkN , z) − 1 ≤ ak holds with a0 := cosh

√
−κd(x0, z) − 1

and ak+1 := (1− λkK
2 )ak − 1

2κL
2N(N + 1)λ2

k inductively, that is,

ak+1 :=

k∏
i=0

(
1− λiK

2

)
a0 −

1

2κ
L2N(N + 1)

 k∑
j=1

λ2
j−1

k∏
i=j

(
1− λiK

2

)+ λ2
k

 .
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Proof. Again, it is sufficient to prove the results for κ = 0, 1,−1. To retrieve the meaning-
ful estimates exactly as stated in the theorem, note that the Lipschitz constant L changes
to L/

√
κ (resp. L/

√
−κ) after rescaling the distance d(·, ·) with

√
κd(·, ·) for κ > 0 (resp.√

−κd(·, ·) for κ < 0. The results where κ = 0 was already proved in [15]. By Proposition
2.6 and Remark 2.7, we get f has a unique minimizer. We now prove the remaining cases
where κ = 1 and κ = −1, respectively. In each cases, we need to show two assertions, i.e.
the convergence of the whole sequence (xn) and the estimates given in terms of (ak).

Let κ = 1. By the uniformly convexity of f and the completeness of X, f has a unique
minimizer z ∈ X. For any x ∈ X, by dividing (2.1) with 1− t and letting t→ 1, we get

K tan d(x, y) sin d(x, y) ≤ f(x)− f(y). (3.6)

Following the method in the main result of [20] and applying Lemma 2.5, one may obtain
the inequality

− cos d(xkN+N , z) ≤ − cos d(xkN , z)− λk
2α

(f(xkN )− f(z)) +
1

2α
N(N + 1)L2λk

2.

Applying (3.6) in the above inequality yields

− cos d(xkN+N , z) ≤ − cos d(xkN , z)− λkK

2α
tan d(xkN , z) sin d(xkN , z)

+
1

2α
N(N + 1)L2λk

2

= − cos d(xkN , z)− λkK

2α

(
1

cos d(xkN , z)
− cos d(xkN , z)

)
+

1

2α
N(N + 1)L2λ2

k

and so we get

1− cos d(xkN+N , z) ≤
(

1− λkK

2α

)
(1− cos d(xkN , z)) +

1

2α
N(N + 1)L2λ2

k.

This shows the estimate 1−cos
√
κd(xkN , z) ≤ ak for each k ∈ N. By using mathematical

induction and Lemma 3.2, we have (ak) converges to 0. This proves the convergence of
(xkN ) to z.

Now, let i ∈ {1, ...N}. We have from the definition of the proximal operator and
Lemma 2.5 that

λk[fi(x
kN+i−1)− fi(xkN+i)] ≥ tan d(xkN+i−1, xkN+i) sin d(xkN+i−1, xkN+i)

≥ d(xkN+i−1, xkN+i)2

2
.

Since fi is L-Lipschitz,
d(xkN+i−1, xkN+i) ≤ 2λkL.

This ensures the convergence of the whole sequence (xn) to z = arg minX f .
Next, let κ = −1. We shall proceed with similar strategy witht he other case above.

Again, by the uniformly convexity of f and the completeness of X, f has a unique
minimizer z ∈ X. Let x ∈ X and dividing (2.1) by 1− t and letting t→ 1, we have

K tanh d(x, y) sinh d(x, y) ≤ f(x)− f(y). (3.7)
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By (3.4) in Theorem 3.1, we have

cosh d(xkN+N , z) ≤ cosh d(xkN , z)− λk
2

(f(xkN )− f(z)) +
1

2
N(N + 1)L2λk

2.

In view of (3.7), the above inequality expands to

cosh d(xkN+N , z) ≤ cosh d(xkN , z)− λkK

2
tanh d(xkN , z) sinh d(xkN , z)

+
1

2
N(N + 1)L2λk

2.

= cosh d(xkN , z)− λkK

2

(
cosh d(xkN , z)− 1

cosh d(xkN , z)

)
+

1

2
N(N + 1)L2λ2

k

and we may further obtain

cosh d(xkN+N , z)− 1 ≤
(

1− λkK

2

)
(cosh d(xkN , z)− 1) +

1

2
N(N + 1)L2λ2

k. (3.8)

Hence, the estimate cosh
√
−κd(xkN , z) − 1 ≤ ak holds for all k ∈ N. By mathematical

induction and Lemma 3.2, (ak) converges to 0 so that (xkN ) is convergent to z. The
convergence of the whole sequence (xn) to z follows by setting up a similar inequality of
the form (3.2).

4. Applications

In this section, we consider some viable applications of our main results. Particularly,
we shall apply our results from the previous section to solve feasibility and centroid
problems. Let us clarify the general ideas behind such problems now. Given nonempty
subsets C1, . . . , CN in a CAT(κ) space X. The feasibility problem seeks a common point
x in the intersection

⋂N
i=1 Ci. While this intersection is nonempty, solving the feasibility

problem is not impossible. On one hand, if
⋂N
i=1 Ci is empty, then one may wish to obtain

some negotiation of being reasonably proximal to each Ci. In this case, we consider the
centroid problem which finds a center of gravity (in the barycentric sense) between the
sets Ci’s. On the other hand, the centroid problem with each of Ci’s being singleton
reduces to the well-known Karcher mean which is greatly useful in the modern theory of
information and probability.

The two problems above have a long literature in linear space settings and we would
not make a history record here. Let us mention in the scope of CAT(κ) spaces that Bačák
et al. [23] introduced the alternating projection method for intersection of two sets, i.e.
N = 2, in CAT(0) spaces and later extended to CAT(κ) by Choi et al. [24]. On the
other hand, the problem of finding a Karcher means of finitely many points by means of
the proximal algorithms have been studied in CAT(0) spaces by Bačák [14]. However,
the exploration of Karcher means in CAT(κ) spaces began as early as 1990 by Kendall
[25] and still in development as in a recent discussion by Kobayashi and Wynn [26]. To
the best of our knowledge, there has not been a study of Karcher means with respect to
proximal operators as being considered in this paper. Moreover, the extension to center
of gravity between sets is still rare.
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4.1. Convex Feasibility Problem

In this subsection, we consider the feasibility problem with each Ci’s being closed
and convex. We call this particular case the convex feasibility problem. Recall that
x ∈

⋂N
i=1 Ci if and only if

∑N
i=1 δCi(x) = 0, where for a given set Ω ⊂ X, the function

δΩ : X → (−∞,+∞] is defined by

δΩ(x) :=

{
0 if x ∈ Ω,

+∞ otherwise,

for each x ∈ X. The function δΩ is lsc if Ω is closed, and is convex if Ω is convex. In fact,
when Ω is closed, then δΩ is Lipschitz continuous on its effective domain dom δΩ. If Ω is
closed and convex, its proximal RκδΩ reduces to the metric projection PΩ : X → Ω given
by

PΩ(x) := arg min
y∈Ω

d(x, y)

for all x ∈ X.
With the observations above, we can therefore solve the convex feasibility associated

to C1, . . . , CN by minimizing
∑N
i=1 δCi . Hence by letting fi := δCi , the splitting proximal

algorithm boils down to the alternating projection method and we obtain the following
consequence. This shows that the results in [23] and [24] can be recovered from our main
results.

Corollary 4.1 (Alternating Projection Method). Let (X, d) be a locally compact complete
admissible CAT(κ) space for some κ ∈ R. If C1, . . . , CN are nonempty closed convex
subsets of X whose intersection

⋂N
i=1 is nonempty. Then for any initial point x0 ∈ X,

the sequence defined for each k ∈ N and i = 1, . . . , N by

xkN+i := PCi(x
kN+i−1)

is convergent to an element x in
⋂N
i=1 Ci.

Proof. Letting fi := δCi for all i = 1, . . . , N and put f :=
∑N
i=1 fi. Then all fi’s are

Lipschitz continuous, proper, and convex and f has a minimizer. Moreover, we have
Rκfi = PCi for each i = 1, . . . , N . The remaining conclusion follows from Theorem 3.1
with any choice of (λk).

4.2. Center of Gravity and Karcher Mean

Again, suppose that C1, . . . , CN are nonempty closed convex subsets of a complete
CAT(κ) space (X, d). Here, we do not assume that their intersection is nonempty and
at the same time reject to strictly assume on the contrary. In the case where

⋂N
i=1 Ci is

empty, we still allow for some of them to intersect others.
In the previous subsection, we reformulate the sets Ci’s with their indicator functions

δCi ’s. This method works very well in the feasibility case but fails to generalize or tolerate
in infeasible problems. For this, we replace the indicator δΩ (given Ω ⊂ X) with the point-
to-set distance d(·,Ω) given by

d(x,Ω) = inf
y∈Ω

d(x, y)

for each x ∈ X. The value of d(x,Ω remains 0 if x ∈ cl Ω (cl denotes the closure operator),
but replaces +∞ of the indicator with a real value.
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Suppose that C1, . . . , CN are closed convex sets in X and then assign positive weights
w1, . . . , wN respectively on each of the sets. A point x ∈ X is called a center of gravity with
weight vector w := (w1, . . . , wN )> between C1, . . . , CN if it minimizes

∑N
i=1 wid(·, Ci)2.

In this case, we write x ∈ µ(C1, . . . , CN ;w1, . . . , wN ). If µ(C1, . . . , CN ;w1, . . . , wN ) is
singleton, we may replace the inclusion “∈” with an equality “=”. When

⋂N
i=1 Ci is

nonempty and each of the sets Ci’s is assigned equal weight, then every point in the
intersection is a center of gravity. Let us make a remark that even if there exist j, j′ ∈
{1, . . . , N} with Cj ∩Cj′ 6= ∅, it is unnecessary to have the center of gravity lying inside
such intersection.

For i = 1, . . . , N , let fi := wid(·, Ci)2 and set f =
∑N
i=1 fi. We may now apply the

proximal operator to fi’s. If λ > 0 and x ∈ X, then

Rκλfi(x) = arg min
y∈X

[
wid(y, Ci)

2 +
1

λ
φκ(d(y, x))

]
=: µκ(Ci, x;wi, 1/λ)

can be thought of as a center of gravity with nonlinear weight φκ acting on the point x.
The splitting proximal algorithm is then to solve alternatively for a center of gravity of a
single point and one of Ci’s, each one at a time. Let us conclude as follows.

Corollary 4.2 (Approximating Center of Gravity). Let (X, d) be a compact admissible
CAT(κ) space, C1, . . . , CN are nonempty closed convex sets in X, and w1, . . . , wN are
positive reals. If x0 ∈ X and for each k ∈ N and i = 1, . . . , N , we define xkN+i by

xkN+i := µκ(Ci, x
kN+i−1;wi, 1/λk),

where (λk) is a sequence of positive reals with
∑∞
i=1 λi = +∞ and

∑∞
i=1 λ

2
i < +∞.

Then, the sequence (xn) is convergent to a center of gravity of C1, . . . , CN with weights
w1, . . . , wN , respectively.

Proof. For i = 1, . . . , N , let fi := wid(·, Ci)2 and set f =
∑N
i=1 fi. Each fi is proper,

convex and Lipschitz continuous. Apply Theorem 3.1 to conclude the desired convergence.

Next, we consider the case where all Ci’s are singleton. Let G := {z1, . . . , zN} be a
finte subset of a complete CAT(κ) space. Suppose that w1, . . . , wN are positive reals.
Then we define the Karcher mean of G with weight vector w := (w1, . . . , wN )> to be

µ(G;w1, . . . , wN ) := arg min
x∈X

N∑
i=1

wid(x, zi)
2.

The Karcher mean was considered in [14] under the setting of complete CAT(0) spaces.
We generalize this result as a special case of the previous corollary with each Ci’s being
singletone, we state the following straightforward consequence without a proof. Note
that the uniquely existence of a Karcher mean follows from the strong convexity of the
objective function when diam(X) < Dκ/2 (see [27]).

Corollary 4.3 (Approximating Karcher Mean). Let (X, d) be a compact admissible
CAT(κ) space, G := {z1, . . . , zN} a finite subset in X, and w1, . . . , wN are positive reals.
If x0 ∈ X and for each k ∈ N and i = 1, . . . , N , we define xkN+i by

xkN+i := µκ(zi, x
kN+i−1;wi, 1/λk),

where (λk) is a sequence of positive reals with
∑∞
i=1 λi = +∞ and

∑∞
i=1 λ

2
i < +∞. Then,

the sequence (xn) is convergent to µ(G;w1, . . . , wN ).
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5. Numerical Implementations

In this section, we implement the proposed splitting proximal algorithm to approximate
the Karcher mean of given datasets which are fitted to the Lobachevskii plane H2 defined
by

H2 := {x = (x1, x2, x3) ∈ R3 | 〈x|x〉 = −1},

where 〈·|·〉 : R3 × R3 → R is the Lorentzian product given by

〈x|y〉 := x>

 1 0 0
0 1 0
0 0 −1

y

for x,y ∈ R3. Recall that H2 is a complete CAT(−1) space when equipped with the
distance function d given by

cosh d(x,y) := −〈x|y〉

for x,y ∈ H2.
We use seven different datasets G1, . . . , G7 which are randomly generated according

to the Gaussian distribution, with the same cardinality |Gi| = N = 100 for all i =
1, . . . , 7. The Karcher means to be computed in this section are given equal weights on
each of the points in Gi’s. In each of the numerical implementations, we set the start
point to x = (5, 5,

√
51) ∈ H2 in order avoid bias from being already in the cluster

of data. In the following numerical implementations of Corollary 4.3, we let X ⊂ H2

be compact set containing G1, ..., G7 and x. The algorithm is implemented with the
commercial software Matlab R2020a under the Campus-wide license of King Mongkut’s
University of Technology Thonburi. The hardware is running on the operating system
MacOS Catalina with a Processor 1.4 GHz Quad-Core Intel Core i5 and a 8 GB 2133
MHz LPDDR3 Memory.

Since the dataset is quite large, we only report the implementation results as pre-
sented in Figure 1. Therein, the LHS figures represent the data visualization of Gi (blue
‘x’ marks) together with the exact Karcher mean (black ‘O’ marks) and approximated
Karcher mean (red ‘O’ marks) obtained from our Splitting Proximal Algorithm (SPA).
The RHS figures show plots of errors after the iteration cycle of kN . Note that the errors
presented thereby are computed by the geodesic distance between the actual Karcher
mean and the one approximated the SPA. The accepted tolerance in these illustrations is
set at tol = 10−5.
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(a) The dataset G1, its Karcher mean and an ap-
proximated one.
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Dataset#1 : Errors after kN iterations.

(b) Distance from xkN to the Karcher mean
of G1.
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Dataset#2 : Errors after kN iterations.

(d) Distance from xkN to the Karcher mean
of G2.
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Dataset#3 : Errors after kN iterations.
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(g) The dataset G4, its Karcher mean and an ap-
proximated one.
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Dataset#4 : Errors after kN iterations.

(h) Distance from xkN to the Karcher mean
of G4.

(i) The dataset G5, its Karcher mean and an ap-
proximated one.
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Dataset#5 : Errors after kN iterations.

(j) Distance from xkN to the Karcher mean of
G5.

(k) The dataset G6, its Karcher mean and an ap-
proximated one.
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Dataset#6 : Errors after kN iterations.
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(m) The dataset G7, its Karcher mean and an ap-
proximated one.
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Dataset#7 : Errors after kN iterations.

(n) Distance from xkN to the Karcher mean
of G7.

Figure 1. Results of the implementation of SPA to approximate the
Karcher means of seven random datasets G1, . . . , G7.

As one may notice, the SPA is practically capable of solving Karcher means with
significance of 5th decimal place within a reasonable iteration loops. Recall that at each
step of SPA, we advance my moving along the geodesic of the current iteration xn and
one of the data point zi. The dives appeared in each error plots near the termination
corresponds to when the iteration xn successfully breached through the large variations
caused by scattered data points and finally gets inside the cluster of data.
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