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1. Introduction

Let (M,φ, ξ, η, g) be a (2n+ 1)-dimensional almost contact metric manifold [1]. Then,
the product M = M ×R has a natural almost complex structure J , which makes (M,G)
an almost Hermitian manifold, where G is the product metric. The geometry of the
almost Hermitian manifold (M,J,G) dictates the geometry of the almost contact metric
manifold (M,φ, ξ, η, g) and gives different structures on M like Sasakian structure, quasi-
Sasakian structure, Kenmotsu structure and others (see [1–3]). W4 is the class of almost
Hermitian manifolds M satisfying the identity

∇X(F )(Y,Z) =
−1

2(n− 1)
{〈X,Y 〉δF (Z)− 〈X,Z〉δF (Y )

−〈X, JY 〉δF (JZ) + 〈X, JZ〉δF (JY )},
where 2n is the real dimension of M , F is the Kaehler form and δ denotes the coderivative.
Three facts about the classW4 are noteworthy: (1) Any manifold inW4 automatically has
an integrable almost complex structure. (2) Any manifold locally conformally equivalent
to a Kaehler manifold is in W4. (3) Let the Lee form θ of an almost Hermitian manifold
M be defined by θ = δF · J . Suppose M ∈ W4, then M is locally or globally confor-
mally Kaehlerian according to whether θ is closed or exact. It is known that there are
sixteen different types of structures on the almost Hermitian manifold (M,J,G) (see [4])
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and recently, using the structure in the class W4 on (M,J,G) a structure (φ, ξ, η, g, α, β)
on M called trans-Sasakian structure is introduced [5], which generalizes Sasakian struc-
ture and Kenmotsu structure on almost contact metric manifolds ([2], [3]), where α,
β are smooth functions defined on M . Since the introduction of trans-Sasakian mani-
fold, important contribution of Blair and Oubiña [2] and Marrero [6] have appeared to
study the geometry of trans-Sasakian manifolds. In general, a trans-Sasakian manifold
(M,φ, ξ, η, g, α, β) is called a trans-Sasakian manifold of type (α, β) and trans-Sasakian
manifolds of type (0, 0), (α, 0) and (0, β) are called a cosymplectic, a α-Sasakian and a
β-Kenmotsu manifolds, respectively, provided α, β ∈ R [7]. Marrero [6] has shown that a
trans-Sasakian manifold of dimension ≥ 5 is either a cosymplectic manifold, a α-Sasakian
manifold or a β-Kenmotsu manifold. Since then, there is an attention on studying ge-
ometry of 3-dimensional trans-Sasakian manifolds only. In [8–13], authors have studied
3-dimensional trans-Sasakian manifolds with some restrictions on the smooth functions
α, β appearing in the definition of trans-Sasakian manifolds. There are several examples
of trans-Sasakian manifolds constructed mostly on 3-dimensional Riemannian manifolds
(see [2, 6, 14]).

A Riemannian manifold (M, g) of dimension n ≥ 3 with constant scalar curvature
and unit volume together with a non-constant smooth potential function λ satisfying the
equation

Hessλ− (S − r

n− 1
g)λ = S − r

n
g (1.1)

is called a critical point equation (in short, CPE) on M , where S is the Ricci tensor
defined by S(X,Y ) = g(QX,Y ), Q is the Ricci operator, r is the scalar curvature and
Hessλ is the Hessian of the smooth function λ.
Note that if λ = 0, then (1.1) becomes Einstein metric. Therefore, we consider only
non-trivial potential function λ. In [15], Besse conjectured that the solution of the CPE
is Einstein. Barros and Ribeiro [16] proved that the CPE conjecture is true for half con-
formally flat. In [17], Hwang proved that the CPE conjecture is also true under certain
conditions on the bounds of the potential function λ. Very recently, Neto [18] deduced a
necessary and sufficient condition on the norm of the gradient of the potential function
for a CPE metric to be Einstein.

Throughout the paper, we assume that the smooth functions α and β satisfy the
condition

φ gradα = gradβ. (1.2)

Then it follows that

Xβ + (φX)α = 0 (1.3)

and hence, ξβ = 0.

Since trans-Sasakian manifold M generalizes a large class of almost contact metric
manifolds, we consider the CPE conjecture in the frame-work of 3-dimensional trans-
Sasakian manifolds of type (α, β). We proved that if (g, λ) is a non-constant solution of
the critical point equation, then the manifold M is either a space of constant curvature
or β-Kenmotsu or flat. We also study the CPE on M when it is complete.
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2. Preliminaries

Let (M,φ, ξ, η, g) be a 3-dimensional almost contact metric manifold, where φ being a
(1, 1)-tensor field, ξ a unit vector field and η smooth 1-form dual to ξ with respect to the
Riemanian metric g satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0 (2.1)

and

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.2)

for any vector fields X,Y ∈ χ(M), where χ(M) being the Lie algebra of smooth vector
fields on M [1]. If there are smooth functions α, β on an almost contact metric manifold
(M,φ, ξ, η, g) satisfying

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.3)

for any vector fields X,Y ∈ χ(M), then it is said to be a trans-Sasakian manifold, where
∇ is the Levi-Civita connection with respect to the metric g [2, 6, 14]. We shall denote the
trans-Sasakian manifold by (M,φ, ξ, η, g, α, β) and it is called trans-Sasakian manifold of
type (α, β). From (2.3), it follows that

∇Xξ = −αφX + β(X − η(X)ξ), (2.4)

(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ). (2.5)

A trans-Sasakian manifold is said to be

• cosymplectic or co-Kaehler if α = β = 0.
• quasi-Sasakian manifold if β = 0 and ξ(α) = 0.
• α-Sasakian manifold if α is a non-zero constant and β = 0.
• β-Kenmotsu manifold if α = 0 and β is a non-zero constant.

Therefore, trans-Sasakian manifold generalizes a large class of almost contact manifolds.
For a 3-dimensional trans-Sasakian manifold (see [8]), we have

2αβ + ξα = 0. (2.6)

The Ricci operator Q satisfies [8]

Q(ξ) = φ(∇α)−∇β + 2(α2 − β2)ξ − g(∇β, ξ)ξ. (2.7)

S(X,Y ) = (
r

2
+ ξβ − (α2 − β2))g(X,Y )

−(
r

2
+ ξβ − 3(α2 − β2))η(X)η(Y )

−(Y β + (φY )α)η(X)− (Xβ + (φX)α)η(Y ) (2.8)



656 Thai J. Math. Vol. 19 (2021) /D. Dey

and

R(X,Y )Z = (
r

2
+ 2ξβ − 2(α2 − β2))(g(Y,Z)X − g(X,Z)Y )

−g(Y, Z)((
r

2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(φ gradα− gradβ) + (Xβ + (φX)α)ξ)

+g(X,Z)((
r

2
+ ξβ − 3(α2 − β2))η(Y )ξ

−η(Y )(φ gradα− gradβ) + (Y β + (φY )α)ξ)

−((Zβ + (φZ)α)η(Y ) + (Y β + (φY )α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z))X

((Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z))Y (2.9)

hold, where S is the Ricci tensor of type (0, 2), R is the Riemannian curvature tensor of
type (1, 3) and r is the scalar curvature of the manifold M .
If M satisfies the condition (1.2), then equations (2.8) and (2.9) reduces to

S(X,Y ) = (
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y ), (2.10)

R(X,Y )Z = (
r

2
− 2(α2 − β2))(g(Y,Z)X − g(X,Z)Y )

−g(Y, Z)((
r

2
− 3(α2 − β2))η(X)ξ

+g(X,Z)((
r

2
− 3(α2 − β2))η(Y )ξ)

−(
r

2
− 3(α2 − β2))η(Y )η(Z)X

+(
r

2
− 3(α2 − β2))η(X)η(Z)Y. (2.11)

From (2.10), we get

S(X, ξ) = 2(α2 − β2)η(X) (2.12)

and from (2.11), it follows that

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ), (2.13)

R(ξ,X)Y = (α2 − β2)(g(X,Y )ξ − η(Y )X). (2.14)

3. CPE on 3-Dimensional Trans-Sasakian Manifolds

In this section, we study CPE on 3-dimensional trans-Sasakian manifolds under the
condition (1.2). To prove our main results, we first state the followings:

Lemma 3.1. (Lemma 3.1 of [19]) Let (g, λ) be a non-trivial solution of the CPE (1.1) on
an n-dimentional Riemannian manifold M . Then the curvature tensor R can be expressed

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + (λ+ 1)(∇XQ)Y

−(λ+ 1)(∇YQ)X + (Xf)Y − (Y f)X,
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where D is the gradient operator and f = −r( λ
n−1 + 1

n ).

Lemma 3.2. (Theorem 1 of [20]) For a trans-Sasakian manifold Mn, n > 1, under the
condition φ gradα = (n− 2) gradβ, we have

[(∇ξS)(Y,Z)− (∇Y S)(ξ, Z)]

= βS(Y,Z)− (n− 1)(α2 − β2)βg(Y,Z)

−(n− 1)(α2 − β2)αg(Y, φZ) + αS(Y, φZ).

Now, for a 3-dimensional trans-Sasakian manifold under the condition (1.2), we can
write from Lemma 3.2

[(∇ξQ)Y − (∇YQ)ξ] = βQY − 2(α2 − β2)βY

+2(α2 − β2)αφY − αφQY. (3.1)

Lemma 3.3. ([21]) A contact metric manifold M2n+1 satisfying the condition R(X,Y )ξ =
0 for all X, Y is locally isometric to the Riemannian product of a flat (n+1)-dimensional
manifold and an n-dimensional manifold of positive curvature 4, i.e., En+1(0) × Sn(4)
for n > 1 and flat for n = 1.

We now prove our main results.

Theorem 3.4. Let (M,φ, ξ, η, g, α, β) be a 3-dimensional trans-Sasakian manifold such
that α is identically zero or nowhere vanishing satisfying the condition φ gradα = gradβ.
If (g, λ) is a non-constant solution of the critical point equation (1.1), then the manifold
M is either a space of constant curvature or β-Kenmotsu or flat.

Proof. From Lemma (3.1), we have

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + (λ+ 1)(∇XQ)Y

−(λ+ 1)(∇YQ)X + (Xf)Y − (Y f)X. (3.2)

Substituting ξ in place of X in the above equation and using (3.1), we get

R(ξ, Y )Dλ = (ξλ)QY − 2(α2 − β2)(Y λ)ξ + (λ+ 1)(βQY

−2(α2 − β2)βY + 2(α2 − β2)αφY − αφQY )

−r
2

(ξλ)Y +
r

2
(Y λ)ξ. (3.3)

Taking inner product of (3.3) with ξ and using (2.2), we obtain

g(R(ξ, Y )Dλ, ξ) = 2(α2 − β2)(ξλ)η(Y )− 2(α2 − β2)(Y λ)

−r
2

(ξλ)η(Y ) +
r

2
(Y λ). (3.4)

Again,

g(R(ξ, Y )Dλ, ξ) = −g(R(ξ, Y )ξ,Dλ).

Making use of (2.13) the above equation yields

g(R(ξ, Y )Dλ, ξ) = −(α2 − β2)(ξλ)η(Y ) + (α2 − β2)(Y λ). (3.5)
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Equations (3.4) and (3.5) together implies

(
r

2
− 3(α2 − β2))(Dλ− (ξλ)ξ) = 0, (3.6)

which implies that either r = 6(α2 − β2) or Dλ = (ξλ)ξ.

Case 1: If r = 6(α2 − β2), then from (2.10), we have

S(X,Y ) = 2(α2 − β2)g(X,Y ),

which implies that the manifold is Einstein. Since the dimension of the manifold is 3,
therefore it becomes a space of constant curvature.

Case 2: Let Dλ = (ξλ)ξ. Then from (1.1), we can write

∇XDλ = (λ+ 1)QX + fX, (3.7)

where f = −r(λ2 + 1
3 ).

Making use of Dλ = (ξλ)ξ and (2.4) in (3.7), we obtain

(λ+ 1)QX = [X(ξλ)− βξ(λ)η(X)]ξ

+[βξ(λ) + r(
λ

2
+

1

3
)]X − αξ(λ)φX. (3.8)

Comparing (3.8) with (2.10), we have the following equations:

βξ(λ) + r(
λ

2
+

1

3
) = (λ+ 1)(

r

2
− (α2 − β2)), (3.9)

X(ξλ)− βξ(λ)η(X) = −(λ+ 1)(
r

2
− 3(α2 − β2)) (3.10)

and

αξ(λ)φX = 0. (3.11)

The equation (3.11) implies that either α = 0 or ξ(λ) = 0.
If α = 0, then by hypothesis α is identically zero on M . Hence, from (1.3), we have
β = constant. This implies that the manifold M is β-Kenmotsu.
If ξ(λ) = 0, then (3.9) and (3.10) implies that r = 6(λ+ 1)(α2 − β2) and r = 6(α2 − β2),
respectively. Equating these two values of r, we obtain α2 = β2 as λ is a non-constant
function. Hence, from (2.13), we get R(X,Y )ξ = 0. Since the manifold is of dimension
3, it follows from Lemma (3.3) that the manifold is flat. This completes the proof of our
theorem.

Remark 3.5. In [22], the authors proposed that a trans-Sasakian 3-manifold M of type
(0, β) satisfying ∇β = (ξβ)ξ is not necessarily β-Kenmotsu even when M is compact.
Here β is constant. If we change the metric g by βg by homothetic transformation, this
homothetic transformation gives the homothety between β-Kenmotsu manifold and the
Kenmotsu manifold.

Corollary 3.6. Let M be a 3-dimensional trans-Sasakian manifold satisfying the condi-
tion (1.2). If (g, λ) is a non-constant solution of the CPE (1.1), then the manifold M is
homothetic to a Kenmotsu manifold, provided M is not of constant curvature.
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Remark 3.7. In [23], the authors proves that if the condition (1.2) holds on M , then ξ
is an eigenvector of the Ricci operator. Since, here α = 0 and β = constant, from (2.7),
it follows that

S(X, ξ) = −2β2g(X, ξ),

which implies that the characteristic vector field ξ is an eigen vector of the Ricci operator
Q corresponding to the eigenvalue −2β2.

Theorem 3.8. Let (M,φ, ξ, η, g, α, β) be a complete 3-dimensional trans-Sasakian mani-
fold such that α is identically zero or nowhere vanishing fulfilling the condition φ gradα =
gradβ. If (g, λ) is a non-constant solution of the critical point equation, then the manifold
M is either β-Kenmotsu or isometric to the sphere S3( 1

2 ).

Proof. Taking inner product of (3.3) with X, we obtain

g(R(ξ, Y )Dλ,X) = (ξλ)S(X,Y )− 2(α2 − β2)(Y λ)η(X) + (λ+ 1)(βS(X,Y )

−2(α2 − β2)βg(X,Y ) + 2(α2 − β2)αg(X,φY )

−αg(X,φQY ))− r

2
(ξλ)g(X,Y ) +

r

2
(Y λ)η(X). (3.12)

Again,

g(R(ξ, Y )Dλ,X) = −g(R(ξ, Y )X,Dλ).

Making use of (2.14) the above equation yields

g(R(ξ, Y )Dλ,X) = −(α2 − β2)g(X,Y )(ξλ) + (α2 − β2)η(X)(Y λ). (3.13)

From (3.12) and (3.13), we get

−(α2 − β2)g(X,Y )(ξλ) + (α2 − β2)η(X)(Y λ)

= (ξλ)S(X,Y )− 2(α2 − β2)(Y λ)η(X) + (λ+ 1)(βS(X,Y )

−2(α2 − β2)βg(X,Y ) + 2(α2 − β2)αg(X,φY )

−αg(X,φQY ))− r

2
(ξλ)g(X,Y ) +

r

2
(Y λ)η(X). (3.14)

Now, interchanging X and Y in (3.14) and subtracting the resulting equation from (3.14)
gives

(α2 − β2)(η(X)(Y λ)− η(Y )(Xλ))

= −2(α2 − β2)(η(X)(Y λ)− η(Y )(Xλ))

+2α(α2 − β2)(λ+ 1)(g(φY,X)− g(φX, Y ))

+α(λ+ 1)(g(φQX, Y )− g(φQY,X)) +
r

2
(η(X)(Y λ)− η(Y )(Xλ)). (3.15)

From (2.10), we can see that Qφ = φQ on M under the condition (1.2). Using this
relation, the foregoing equation yields

(
r

2
− 3(α2 − β2))(η(X)(Y λ)− η(Y )(Xλ)) = 4α(α2 − β2)(λ+ 1)g(φX, Y )

−2α(λ+ 1)g(φQX, Y ). (3.16)

Putting X = φX and Y = φY in (3.16) and using (2.2), we get

2α(λ+ 1)(2(α2 − β2)g(φX, Y )− g(QφX, Y )) = 0. (3.17)
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Replacing X by φX and using (2.1), we have

α(S(X,Y )− 2(α2 − β2)g(X,Y ) + (2(α2 − β2)− 1)η(X)η(Y )) = 0, (3.18)

which implies that
either α = 0 or S(X,Y ) = 2(α2 − β2)g(X,Y )− (2(α2 − β2)− 1)η(X)η(Y ).

Case 1: If α = 0, then by hypothesis α is identically zero on M . Hence, from (1.3), we
have β = constant. This implies that the manifold M is β-Kenmotsu.

Case 2: If S(X,Y ) = 2(α2 − β2)g(X,Y )− (2(α2 − β2)− 1)η(X)η(Y ), then comparing
it with (2.10), we obtain

r

2
− (α2 − β2) = 2(α2 − β2) (3.19)

and
r

2
− 3(α2 − β2) = 2(α2 − β2)− 1. (3.20)

Equating the values of the scalar curvature r obtained from (3.19) and (3.20), we have

α2 − β2 =
1

2
. (3.21)

Therefore, the scalar curvature r and the Ricci tensor S is given by

r = 3 and S(X,Y ) = g(X,Y ). (3.22)

Substituting (3.22) into (1.1), we get

∇2λ = −1

2
λg.

We now apply Tashiro’s theorem [24] that states “If a complete Riemannian manifold Mn

of dimension ≥ 2 admits a special concircular field ρ satisfying ∇∇ρ = (−c2ρ+ b)g, then
it is isometric to a sphere Sn(c2)” to conclude that M is isometric to the sphere S3( 1

2 ).
This completes the proof of our theorem.

4. Examples

Example 4.1. In [25], the authors have constructed an example of a 3-dimensional trans-
Sasakian manifold. They consider M = {(x, y, z) ∈ R3 : z 6= 0}, where (x, y, z) are the
standard coordinates in R3. The vector fields

e1 = e−z(
∂

∂x
− y ∂

∂z
), e2 = e−z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0.

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X. Let φ be the (1, 1)
tensor field defined by

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.
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Then we have

φ2(X) = −X + η(X)e3,

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y . For e3 = ξ, they have shown that (M3, φ, ξ, η, g) forms a
trans-Sasakian manifold of type (α, β), where α = 1

2e
−2z and β = 1. Then it follows

that φ gradα = −e−2zφe3 = 0 = gradβ. Note that, α is nowhere vanishing. Thus the
existence of trans-Sasakian manifolds of type (α, β) satisfying (1.2) is verified.

Example 4.2. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 : z 6= 0},
where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z

are linearly independent at each point of M . Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0.

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X. Let φ be the (1, 1)
tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then we have

φ2(X) = −X + η(X)e3,

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y . Hence the structure (φ, ξ, η, g) defines an almost contact
metric structure on M , where e3 = ξ. Now, after calculating we have

[e1, e3] = −e1, [e1, e2] = 0 and [e2, e3] = −e2.
The Riemannian connection ∇ of the metric g is given by the Koszul’s formula

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z])− g(Z, [X,Y ]).

By Koszul’s formula we get

∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above we found that α = 0, β = −1 and M3(φ, ξ, η, g) is a trans-Sasakian
manifold. Notice that, α is identically zero here.
The Riemannian curvature tensor is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Therefore, we have

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2,
R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1.
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From the expression of the above curvature tensor we obtain

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2.

Therefore,

r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.

The CPE (1.1) is given by

Hessλ− (S − r

2
g)λ = S − r

3
g.

Now, tracing the above equation we have

∇2λ = 3λ.

Therefore, the required function λ is given by the above Poison equation which satisfies
the CPE. Notice that the condition (1.2) is satisfied and the manifold is a β-Kenmotsu
manifold. Also from the expressions of the curvature tensor it follows that the manifold
is a space of constant curvature −1. Therefore, Theorem 3.4 is verified.
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