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1. Introduction

In 1906, Fréchet introduced the concept of metric spaces. Later, many authors strive
to generalize the concept of metric like quasimetric, semimetric and ultrametric, G-metric
etc. Non Hausdroff spaces are widely used in domain theory, optimization theory and
advanced computer sciences to construct a most complicated program. Some problems,
particularly the problem of convergence of measurable functions with respects to measure
lead to a generalization of notion of metric. In 1998, Czerwik [1] introduced the concept
of b-metric space in which the triangle inequality is controlled by a fixed constant, as a
generalization of notion of metric space. Erdal Karapinar [2] established interpolative
contraction to prove existence of fixed points in Metric space. In [2], For a metric space
(X, d), the self mapping T : X → X is said to be an interpolative kannan type contraction,
if there are constants λ ∈ [0, 1) and α ∈ (0, 1) such that

d(Tx, Ty) ≤ λ[d(x, Tx)]α[d(y, Ty)],1−α

for all x, y ∈ X with x 6= Tx.
Erdal Karapinar et al. [2] investigate interpolative Reich-Rus-Ćirić type contractions
on partial metric space and a complete metric space. Since then, this concept has been
studied by many authors, see for instance [3–7]. In this paper we generalize the celebrated

fixed point theorem of interpolative Ćirić-Reich-Rus to prove the existence of fixed points
in the framework of a complete b-metric space. For more studies of fixed point results for
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contraction refer [6–14] and reference therein.
Next, we will recall the basic notions of a b-metric space and contraction. The following
notion will be used in the presentation.

Definition 1.1. [1] Let X be a non-empty set and s ≥ 1 be a given real number. A
function d : X ×X → [0,∞) is called a b-metric if it satisfies the following properties:

(1) d(x, y) = 0 ⇐⇒ x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

Then the triplet (X, d, s) is called a b-metric space with coefficient s.

Example 1.2. Let X = [0, 2] and d : X ×X → [0,∞) be defined by

d(x,y)=


(x− y)2, x, y ∈ [0, 1],

| 1

x2
− 1

y2
|, x, y ∈ [1, 2],

|x− y|, otherwise.

Then (X, d, s) is a b-metric space with s = 2.

Example 1.3. Let X = {1, 2, 3, 4}, Define d : X ×X → [0,∞) as follows:
d(n, n) = 0, n = 1, 2, 3, 4;

d(1, 2) = d(2, 1) = 2; d(2, 3) = d(3, 2) =
1

2
; d(1, 3) = d(3, 1) = 1;

d(1, 4) = d(4, 1) =
3

2
; d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 3.

then d is a b-metric space with s = 2.

The class of b-metric spaces is larger than that of metric spaces as there are b-metric
spaces which are not a metric space, and a metric space is a b-metric space with coefficient
s = 1. Moreover, the notion of convergent sequence, Cauchy sequence, completeness, etc.
can as well be defined accordingly in b-metric spaces.

Theorem 1.4. In a complete b-metric space (X, d, s), if T : X → X forms a Ćirić-Reich-
Rus contraction mapping

1

s
d(Tx, Ty) ≤ λ[d(x, y) + d(x, Tx) + d(y, Ty)], (1.1)

for all x, y ∈ X, where λ ∈ [0,
1

3
), then T possesses a fixed point.

Definition 1.5. In a complete b-metric space (X, d, s), a mapping T : X → X is called

an interpolative Ćirić-Reich-Rus type contraction, if there are constants λ ∈ [0, 1) and
α, β ∈ (0, 1) such that

1

s
d(Tx, Ty) ≤ λ[d(x, y)]β [d(x, Tx)]α[d(y, Ty)]1−α−β (1.2)

for all x, y /∈ FixT (X), where FixT (X) denotes the set of all fixed points of T .

Definition 1.6. Let (X, d, s) be a complete b-metric space, T : X → X form Reich
contractions, if it satisfies

d(Tx, Ty) ≤ s[a[d(x, y)] + b[d(x, Tx)] + c[d(y, Ty)]] (1.3)

there exists a, b, c ∈ (0,∞) such that 0 ≤ a+ b+ c < 1.
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Definition 1.7. Let (X, d) be a complete b-metric space, if T : X → X form interpolative
Reich contractions, if there exists a, b, c ∈ (0,∞) such that 0 ≤ a+ b+ c < 1, then

d(Tx, Ty) ≤ a[d(x, y)]β .b[d(x, Tx)]α.c[d(y, Ty)]1−α−β (1.4)

where α, β ∈ (0, 1).

2. Main Results

In this section, we will discuss an interpolative Ćirić-Reich-Rus-type contraction and
an interpolative Reich type contraction to prove existence of fixed points on a b-metric
space.

Theorem 2.1. Suppose a self mapping T : X → X is an interpolative Ćirić-Reich-
Rus-type contraction on a complete b-metric space (X, d, s). Then T has a fixed point in
X.

Proof. Let x0 ∈ X be an arbitrary point, construct a sequence {xn} such that
xn = Tn(x0), n ≥ 0.
If, xn 6= xn+1, for each n ≥ 0.

d(xn+1, xn) = d(Txn, Txn−1)
≤ λ[d(xn, xn−1)]β .[d(xn, Txn)]γ .[d(xn−1, Txn−1)]1−γ−β

= λ[d(xn, xn−1)]β [d(xn, xn+1)]γ .[d(xn−1, xn)]1−γ−β

= λ[d(xn, xn+1)]γ .[d(xn−1, xn)]1−γ

d(xn+1, xn)1−γ ≤ λ[d(xn−1, xn)].1−γ

Above inequality shows that {d(xn−1, xn)} is a non increasing sequence. Now, we
prove lim

n→∞
d(xn−1, xn) = 0.

Suppose that lim
n→∞

d(xn−1, xn) = l, where l ≥ 0.

Consider,
d(xn, xn+1) ≤ λd(xn−1, xn)

≤ λnd(x0, x1).
Hence d(xn, xn+1) = 0 when n→∞ because λ < 1.

lim
n→∞

d(xn, xn+1) = 0. (2.1)

Next we will prove that {xn} is a b-Cauchy sequence in (X, d, s).
We have lim

n→∞
d(xn, xn+1) = s[d(xn, y) + d(y, xn+1)] = 0 =⇒ lim

n→∞
d(xn, xn) = 0.

Suppose that k is the smallest integer which satisfies above equation such that

d(xlk−1, xnk
) < ε.

By the definition of a b-metric space,
ε ≤ d(xlk , xnk

) ≤ s[d(xlk , xlk−1) + d(xlk−1, xnk
)] < sd(xlk , xlk−1) + sε.

Thus
lim
k→∞

d(xlk , xnk
) = ε,

which means
lim
k→∞

(d(xlk , xnk
)− d(xlk−1

, xnk−1
) = sε.

By definition

d(xlk , xnk
) ≤ s[d(xlk , xlk+1) + d(xlk+1, xnk

)] + d(xnk+1, xnk
),
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and

d(xlk+1, xnk+1) ≤ d(xlk , xlk+1) + d(xlk , xnk
) + d(xnk+1, xnk

).

From the above equations we can conclude that

d(xnk+1, xnk
) ≤ d(xlk , xlk+1), (2.2)

taking the limit as k →∞, together with (2.1) and (2.2) we have

lim
k→∞

d(xlk+1, xnk+1) = ε.

Then, there exists n1 ∈ N such that for all k ≥ n1 we have

d(xlk , xnk
) >

ε

2
and d(xlk+1, xnk+1) >

ε

2
> 0.

Since T is continuous, we have from the above argument,

d(Txlk , Txnk
) ≤ λ

(
[d(xlk , xnk

)]β [d(xlk , Txlk)]γ [d(xnk
, Txnk

)]1−γ−β
)
,

when k →∞,
d(Txlk , Txnk

) ≤ λ(ε)
< ε.

This implies that d(Txlk , Txnk
) < ε which is a contradiction, and therefore {xn} is a b-

Cauchy sequence. Regarding the completeness of the b-metric space (X, d, s), we deduce
that there is some x ∈ X so that

lim
n→∞

d(xn, x) = 0.

Since T is continuous, we have x = lim
n→∞

xn+1 = lim
n→∞

Txn = T
(

lim
n→∞

xn

)
= Tx.

Hence the theorem.

Theorem 2.2. Suppose a self mapping T : X → X be an interpolative Reich-type con-
traction on a complete b-metric space (X, d, s). Then T has a fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point, construct a sequence {xn} such that
xn = Tn(x0), n ≥ 0.
If for some n0, we have xn0 = xn0+1, then xn0 is a fixed point of T, which ends the proof.
Otherwise, xn 6= xn+1, for each n ≥ 0.

d(xn+1, xn) = d(Txn, Txn−1)
≤ a[d(xn, xn−1)]β .b[d(xn, xn+1)]α.c[d(xn−1, xn)]1−α−β

d(xn+1, xn)1−α ≤ a.b.c[d(xn−1, xn)]1−α.

Since a+ b+ c < 1 then abc < 1,
then

d(xn+1, xn)1−α < d(xn−1, xn)1−α. (2.3)

From (2.3) we conclude that d(xn+1, xn) < d(xn−1, xn).
The sequence {d(xn−1, xn)} forms a non increasing sequence.
Now, we will prove that

lim
n→∞

d(xn−1, xn) = 0.

Suppose that lim
n→∞

d(xn−1, xn) = l, where l ≥ 0.

We have
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d(xn, xn+1) ≤ abc[d(xn−1, xn)]
≤ (abc)nd(x0, x1).

Hence d(xn, xn+1) = 0 when n→∞ because abc < 1.

lim
n→∞

d(xn, xn+1) = 0. (2.4)

We claim that {xn} is a d-Cauchy sequence in (X, d, s).
We have lim

n→∞
d(xn, xn+1) = 0.

0 ≤ dxnxn+1
≤ d(xn, xn+1) =⇒ lim

n→∞
d(xn, xn) = 0.

Suppose that k is the smallest integer which satisfies above equation such that

d(xlk−1, xnk
) < ε.

By the definition of a b-metric space,
ε ≤ d(xlk , xnk

) ≤ s[d(xlk , xlk−1) + d(xlk−1, xnk
)] < sd(xlk , xlk−1) + sε,

thus
lim
k→∞

d(xlk , xnk
) = ε.

By definition

d(xlk , xnk
) ≤ s[d(xlk , xlk+1) + d(xlk+1, xnk

) + d(xnk+1, xnk
)],

and
d(xlk+1, xnk+1) ≤ s[d(xlk , xlk+1) + d(xlk , xnk

) + (xnk+1, xnk
)].

From the above equations we can conclude that

d(xnk+1, xnk
) ≤ d(xlk , xlk+1), (2.5)

taking the limit as k →∞, together with (2.4) and (2.5) we have

lim
k→∞

d(xlk+1, xnk+1) = ε.

Then, there exists n1 ∈ N such that for all k ≥ n1 we have

d(xlk , xnk
) >

ε

2
and d(xlk+1, xnk+1) >

ε

2
> 0.

From the above argument,
d(Txlk , Txnk

) ≤ a[d(xlk , xnk
)]β .b[d(xlk , Txlk)]γc.[d(xnk

, Txnk
)]1−γ−β

when k →∞,
d(Txlk , Txnk

) ≤ abc(ε)
< ε

leads a contradiction, which implies that {xn} is a b-Cauchy sequence. Regarding the
completeness of the b-metric space (X, d, s), we deduce that there is some x ∈ X so that

lim
n→∞

d(xn, x) = 0.

Since T is continuous, we have x = lim
n→∞

xn+1 = lim
n→∞

Txn = T
(

lim
n→∞

xn

)
= Tx.

Hence the theorem.

Corollary 2.3. In a complete metric space (X, d), if T : X → X is an interpolative

Ćirić-Reich-Rus-type contraction, that is,

d(Tx, Ty) ≤ λ[d(x, y)]β [d(x, Tx)]α[d(y, Ty)]1−α−β

for all x, y /∈ FixT (X), then T possesses a fixed point in X.
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Corollary 2.4. Let (X, d, s) be a complete b-metric space and T : X → X be a mapping
such that

d(Tx, Ty) ≤ sλ[d(x, Tx)]α[d(y, Ty)]1−α

for all x, y /∈ FixT (X), where λ ∈ [0, 1) and α ∈ (0, 1). Then, T possesses a fixed point
in X.

Proof is similar to Theorem 2.1.

3. Applications

We scrutinize Theorem 2.1, using the following examples.

Example 3.1. Let X = {1, 2, 3, 4} be a set endowed with a b-metric defined as,

d(x, y) 1 2 3 4
1 0 2 1

3
3
2

2 2 0 1
2 3

3 1 1
2 0 3

4 3
2 3 3 0

We define a self mapping T on X by T :

(
1 2 3 4
1 1 3 3

)
T is not a Ćirić-Reich-Rus contraction. Because

d(T1, T3) ≤ λ[d(1, 3) + d(1, 1) + d(3, 3)]

d(1, 3) ≤ 1

3
λ

above inequality does not hold for λ ∈ [0,
1

3
).

When we use an interpolative Ćirić-Reich-Rus contraction,
Let us take x, y /∈ FixT (X).

Case(1): x = y = 3

1

s
d(T3, T3) ≤ λ[d(3, 3)]β [d(3, T3)]α[d(3, T3)]1−α−β

d(1, 1) ≤ sλ[d(3, 1)]β [d(3, 1)]α[d(3, 1)]1−α−β

above inequality holds for all α, β ∈ (0, 1) and 0.4 ≤ λ < 1 with s = 2.

Case(2): x = 3, y = 4

d(T3, T4) ≤ sλ[d(3, 4)]β [d(3, T3)]α[d(4, T4)]1−α−β

d(3, 3) ≤ sλ[d(3, 4)]β [d(3, 3)]α[d(4, 3)]1−α−β

holds for all β ∈ (0, 1) and α = 0.5, with 0.86 ≤ λ < 1 and s = 2.

Case(3): x = 4, y = 4

d(T4, T4) ≤ λ[d(4, 4)]β [d(4, T4)]α[d(4, T4)]1−α−β

d(3, 3) ≤ λ[d(4, 4)]β [d(4, 3)]α[d(4, 3)]1−α−β

holds for all α ∈ (0, 1) and β = 0.2, with 0.85 ≤ λ < 1, with s = 2.

Thus, the self mapping T is an interpolative Ćirić-Reich-Rus type contraction and 1, 5 are
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required fixed points. In the setting of Ćirić-Reich-Rus type contraction, λ is restricted

to [0,
1

3
) But here λ lies between (0, 1).

Example 3.2. Let M =

{(
2p 4p
p 0

)
: p ∈ R

}
and d : M ×M → R+

0 be defined

as d(x, y) = |tr(x − y)2|. The triplet (M, d, s) forms a complete b- metric space. Let

T :M→M be defined by T (x) = Bx where B =

1

2

1

2

0
1

2

 with α, β <
31

64
and s = 2,

satisfies Theorem 2.2, then T has a unique fixed point.

4. Conclusion

The novelty of this paper is conjucture of interpolative Ćirić-Reich-Rus type contrac-
tions and interpolative Reich type contractions in complete b-metric spaces to ensure
existence of fixed points, when we take γ = 1, β = 0 then Theorem 2.2 reduces to a
general interpolative Kannan contraction.
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