
ISSN 1686-0209

Thai Journal of Mathematics
Volume 19 Number 2 (2021)

Pages 665–684

http://thaijmath.in.cmu.ac.th

A Simultaneous Scheme for Solving Systems of

Inclusion and Equilibrium Problems in a Real Banach

Space

Lateef Olakunle Jolaoso1,2, Ferdinard Udochukwu Ogbuisi1, Olawale Kazeem Oyewole1,2,
Oluwatosin Temitope Mewomo1,∗ and Prasit Cholamjiak3

1School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Durban, South Africa
e-mail : 216074984@stu.ukzn.ac.za (L. O. Jolaoso); 215082189@stu.ukzn.ac.za (F. U. Ogbuisi);

217079141@stu.ukzn.ac.za (O. K. Oyewole); mewomoo@ukzn.ac.za (O. T. Mewomo)
2DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Johannesburg,
South Africa
3School of Science, University of Phayao, Phayao 56000, Thailand
e-mail : prasitch2008@yahoo.com (P. Cholamjiak)

Abstract In this paper, we propose an iterative method for approximating a common zero of finite family

of m-accretive operators and a common solution of finite family of equilibrium problems simultaneously

in a real reflexive, strict convex and smooth Banach space. We prove a strong convergence theorem and

also give some applications of our result to approximating solutions of other nonlinear problems in real

Banach spaces. As a special case, we obtain a result for approximating the common zero of a finite family

of m-accretive operators which is also a common solution of a finite family of equilibrium problems in a

real reflexive, strictly convex and smooth Banach space.

MSC: 47H05; 47H09; 47J25; 49J40

Keywords: simultaneous scheme; inclusion problem; equilibrium problem; finite family; generalized

duality mapping; fixed point problem

Submission date: 21.11.2019 / Acceptance date: 18.03.2021

1. Introduction

Let E be a real Banach space and C be a nonempty, closed and convex subset of E.
Let J denote the normalized duality mapping from E into 2E

∗
given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ||x||2 = ||f ||2}, ∀ x ∈ E, (1.1)

where E∗ is the dual space of E and 〈·, ·〉 denotes the duality pairing between E and
E∗. It is well known that if E∗ is strictly convex, then J is single-valued which we shall
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denote by j. Let T : C → C be a mapping, the set of fixed points of T denoted by F (T )
is defined by

F (T ) = {x ∈ C : Tx = x}.
A mapping T : C → C is called a contraction if there exists a constant α ∈ (0, 1) such
that

||Tx− Ty|| ≤ α||x− y||, ∀ x, y ∈ C. (1.2)

If α = 1 in (1.2), then T is said to be nonexpansive. T is said to be quasi-nonexpansive
if F (T ) 6= ∅ and

||Tx− p|| ≤ ||x− p||, ∀x ∈ C, and p ∈ F (T ).

Let C be a nonempty, closed and convex subset of a Banach space E and let T be a
mapping from C into itself. A point u ∈ C is said to be a weakly asymptotic fixed
point of T [1] if there exists a sequence {xn} in C which converges weakly to u and
limn→∞ ||xn−Txn|| = 0. We denote the set of all weakly asymptotic fixed points of T by

F̂ (T ). Also, a mapping T : C → C is said to be relatively nonexpansive if the following
conditions are satisfied:

(1) F (T ) is nonempty,
(2) ||Tu− p|| ≤ ||u− p||, ∀p ∈ F (T ), u ∈ C,

(3) F̂ (T ) = F (T ).

It is easy to see that any relatively nonexpansive mapping is quasi-nonexpansive. Also,
T is said to be firmly nonexpansive-type if

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx− Ty, Jx− Jy〉 (1.3)

for all x, y ∈ C. If E is a Hilbert space, then J is the identity operator on E and (1.3)
reduces to ||Tx− Ty||2 ≤ 〈x− y, Tx− Ty〉 for all x, y ∈ C. Note that the class of firmly
nonexpansive-type mappings that have a nonempty set of fixed points is contained in the
class of relatively nonexpansive mappings [2].
Let Θ : C ×C → R be a nonlinear bifunction, the Equilibrium Problem (EP) is to find a
point x̄ ∈ C such that

Θ(x̄, y) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of (1.4) is denoted by EP (Θ). Numerous problems in physics, op-
timization, economics and fixed point theory can be formulated as finding a solution of
the EP. Many researchers have proposed different iterative schemes for finding solution
of EP (1.4) and related optimization problems in Hilbert and real Banach spaces, see
for example [3–16] and reference therein. For solving the equilibrium problem (1.4), the
following assumptions are made on the bifunction Θ:

(A1) Θ(x, x) = 0 for all x ∈ C,
(A2) Θ is monotone, i.e Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C,
(A3) for all x, y ∈ C,

lim sup
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y),

(A4) for all x ∈ C, Θ(x, ·) is convex and lower semicontinuous.

A mapping A : D(A) ⊆ E → E is said to be accretive if for all x, y ∈ E, there exist
j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0.
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An operator A : D(A) ⊆ E → E is called m-accretive if it is accretive and the range of
(I + λA) denoted by R(I + λA) is E for all λ > 0. Also, A is said to satisfy the range
condition if D(A) ⊆ R(I + λA), ∀λ > 0. If A is m-accretive, we define the resolvent
operator of A, JAλ : R(I + λA)→ D(A) by JAλ = (I + λA)−1. It is well known that JAλ is
nonexpansive and single-valued. Also, F (JAλ ) = N (A), where

N (A) := {z ∈ D(A) : 0 ∈ Az} = A−1(0).

In a real Hilbert space, the m-accretive operators become the maximal monotone opera-
tors.
Considerable effort have been devoted to finding the zero points of accretive operators
(see, for example [17–25]). One popular technique for approximating zeros of m-accretive
operators is the Proximal Point Algorithm (PPA) which generates a sequence {xn} by
the formula:

x0 ∈ E, xn+1 = JAλn
xn, n ≥ 0, (1.5)

where {λn} ⊂ (0,∞). This method was introduced by Martinet [26].
Motivated by the PPA and the iterative method of Halpern [27], Kamimura and Takahashi
[28] and Bernavides et al. [29] presented the following algorithm for approximating the
zero point of an m-accretive operator in a real Hilbert space and a real reflexive Banach
space E respectively: for u ∈ E, x0 ∈ E,

xn+1 = anu+ (1− an)JAλn
xn, ∀n ≥ 0, (1.6)

where an ∈ (0, 1). They proved that the sequence {xn} generated (1.6) strongly converges
to the zero point of A. Furthermore, Kim and Xu [30] improved the result of Kamimura
and Takahashi [28] to a uniformly smooth real Banach space. However, in 2006, Xu [31]
further extended this work to a reflexive Banach space with weakly continuous duality
mapping with gauge ϕ.
In 2000, Moudafi [32] introduced the viscosity approximation method as a generalization
of the Halpern iterative method for approximating fixed point of a nonexpansive mapping
T in a real Hilbert space H: for x0 ∈ H,

xn+1 = anf(xn) + (1− an)Txn, (1.7)

where f is a contraction and {an} ⊂ (0, 1). Based on the work of Moudafi [32], Takahashi
[33] combined the PPA and the viscosity approximation method to form the following
iterative scheme for approximating the zero point of an accretive operator A in a reflexive
Banach space with a uniformly Gâteaux differentiable norm E: for x0 ∈ E,

xn+1 = anf(xn) + (1− an)JAλn
xn, ∀n ≥ 0. (1.8)

Under some mild condition on the parameters {an} and {λn}, he proved that the sequence
{xn} defined by (1.8) converges strongly to a zero of the accretive operator A.
Zegeye and Shahzad [34] further studied the problem of finding a common zero of a finite
family of m-accretive operators in a strictly convex and reflexive Banach space E. They
presented the following algorithm and proved its strong convergence to a common zero of
the m-accretive operators Ai, i = 1, 2, . . . , N. For u, x0 ∈ C,

xn+1 = anu+ (1− an)SNxn, ∀n ≥ 0, (1.9)

where SN := a0I + a1J
A1

λn
+ a2J

A2

λn
+ · · · + aNJ

AN

λn
, 0 < ai < 1, for i = 1, 2, . . . , N ,∑N

i=0 ai = 1 and {an} is a real sequence which satisfy some suitable conditions.
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Very recently, Wang et.al. [35] introduced the following composite iterative scheme for
finding a common zero of two accretive operators A and B in a uniformly convex Banach
space, {

yn = βnJ
B
λn
xn + (1− βn)JAλn

xn,

xn+1 = αnxn + (1− αn)yn, n ≥ 0,
(1.10)

which converges weakly to a common zero of the two accretive operators A and B under
some certain conditions.
Many authors have introduced several iterative methods for finding a common solution
of two or more problems (see, for instance [36–39]), but, there is little effort on iterative
methods for approximating distinct solutions of two or more problems simultaneously.
In this paper, we propose a new simultaneous algorithm for finding a common zero of
finite family of accretive operators and a common solution of finite family of equilibrium
problem simultaneously in a real reflexive, strictly convex and smooth Banach space. As
a special case, we obtain a result for approximating the common zero of a finite family
of m-accretive operators which is also a common solution of a finite family of equilibrium
problems in a real reflexive, strictly convex and smooth Banach space. This improve
many recent results in literature, e.g [38, 39].

2. Preliminaries

In the sequel, we denote the weak convergence of a sequence {xn} ⊂ E to a point
x ∈ E by xn ⇀ x and the strong convergence of {xn} to x by xn −→ x.
A real Banach space E with dimE ≥ 2 is called strictly convex if for any x, y ∈ E, x 6= y,
||x|| = ||y|| = 1, we have ||αx+ (1− α)y|| < 1, ∀ α ∈ (0, 1). The modulus of convexity of
E is the function δE : (0, 2]→ [0, 1] defined by

δE(t) = inf
{

1− ||x+ y

2
|| : ||x|| = ||y|| = 1; t = ||x− y||

}
.

It is well known that the function
δE(t)

t
is nondecreasing on (0, 2]. The space E is said

to be uniformly convex if for any ε ∈ (0, 2], there exists δ > 0 such that ||x|| = ||y|| = 1
and

||x− y|| ≥ ε⇔
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex, see for
details [40–42].
The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(r) = sup
{ ||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1; ||y|| = r

}
= sup

{ ||x+ ry||+ ||x− ry||
2

− 1 : ||x|| = 1 = ||y||
}
.

The space E is said to be uniformly smooth if limr→0+

ρE(r)

r
= 0. Also, if E is uniformly

smooth, then the dual space E∗ is uniformly convex and if E is uniformly convex, E∗ is
uniformly smooth. It is well known that every uniformly smooth Banach space is reflexive
(see [40, 43] for more details).
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A continuous and strictly increasing function ϕ : [0,∞) → [0,∞) such that ϕ(0) = 0
and limt→∞ ϕ(t) = ∞ is called a gauge function. The duality mapping Jϕ : E → 2E

∗

associated with a gauge function ϕ is defined by

Jϕ(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ||x||ϕ(||x||), ||f∗|| = ϕ(||x||), ∀ x ∈ E}.
From [40, 44], we know that the duality mapping Jϕ satisfies the following properties:

(i) Jϕ(−x) = −Jϕ(x) and Jϕ(λx) = sgn(λ)
ϕ(|λ|||x||)
ϕ(||x||)

Jϕ(x), for x ∈ E and λ ∈ R;

(ii) if E∗ is uniformly convex, then Jϕ is uniformly continuous on each bounded
subset of E;

(iii) the reflexivity of E and strict convexity of E∗ imply that Jϕ is single-valued
and monotone.

In the case ϕ(t) = t, we call Jϕ the normalized duality mapping. If ϕ(t) = tq−1, q >
1, the duality mapping Jϕ = Jq is called generalized duality mapping, where Jq(x) =
||x||q−2J(x), q > 1.

For the gauge function ϕ, the function Ψ : [0,+∞)→ [0,+∞) defined by

Ψ(t) =

∫ t

0

ϕ(s)ds (2.1)

is a continuous convex strictly increasing function on [0,+∞). Also, Jϕ(x) = ∂Ψ(||x||),
x ∈ E, where ∂ denotes the subdifferential in the sense of convex analysis. This implies
that for each x ∈ E, (see [44])

Ψ(||y||)−Ψ(||x||) ≥ 〈x∗, y − x〉, ∀ y ∈ E, x∗ ∈ ∂Ψ(||x||). (2.2)

We recall that a Banach space E has a weakly continuous duality mapping if there is a
guage ϕ for which the duality mapping Jϕ(x) is single-valued and weak-to weak∗ sequen-
tially continuous (i.e, if {xn} ⊂ E weakly converges to a point x ∈ E, then {Jϕ(xn)}
converges weakly∗ to Jϕ(x)). It is noted in [44] that lp has a weakly continuous duality
mapping with a gauge function ϕ(t) = tp−1 for 1 < p < +∞.
Let C be a nonempty, closed and convex subset of a real Banach space E and Q be a
mapping of E onto C. Then Q is said to be sunny if Q(Q(x) + t(x −Q(x)) = Q(x), for
all x ∈ E and t ≥ 0. A mapping Q of E onto E is said to be a retraction if Q2 = Q. If a
mapping Q is a retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of
Q. A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive. In
a real Hilbert space H, the sunny nonexpansive retraction of Q coincides with the metric
projection PC from H onto C.

Lemma 2.1 ([45]). Let C be a closed and convex subset of a smooth Banach space E and
D a nonempty subset of C. Let Q : C → D be a retraction and Jϕ be the duality mapping
with a gauge function ϕ. Then the following are equivalent:

(a) Q is sunny and nonexpansive,
(b) 〈x−Qx, Jϕ(y −Qx)〉 ≤ 0, for all x ∈ C and y ∈ D.

Lemma 2.2 ([46]). Let E be a real Banach space which has a weakly continuous duality
mapping Jϕ with a gauge ϕ. Then Ψ defined by (2.1) has the following properties:

(a) Ψ(||x+ y||) ≤ Ψ(||x||) + 〈y, Jϕ(x+ y)〉, ∀x, y ⊂ E.
(b) Assume that a sequence {xn} in E converges weakly to a point x ∈ E. Then

lim sup
n→∞

Ψ(||xn − y||) = lim sup
n→∞

Ψ(||xn − x||) + Ψ(||x− y||), ∀y ∈ E. (2.3)
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Lemma 2.3 ([47, 48]). Let {an} be a sequence of non-negative real numbers satisfying
the following relation:

an+1 ≤ (1− γn)an + σn, n ≥ 0,

where {γn} ⊂ (0, 1) for each n ≥ 0 satisfying the conditions:

(a)
∑∞
n=0 γn =∞,

(b) lim supn→∞
σn

γn
≤ 0 or

∑∞
n=0 |σn| <∞.

Then {an} converges strongly to zero.

Lemma 2.4 ([34]). Let C be a nonempty, closed and convex subset of a strictly convex
Banach space E. Let Ai : C → E, i = 1, 2, . . . , r, be a finite family of m-accretive
mappings with ∩ri=1N (Ai) 6= ∅. Let a0, a1, . . . , ar be real numbers in (0, 1) such that∑r
i=0 ai = 1 and Sr = a0I+a1J

A1 +a2J
A2 + · · ·+arJ

Ar where JAi = (I+Ai)
−1. Then,

Sr is nonexpansive and F (Sr) = ∩ri=1N (Ai).

Lemma 2.5 ([13]). Let C be a closed and convex subset of a smooth, strictly convex and
reflexive Banach space E, let Θ be a bifunction from C ×C into R satisfying (A1)-(A4).
Let r > 0 and x ∈ E, define a mapping TΘ

r : E → C as follows:

TΘ
r x =

{
z ∈ C : Θ(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0

}
, (2.4)

for all y ∈ C. Then the following hold:

(1) TΘ
r is single-valued,

(2) TΘ
r is firmly nonexpansive-type, that is, for all x, y ∈ E,

〈TΘ
r x− TΘ

r y, JT
Θ
r x− JTΘ

r y〉 ≤ 〈TΘ
r x− TΘ

r y, Jx− Jy〉,

(3) F (TΘ
r ) = EP (Θ),

(4) EP (Θ) is closed and convex.

3. Main Results

In this section, we give our main results in this paper, we first give the following
important lemma which will be needed in the sequel.

Lemma 3.1. Let C be a nonempty, closed and convex subset of a real reflexive, smooth
and strictly convex Banach space E. Let Θi : C×C → R, i = 1, 2, . . . , N be a finite family
of bifunctions satisfying assumptions (A1)-(A4). Let α0, α1, α2, . . . , αN be real numbers

in (0, 1) such that
∑N
i=0 αi = 1 and WN = α0I+α1T

Θ1
rn +α2T

Θ2
rn +· · ·+αNTΘN

rn , where TΘi
rn

is as defined in (2.4) for i = 1, 2, . . . , N and rn > 0. Suppose ∩Ni=1EP (Θi) and F (WN )
are nonempty. Then, WN is nonexpansive and F (WN ) = ∩Ni=1(TΘi

rn ) = ∩Ni=1EP (Θi).
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Proof. Let x, y ∈ C, we have

||WNx−WNy|| = ||α0x+ α1T
Θ1
rn x+ α2T

Θ2
rn x+ · · ·+ αNT

ΘN
rn x

−α0y − α1T
Θ1
rn y − α2T

Θ2
rn y − · · · − αNT

ΘN
rn y||

= ||α0(x− y) + α1(TΘ1
rn x− T

Θ1
rn y) + α2(TΘ2

rn x− T
Θ2
rn y) . . .

+ αN (TΘN
rn x− TΘ2

rn y)||

≤ α0||x− y||+
N∑
i=1

αi||TΘi
rn x− T

Θi
rn y||

≤ α0||x− y||+
N∑
i=1

αi||x− y||

= ||x− y||. (3.1)

Hence, WN is nonexpansive. It is easy to see that ∩Ni=1EP (Θi) = ∩Ni=1F (TΘi
rn ) ⊆ F (WN ).

We now show that F (WN ) ⊆ ∩Ni=1F (TΘi
rn ). Let q ∈ F (Wn) and p ∈ ∩Ni=1F (TΘi

rn ), then

||q − p|| = ||α0q + α1T
Θ1
rn q + α2T

Θ2
rn q + · · ·+ αNT

ΘN
rn q − p||

= ||α0(q − p) + α1(TΘ1
rn q − p) + α2(TΘ2

rn q − p) + · · ·+ αN (TΘN
rn q − p)||

≤ α0||q − p||+
N∑
i=1

αi||TΘN
rn q − p||

≤ α0||q − p||+
N∑
i=1

αi||q − p||

= ||q − p||. (3.2)

This implies that

||q − p|| =

N−1∑
i=0

αi||q − p||+ αN ||TΘN
rn q − p||

= (1− αN )||q − p||+ αN ||TΘN
rn q − p||,

hence

||q − p|| = ||TΘN
rn q − p||.

Similarly, we obtain

||q − p|| = ||TΘN−1
rn q − p|| = ||TΘN−2

rn q − p|| = · · · = ||TΘ1
rn q − p||.

From (3.2), we get

||q − p|| =
∣∣∣∣∣∣ α1∑N

i=1 αi
(TΘ1
rn q − p) +

α2∑N
i=1 αi

(TΘ2
rn q − p) · · ·+

aN∑N
i=1 αi

(TΘN
rn q − p)

∣∣∣∣∣∣.
By the strict convexity of E, we have

q − p = TΘ1
rn q − p = TΘ2

rn q − p = · · · = TΘN
rn q − p,

hence, TΘi
rn q = q, for i = 1, 2, . . . , N , which implies that q ∈ ∩Ni=1F (TΘN

rn ). Therefore

F (WN ) ⊆ ∩Ni=1F (TΘi
rn ).
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Hence, we have
F (WN ) = ∩Ni=1F (TΘN

rn ) = ∩Ni=1EP (Θi).

As a direct consequence of Lemma 3.1, we have the following result.

Lemma 3.2. Let C be a nonempty, closed and convex subset of a real reflexive, smooth
and strictly convex Banach space E. Let S, T : C → C be two nonexpansive mappings
such that F (S) and F (T ) are nonempty. Define G := 1

2 (S + T ), then G is nonexpansive
and F (G) = F (S) ∩ F (T ).

We now present our main theorem.

Theorem 3.3. Let E be a real reflexive, strictly convex and smooth Banach space which
has a weakly continuous duality mapping Jϕ with guage ϕ and let C be a nonempty, closed
and convex subset of E. Let f : C → C be a θ1-contraction mapping and g : C → C be a
θ2-contraction mapping such that θ = max{θ1, θ2}. Let Ak : C → E, k = 1, 2, . . . , N be a
finite family of m-accretive operators and Θi : C ×C → R, i = 1, 2, . . . ,M be bifunctions
satisfying assumptions (A1)-(A4). Suppose ∩Nk=1N (Ak) and ∩Mi=1EP (Θi) are nonempty.
Let {an} be a real sequence in (0, 1) and for arbitrarily x0 ∈ C and y0 ∈ C, let the
sequence {xn} and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(3.3)

where
SN = α0I + α1J

A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with JAk

λn
:= (I + λnAk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and TΘi
rn is as defined in (2.4), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or (iii∗) limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Q1(f(ŷ)) ∈
∩Nk=1N (Ak) and ŷ = Q2(g(x̂)) ∈ ∩Mi=1EP (Θi) respectively, where Q1 is the sunny nonex-
pansive retraction of C onto ∩Nk=1N (Ak) and Q2 is the sunny nonexpansive retraction of
C onto ∩Mi=1EP (Θi).

Remark 3.4. Observe that the definition of {xn} involves {yn} and the definition {yn}
invloves {xn} in (3.3).

Proof. First, we show that {xn} and {yn} are bounded. Let x∗ ∈ F (SN ) and y∗ ∈
F (WM ), then we have

||xn+1 − x∗|| = ||anf(yn) + (1− an)SNxn − x∗||
≤ an||f(yn)− f(y∗)||+ an||f(y∗)− x∗||+ (1− an)||SNxn − x∗||
≤ anθ1||yn − y∗||+ an||f(y∗)− x∗||+ (1− an)||xn − x∗||
≤ anθ||yn − y∗||+ an||f(y∗)− x∗||+ (1− an)||xn − x∗||. (3.4)
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Similarly, from (3.3), we have

||yn+1 − y∗|| ≤ anθ||xn − x∗||+ an||g(x∗)− y∗||+ (1− an)||yn − y∗||. (3.5)

Therefore, from (3.4) and (3.5), we obtain

||xn+1−x∗||+||yn+1−y∗|| ≤ (1−an(1−θ))(||xn−x∗||+||yn−y∗||)
+ an(||f(y∗)−x∗||+||g(x∗)−y∗||)

≤ max
{
||xn−x∗||+||yn−y∗||,

||f(y∗)−x∗||+||g(x∗)−y∗||
1−θ

}
...

≤ max
{
||x0−x∗||+||y0−y∗||,

||f(y∗)−x∗||+||g(x∗)−y∗||
1−θ

}
.

This implies {||xn − x∗||} and {||yn − y∗||} are bounded. Therefore, {xn} and {yn} are
bounded. Consequently, {f(yn)}, {g(xn)}, {SNxn} and {UMyn} are bounded.
Furthermore, from (3.3) and Lemma 2.2(a), we get

Ψ(||xn+1−x∗||) = Ψ(||an(f(yn)−x∗)+(1−an)(SNxn−x∗)||)
= Ψ(||an(f(yn)−f(y∗)+f(y∗)−x∗)+(1−an)(SNxn−x∗)||)
≤ Ψ(||an(f(yn)−f(y∗))+(1−an)(SNxn−x∗)||)
+ an〈f(y∗)− x∗, Jϕ(xn+1 − x∗)〉
≤ anθ1Ψ(||yn − y∗||) + (1− an)Ψ(||SNxn − x∗||)
+ an〈f(y∗)− x∗, Jϕ(xn+1 − x∗)〉
≤ anθΨ(||yn − y∗||) + (1− an)Ψ(||xn − x∗||)
+ an〈f(y∗)− x∗, Jϕ(xn+1 − x∗)〉. (3.6)

Similarly, we obtain

Ψ(||yn+1 − y∗||) ≤ anθΨ(||xn − x∗||) + (1− an)Ψ(||yn − y∗||)
+ an〈g(x∗)− y∗, Jϕ(yn+1 − y∗)〉. (3.7)

Hence, from (3.6) and (3.7), we get

Ψ(||xn+1 − x∗||)+Ψ(||yn+1−y∗||) ≤ (1−an(1−θ))(Ψ(||xn−x∗||)+Ψ(||yn−y∗||)
+an(〈f(y∗)− x∗, Jϕ(xn+1 − x∗)〉
+〈g(x∗)− y∗, Jϕ(yn+1 − y∗)〉). (3.8)

Next, we show that ||xn+1 − xn|| → 0 and ||yn+1 − yn|| → 0, as n→∞.
Let K := sup{||f(yn)||, ||g(xn)||, ||SNxn||, ||UMyn|| : n ≥ 1}. Observe that

||xn+1 − xn|| = ||anf(yn)+(1− an)SNxn−(an−1f(yn−1)+(1−an−1)SNxn−1)||
= an||f(yn)− f(yn−1)||+ |an − an−1|||f(yn−1)||
+ (1− an)||SNxn − SNxn−1||

+|an − an−1|||SNxn−1||
≤ anθ||yn − yn−1||+ (1− an)||xn − xn−1||+ 2K|an − an−1|. (3.9)

Similarly

||yn+1 − yn|| ≤ anθ||xn − xn−1||+ (1− an)||yn − yn−1||+ 2K|an − an−1|. (3.10)
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It follows from (3.9) and (3.10) that

||xn+1 − xn||+ ||yn+1 − yn|| ≤ (1− an(1− θ))(||xn − xn−1||
+ ||yn − yn−1||) + 4K|an − an−1|
= (1− an(1− θ))(||xn − xn−1||
+ ||yn − yn−1||) + an(1− θ)δn, (3.11)

where δn =
4K|an − an−1|
an(1− θ)

. We consider the following two cases:

Case I: Suppose condition (iii) is satisfied, then

||xn+1 − xn||+ ||yn+1 − yn|| ≤ (1− an(1− θ))(||xn − xn−1||+ ||yn − yn−1||) + σn,

where σn = 4K|an − an−1| so that
∑∞
n=0 σn <∞.

Case II: Suppose condition (iii∗) is satisfied. Then

||xn+1 − xn||+ ||yn+1 − yn|| ≤ (1− an(1− θ))(||xn − xn−1||+ ||yn − yn−1||) + σn,

where σn = (1− θ)anδn so that σn = o((1− θ)an).
In either case, Lemma 2.3 and condition (ii) yield that

||xn+1 − xn||+ ||yn+1 − yn|| → 0, as n→∞,

this implies that

||xn+1 − xn|| → 0 and ||yn+1 − yn|| → 0, as n→∞. (3.12)

Also, it is clear from (3.3) that

||xn+1 − SNxn|| ≤ an||f(yn)− SNxn|| → 0, as n→∞, (3.13)

and

||yn+1 − TMyn|| ≤ an||g(xn)− TMyn|| → 0, as n→∞. (3.14)

Therefore, from (3.12), (3.13) and (3.14), we have

||xn − SNxn|| ≤ ||xn − xn+1||+ ||xn+1 − SNxn|| → 0, (3.15)

||yn − TMyn|| ≤ ||yn − yn+1||+ ||yn+1 − TMyn|| → 0, (3.16)

as n→∞.
Since E is reflexive, there exist subsequences {xnj} and {ynj} of {xn} and {yn} re-

spectively such that xnj
⇀ x̄ and ynj

⇀ ȳ. Next, we show that x̄ ∈ ∩Nk=1N (Ak) and
ȳ ∈ ∩i=1EP (Θi).
Since Jϕ is weakly continuous, we have by Lemma 2.2(b) that

lim sup
j→∞

Ψ(||xnj
− x||) = lim sup

j→∞
Ψ(||xnj

− x̄||) + Ψ(||x− x̄||), ∀x ∈ E. (3.17)

Let

Φ(x) = lim sup
j→∞

Ψ(||xnj
− x||), ∀x ∈ E,

it follows from (3.17) that

Φ(x) = Φ(x̄) + Ψ(||x− x̄||), x ∈ E.
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Since ||xnj − SNxnj || → 0 as j →∞, we get that

Φ(SN x̄) = lim sup
j→∞

Ψ(||xnj
− SN x̄||) = lim sup

j→∞
Ψ(||SNxnj

− SN x̄||)

≤ lim sup
j→∞

Ψ(||xnj − x̄||) = Φ(x̄). (3.18)

On the otherhand, we note that

Φ(SN x̄) = Φ(x̄) + Ψ(||SN x̄− x̄||). (3.19)

From (3.18) and (3.19), we get

Ψ(||SN x̄− x̄||) ≤ 0.

Hence, SN x̄ = x̄. This implies that x̄ ∈ F (SN ). Therefore, by Lemma 2.4, we obtain
x̄ ∈ ∩Mk=1N (Ak).
Similarly, we can verify that ȳ ∈ F (WM ). By Lemma 3.1, we have that ȳ ∈ ∩Mi=1EP (Θi).
Now, we show that the sequence {xn} converges strongly to a point x̂ = Q∩N

k=1N (Ak)f(ŷ)

and the sequence {yn} converges strongly to a point ŷ = Q∩M
i=1EP (Θi)g(x̂).

From (3.8), we have

Ψ(||xn+1 − x̂||) + Ψ(||yn+1 − ŷ||) ≤ (1− an(1− θ))(Ψ(||xn − x̂||) + Ψ(||yn − ŷ||))
+an(〈f(ŷ)− x̂, Jϕ(xn+1 − x̂)〉
+〈g(x̂)− ŷ, Jϕ(yn+1 − ŷ)〉).

This implies that

Γn+1 ≤ (1− γn)Γn + σn, (3.20)

where

Γn := Ψ(||xn − x̂||) + Ψ(||yn − ŷ||), γn := an(1− θ),
and

σn :=
an(1− θ)

1− θ
(〈f(ŷ)− x̂, Jϕ(xn+1 − x̂)〉+ 〈g(x̂)− ŷ, Jϕ(yn+1 − ŷ)〉).

Choose subsequences {xnk
} and {ynk

} of {xn} and {yn} respectively such that

lim sup
n→∞

〈f(ŷ)− x̂, Jϕ(xn+1 − x̂)〉 = lim
k→∞

〈f(ŷ)− x̂, Jϕ(xnk+1 − x̂)〉,

and

lim sup
n→∞

〈g(x̂)− ŷ, Jϕ(yn+1 − ŷ)〉 = lim
k→∞

〈g(x̂)− ŷ, Jϕ(ynk+1 − ŷ)〉.

Since xnk
⇀ x̄, it follows from Lemma 2.1 that

lim sup
n→∞

〈f(ŷ)− x̂, Jϕ(xn+1 − x̂)〉 = lim
k→∞

〈f(ŷ)− x̂, Jϕ(xnk+1 − x̂)〉

≤ 〈f(ŷ)− x̂, Jϕ(x̄− x̂)〉 ≤ 0. (3.21)

Similarly, since ynk
⇀ ȳ, it follows from (2.1) that

lim sup
n→∞

〈g(x̂)− ŷ, Jϕ(yn+1 − ŷ)〉 = lim
k→∞

〈g(x̂)− ŷ, Jϕ(ynk+1 − ŷ)〉

≤ 〈g(x̂)− ŷ, Jϕ(ȳ − ŷ)〉 ≤ 0. (3.22)

Using Lemma 2.3 in (3.20), and from condition (ii), (3.21), and (3.22), we obtain that
Γn → 0. This implies that ||xn− x̂|| → 0 and ||yn− ŷ|| → 0, as n→∞. Therefore xn → x̂
and yn → ŷ as n→∞. This completes the proof.
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Remark 3.5. An example of a real sequence which satisfy the conditions of Theorem

3.3 is an = { 1

n+ 1
}.

The following consequences can be derived from Theorem 3.3:

1. Suppose Γ = (
⋂N
k=1N (Ak)) ∩ (

⋂M
i=1EP (Θi)) 6= ∅. Putting xn = yn and g(x) = f(x)

in Theorem 3.3 and by adding xn+1 and yn+1, we have that

xn+1 = anf(xn) + (1− an)
(SN +WM )

2
xn, ∀n ≥ 0. (3.23)

Let G := 1
2 (SN + WM ), then by Corollary 3.2, we have that G is nonexpansive. Thus,

we have the following result for approximating the common zero of a finite family of
m-accretive operators which is also a common solution of a finite family of equilibrium
problems in a real reflexive, strictly convex and smooth Banach space.

Corollary 3.6. Let E be a real reflexive, strictly convex and smooth Banach space which
has a weakly continuous duality mapping Jϕ with guage ϕ and C be a nonempty, closed
and convex subset of E. Let f : C → C be a θ-contraction mapping, Ak : C →
E, k = 1, 2, . . . , N be a finite family of m-accretive operators and Θi : C × C →
R, i = 1, 2, . . . ,M be bifunctions satisfying assumptions (A1)-(A4). Suppose Γ :=
∩Nk=1N (Ak)

⋂
∩Mi=1EP (Θi) 6= ∅. Let {an} be a real sequence in (0, 1) and for arbitrarily

x0 ∈ C, let the sequence {xn} be generated by

xn+1 = anf(xn) + (1− an)
1

2
(SN +WM )xn, ∀n ≥ 0, (3.24)

where

SN = α0I + α1J
A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with JAk

λn
:= (I + λnAk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and TΘi
rn is as defined in (2.4), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or (iii∗) limn→∞

|an−an−1|
an

= 0.

Then, the sequence {xn} converge strongly to an element x̂ = QΓ(f(ŷ)), where QΓ is the
sunny nonexpansive retraction of C onto Γ.

2. Putting k = 1 and i = 1 in Theorem 3.3, we have the following result.

Corollary 3.7. Let E be a real reflexive, strictly convex and smooth Banach space which
has a weakly continuous duality mapping Jϕ with guage ϕ and C be a nonempty, closed
and convex subset of E. Let f : C → C be a θ1-contraction mapping and g : C → C be
a θ2-contraction mapping such that θ = max{θ1, θ2}. Let A : C → E be an m-accretive
operator and Θ : C × C → R be a bifunction satisfying assumptions (A1)-(A4). Suppose
N (A) and EP (Θ) are nonempty. Let {an} be a real sequence in (0, 1) and for arbitrarily
x0 ∈ C and y0 ∈ C, let the sequence {xn} and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)JAλn
xn,

yn+1 = ang(xn) + (1− an)TΘ
rnyn, ∀n ≥ 0.

(3.25)
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Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Q1(f(ŷ)) in N (A)
and ŷ = Q2(g(x̂)) in EP (Θ) respectively, where Q1 is the sunny nonexpansive retraction
of C onto N (A) and Q2 is the sunny nonexpansive retraction of C onto EP (Θ).

3. Consider the gauge function ϕ(t) = t and let E be a uniformly convex real Banach
space with a uniformly Gâteaux differentiable norm. In this case, the duality mapping Jϕ
becomes the normalized duality mapping J . Thus, the following result can be obtained
from Theorem 3.3.

Corollary 3.8. Let E be a uniformly convex real Banach space with a uniformly Gâteaux
differentiable norm and C be a nonempty, closed and convex subset of E. Let f : C → C
be a θ1-contraction mapping and g : C → C be a θ2-contraction mapping such that
θ = max{θ1, θ2}. Let Ak : C → E, k = 1, 2, . . . , N be a finite family of m-accretive
operators and Θi : C × C → R, i = 1, 2, . . . ,M be bifunctions satisfying assumptions
(A1)-(A4). Suppose ∩Nk=1N (Ak) and ∩Mi=1EP (Θi) are nonempty. Let {an} be a real
sequence in (0, 1) and for arbitrarily x0 ∈ C and y0 ∈ C, let the sequence {xn} and {yn}
be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(3.26)

where

SN = α0I + α1J
A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with JAk

λn
:= (I + λnAk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and TΘi
rn is as defined in (2.4), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Π1(f(ŷ)) ∈
∩Nk=1N (Ak) and ŷ = Π2(g(x̂)) ∈ ∩Mi=1EP (Θi) respectively, where Π1 is the general-
ized projection of C onto ∩Nk=1N (Ak) and Π2 is the generalized projection of C onto
∩Mi=1EP (Θi).

4. Let E be a real Hilbert space, then the duality mapping Jϕ becomes and identity
operator. Thus we obtain the following direct result from Theorem 3.3.

Corollary 3.9. Let E be a real Hilbert space and C be a nonempty, closed and convex
subset of E. Let f : C → C be a θ1-contraction mapping and g : C → C be a θ2-
contraction mapping such that θ = max{θ1, θ2}. Let Ak : C → E, k = 1, 2, . . . , N be a
finite family of m-accretive operators and Θi : C ×C → R, i = 1, 2, . . . ,M be bifunctions
satisfying assumptions (A1)-(A4). Suppose ∩Nk=1N (Ak) and ∩Mi=1EP (Θi) are nonempty.
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Let {an} be a real sequence in (0, 1) and for arbitrarily x0 ∈ C and y0 ∈ C, let the
sequence {xn} and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(3.27)

where

SN = α0I + α1J
A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with JAk

λn
:= (I + λnAk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and TΘi
rn is as defined in (2.4), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = P1(f(ŷ))∈ ∩Nk=1N (Ak)
and ŷ = P2(g(x̂)) ∈ ∩Mi=1EP (Θi) respectively, where P1 is the metric projection of C onto
∩Nk=1N (Ak) and P2 is the metric projection of C onto ∩Mi=1EP (Θi).

4. Applications

In this section, we give some applications of our result to approximating solutions of
other nonlinear problems.

4.1. Convex Minimization Problem and Equilibrium Problem:

Let C be a nonempty, closed and convex subset of a real Hilbert space E and let
φ : C → R be a proper, convex and lower semicontinous function. The minimization
problem can be formulated as finding a point x ∈ C such that

φ(x) ≤ φ(y), ∀y ∈ C. (4.1)

We denote the set of solution of (4.1) by MP (φ). It is well known that the subdifferential

∂φ is m-accretive and its resolvent operator J∂φλ define by

J∂φλ = argmin
u∈C

{
φ(u) +

1

2
||x− u||2

}
, ∀x ∈ E

is nonexpansive and single-valued. Also F (J∂φλ ) = MP (φ). Setting Ak = ∂φk, k =
1, 2, . . . , N in Theorem 3.3, we obtain the following result for approximating a common
solution of finite family of minimization problem and a common solution of a finite family
of equilibrium problems simultaneously in a real Hilbert space.

Theorem 4.1. Let E be a real Hilbert space and C be a nonempty, closed and convex
subset of E. Let f : C → C be a θ1-contraction mapping and g : C → C be a θ2-
contraction mapping such that θ = max{θ1, θ2}. Let φk : C → E, k = 1, 2, . . . , N be a
finite family of proper, convex and lower semicontinuous functions and Θi : C × C → R,
i = 1, 2, . . . ,M be bifunctions satisfying assumptions (A1)-(A4). Suppose ∩Nk=1MP (φk)
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and ∩Mi=1EP (Θi) are nonempty. Let {an} be a real sequence in (0, 1) and for arbitrarily
x0 ∈ C and y0 ∈ C, let the sequence {xn} and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(4.2)

where
SN = α0I + α1J

∂φ1

λn
+ α2J

∂φ2

λn
+ · · ·+ αNJ

∂φN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with 0 < αk < 1, k = 0, 1, 2, . . . , N ,
∑N
k=0 αk = 1, λn > 0 and 0 < βi < 1, i =

0, 1, 2, . . . ,M ,
∑M
i=0 βi = 1 and rn > 0. Suppose {an}, {λn} and {rn} satisfy the following

conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Q1(f(ŷ)) ∈
∩Nk=1MP (φk) and ŷ = Q2(g(x̂)) ∈ ∩Mi=1EP (Θi) respectively, where Q1 is the sunny non-
expansive retraction of C onto ∩Nk=1MP (φk) and Q2 is the sunny nonexpansive retraction
of C onto ∩Mi=1EP (Θi).

4.2. Fixed Point of Psudocontractive Mapping and Equilibrium

Problem:

Let C be a nonempty, closed and convex subset of a real Banach space E which
admits a weakly continuous duality mapping Jϕ. A mapping T : C → C is said to be
pseudocontractive if for all x, y ∈ C, there exists j(x− y) ∈ Jϕ(x− y) such that

〈Tx− Ty, jϕ(x− y)〉 ≥ 0.

It is well known that the class of pseudocontractive mapping is more general than the
class of nonexpansive mapping. Moreso, the class of accretive operator A : C → E is said
to be pseudocontractive if T := I −A is accretive (see [40]). Also, A is m-accretive if and
only if T = I − A is continuous pseudocontractive. In this case, the resolvent operator
JTλ : E → D(T ) is defined by JTλ = (2I − λT )−1. Putting Tk = I − Ak in Theorem
3.3, we obtain the following result for approximating common fixed point of finite family
of continuous pseudocontractive mappings and common solution of equilibrium problem
simultaneously in real Banach space.

Theorem 4.2. Let E be a real reflexive, strictly convex and smooth Banach space which
has a weakly continuous duality mapping Jϕ with guage ϕ and C be a nonempty, closed
and convex subset of E. Let f : C → C be a θ1-contraction mapping and g : C → C be
a θ2-contraction mapping such that θ = max{θ1, θ2}. Let Tk : C → E, k = 1, 2, . . . , N
be a finite family of continuous pseudocontractive mappings and Θi : C × C → R, i =
1, 2, . . . ,M be bifunctions satisfying assumptions (A1)-(A4). Suppose ∩Nk=1F (Tk) and
∩Mi=1EP (Θi) are nonempty. Let {an} be a real sequence in (0, 1) and for arbitrarily
x0 ∈ C and y0 ∈ C, let the sequence {xn} and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(4.3)
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where
SN = α0I + α1J

A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1T
Θ1
rn + β2T

Θ2
rn + · · ·+ βMT

ΘM
rn ,

with JTk

λn
:= (2I + λnTk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and TΘi
rn is as defined in (2.4), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Q1(f(ŷ)) ∈
∩Nk=1F (Tk) and ŷ = Q2(g(x̂)) ∈ ∩Mi=1EP (Θi) respectively, where Q1 is the sunny nonex-
pansive retraction of C onto ∩Nk=1F (Tk) and Q2 is the sunny nonexpansive retraction of
C onto ∩Mi=1EP (Θi).

4.3. Inclusion Problem and Monotone Variational Inequality

Problem:

Let C be a nonempty, closed and convex subset of a real Banach space E. Suppose B
is a monotone operator from C into E. The variational inequality problem is formulated
as finding a point u ∈ C such that

〈Bu, x− u〉 ≥ 0, x ∈ C. (4.4)

The set of solution of (4.4) is denoted by V IP (C,B). It is known that if Θ(x, y) =
〈Bx, y − x〉 for all x, y ∈ C, then the EP (1.4) is equivalent to the VIP (4.4). The
following lemma can be found in [49].

Lemma 4.3. Let C be a closed and convex subset of a smooth, strictly convex and reflexive
Banach space E. Let B : C → E∗ be a smooth, strictly convex and reflexive Banach space.
For r > 0 and x ∈ E, define the mapping

SBr x =
{
w ∈ C : 〈Bw, z − w〉+

1

r
〈y − w, Jw − Jx〉 ≥ 0, ∀z ∈ C

}
. (4.5)

Then the following hold:

(1) SBr is single-valued,
(2) for all x, y ∈ E,

〈SBr x− SBr y, JSBr x− JSBr y〉 ≤ 〈SBr x− SBr y, Jx− Jy〉,
(3) F (SBr ) = V IP (C,B),
(4) V IP (C,B) is closed and convex.

It is clear that putting Θi(x, y) = 〈Bix, y − x〉, i = 1, 2, . . . , N in Theorem 3.3, we
obtain the following result for approximating common solution of finite family of inclusion
problems and common solution of finite family of equilibrium problems simultaneously.

Theorem 4.4. Let E be a real reflexive, strictly convex and smooth Banach space which
has a weakly continuous duality mapping Jϕ with guage ϕ and C be a nonempty, closed
and convex subset of E. Let f : C → C be an θ1-contraction mapping and g : C → C be
an θ2-contraction mapping such that θ = max{θ1, θ2}. Let Ak : C → E, k = 1, 2, . . . , N
be a finite family of m-accretive operators and Bi : C → E∗, i = 1, 2, . . . ,M be continuous
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monotone operators. Suppose ∩Nk=1N (Ak) and ∩Mi=1V IP (C,Ai) are nonempty. Let {an}
be a real sequence in (0, 1) and for arbitrarily x0 ∈ C and y0 ∈ C, let the sequence {xn}
and {yn} be generated simultaneously by{

xn+1 = anf(yn) + (1− an)SNxn,

yn+1 = ang(xn) + (1− an)WMyn, ∀n ≥ 0,
(4.6)

where

SN = α0I + α1J
A1

λn
+ α2J

A2

λn
+ · · ·+ αNJ

AN

λn
,

WM = β0I + β1S
B1
rn + β2S

B2
rn + · · ·+ βMS

BM
rn ,

with JAk

λn
:= (I + λnAk)−1 for 0 < αk < 1, k = 0, 1, 2, . . . , N ,

∑N
k=0 αk = 1, λn > 0

and SAi
rn is as defined in (4.5), 0 < βi < 1, i = 0, 1, 2, . . . ,M ,

∑M
i=0 βi = 1 and rn > 0.

Suppose {an}, {λn} and {rn} satisfy the following conditions:

(i) lim infn→∞ λn > 0, lim infn→∞ rn > 0,
(ii) limn→∞ an = 0 and

∑∞
n=0 an = +∞,

(iii)
∑∞
n=0 |an − an−1| <∞ or limn→∞

|an−an−1|
an

= 0.

Then, the sequences {xn} and {yn} converge strongly to elements x̂ = Q1(f(ŷ)) ∈
∩Nk=1N (Ak) and ŷ = Q2(g(x̂)) ∈ ∩Mi=1V IP (C,Ai) respectively, where Q1 is the sunny
nonexpansive retraction of C onto ∩Nk=1N (Ak) and Q2 is the sunny nonexpansive retrac-
tion of C onto ∩Mi=1V IP (C,Ai).
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