Critical Point Equation on 3-Dimensional Trans-Sasakian Manifolds

Dibakar Dey
Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, West Bengal, India
e-mail : deydibakar3@gmail.com

Abstract

The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds satisfying the critical point equation under the condition $\phi \operatorname{grad} \alpha=\operatorname{grad} \beta$. Also, we present few examples which verifies our results.

MSC: 53C25; 53C15
Keywords: trans-Sasakian manifold; Einstein manifold; Ricci tensor; flat manifold; critical point equation

Submission date: 15.11.2018 / Acceptance date: 18.03.2021

1. Introduction

Let (M, ϕ, ξ, η, g) be a $(2 n+1)$-dimensional almost contact metric manifold [1]. Then, the product $\bar{M}=M \times \mathbb{R}$ has a natural almost complex structure J, which makes (\bar{M}, G) an almost Hermitian manifold, where G is the product metric. The geometry of the almost Hermitian manifold (\bar{M}, J, G) dictates the geometry of the almost contact metric manifold (M, ϕ, ξ, η, g) and gives different structures on M like Sasakian structure, quasiSasakian structure, Kenmotsu structure and others (see [1-3]). \mathcal{W}_{4} is the class of almost Hermitian manifolds M satisfying the identity

$$
\begin{aligned}
\nabla_{X}(F)(Y, Z)= & \frac{-1}{2(n-1)}\{\langle X, Y\rangle \delta F(Z)-\langle X, Z\rangle \delta F(Y) \\
& -\langle X, J Y\rangle \delta F(J Z)+\langle X, J Z\rangle \delta F(J Y)\},
\end{aligned}
$$

where $2 n$ is the real dimension of M, F is the Kaehler form and δ denotes the coderivative. Three facts about the class \mathcal{W}_{4} are noteworthy: (1) Any manifold in \mathcal{W}_{4} automatically has an integrable almost complex structure. (2) Any manifold locally conformally equivalent to a Kaehler manifold is in \mathcal{W}_{4}. (3) Let the Lee form θ of an almost Hermitian manifold M be defined by $\theta=\delta F \cdot J$. Suppose $M \in \mathcal{W}_{4}$, then M is locally or globally conformally Kaehlerian according to whether θ is closed or exact. It is known that there are sixteen different types of structures on the almost Hermitian manifold (\bar{M}, J, G) (see [4])
and recently, using the structure in the class \mathcal{W}_{4} on (\bar{M}, J, G) a structure $(\phi, \xi, \eta, g, \alpha, \beta)$ on M called trans-Sasakian structure is introduced [5], which generalizes Sasakian structure and Kenmotsu structure on almost contact metric manifolds ([2], [3]), where α, β are smooth functions defined on M. Since the introduction of trans-Sasakian manifold, important contribution of Blair and Oubiña [2] and Marrero [6] have appeared to study the geometry of trans-Sasakian manifolds. In general, a trans-Sasakian manifold ($M, \phi, \xi, \eta, g, \alpha, \beta$) is called a trans-Sasakian manifold of type (α, β) and trans-Sasakian manifolds of type $(0,0),(\alpha, 0)$ and $(0, \beta)$ are called a cosymplectic, a α-Sasakian and a β-Kenmotsu manifolds, respectively, provided $\alpha, \beta \in \mathbb{R}[7]$. Marrero [6] has shown that a trans-Sasakian manifold of dimension ≥ 5 is either a cosymplectic manifold, a α-Sasakian manifold or a β-Kenmotsu manifold. Since then, there is an attention on studying geometry of 3-dimensional trans-Sasakian manifolds only. In [8-13], authors have studied 3 -dimensional trans-Sasakian manifolds with some restrictions on the smooth functions α, β appearing in the definition of trans-Sasakian manifolds. There are several examples of trans-Sasakian manifolds constructed mostly on 3-dimensional Riemannian manifolds (see [2, 6, 14]).

A Riemannian manifold (M, g) of dimension $n \geq 3$ with constant scalar curvature and unit volume together with a non-constant smooth potential function λ satisfying the equation

$$
\begin{equation*}
H e s s \lambda-\left(S-\frac{r}{n-1} g\right) \lambda=S-\frac{r}{n} g \tag{1.1}
\end{equation*}
$$

is called a critical point equation (in short, CPE) on M, where S is the Ricci tensor defined by $S(X, Y)=g(Q X, Y), \mathrm{Q}$ is the Ricci operator, r is the scalar curvature and Hess λ is the Hessian of the smooth function λ.
Note that if $\lambda=0$, then (1.1) becomes Einstein metric. Therefore, we consider only non-trivial potential function λ. In [15], Besse conjectured that the solution of the CPE is Einstein. Barros and Ribeiro [16] proved that the CPE conjecture is true for half conformally flat. In [17], Hwang proved that the CPE conjecture is also true under certain conditions on the bounds of the potential function λ. Very recently, Neto [18] deduced a necessary and sufficient condition on the norm of the gradient of the potential function for a CPE metric to be Einstein.

Throughout the paper, we assume that the smooth functions α and β satisfy the condition

$$
\begin{equation*}
\phi \operatorname{grad} \alpha=\operatorname{grad} \beta \tag{1.2}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
X \beta+(\phi X) \alpha=0 \tag{1.3}
\end{equation*}
$$

and hence, $\xi \beta=0$.
Since trans-Sasakian manifold M generalizes a large class of almost contact metric manifolds, we consider the CPE conjecture in the frame-work of 3-dimensional transSasakian manifolds of type (α, β). We proved that if (g, λ) is a non-constant solution of the critical point equation, then the manifold M is either a space of constant curvature or β-Kenmotsu or flat. We also study the CPE on M when it is complete.

2. Preliminaries

Let (M, ϕ, ξ, η, g) be a 3 -dimensional almost contact metric manifold, where ϕ being a (1,1)-tensor field, ξ a unit vector field and η smooth 1-form dual to ξ with respect to the Riemanian metric g satisfying

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \eta(\xi)=1, \phi \xi=0, \eta \circ \phi=0 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

for any vector fields $X, Y \in \chi(M)$, where $\chi(M)$ being the Lie algebra of smooth vector fields on M [1]. If there are smooth functions α, β on an almost contact metric manifold (M, ϕ, ξ, η, g) satisfying

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.3}
\end{equation*}
$$

for any vector fields $X, Y \in \chi(M)$, then it is said to be a trans-Sasakian manifold, where ∇ is the Levi-Civita connection with respect to the metric $g[2,6,14]$. We shall denote the trans-Sasakian manifold by ($M, \phi, \xi, \eta, g, \alpha, \beta$) and it is called trans-Sasakian manifold of type (α, β). From (2.3), it follows that

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.4}\\
\left(\nabla_{X} \eta\right) Y & =-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) . \tag{2.5}
\end{align*}
$$

A trans-Sasakian manifold is said to be

- cosymplectic or co-Kaehler if $\alpha=\beta=0$.
- quasi-Sasakian manifold if $\beta=0$ and $\xi(\alpha)=0$.
- α-Sasakian manifold if α is a non-zero constant and $\beta=0$.
- β-Kenmotsu manifold if $\alpha=0$ and β is a non-zero constant.

Therefore, trans-Sasakian manifold generalizes a large class of almost contact manifolds. For a 3-dimensional trans-Sasakian manifold (see [8]), we have

$$
\begin{equation*}
2 \alpha \beta+\xi \alpha=0 \tag{2.6}
\end{equation*}
$$

The Ricci operator Q satisfies [8]

$$
\begin{align*}
& Q(\xi)=\phi(\nabla \alpha)-\nabla \beta+2\left(\alpha^{2}-\beta^{2}\right) \xi-g(\nabla \beta, \xi) \xi \tag{2.7}\\
& S(X, Y)=\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y) \\
&-\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \\
&-(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y) \tag{2.8}
\end{align*}
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
& -g(Y, Z)\left(\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi) \\
& +g(X, Z)\left(\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi) \\
& -((Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right) X \\
& ((Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right) Y \tag{2.9}
\end{align*}
$$

hold, where S is the Ricci tensor of type (0,2), R is the Riemannian curvature tensor of type $(1,3)$ and r is the scalar curvature of the manifold M.
If M satisfies the condition (1.2), then equations (2.8) and (2.9) reduces to

$$
\begin{align*}
& S(X, Y)=\left(\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y)-\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y), \tag{2.10}\\
& R(X, Y) Z=\left(\frac{r}{2}-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
&-g(Y, Z)\left(\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
&+g(X, Z)\left(\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right) \\
&-\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z) X \\
&+\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z) Y . \tag{2.11}
\end{align*}
$$

From (2.10), we get

$$
\begin{equation*}
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{2.12}
\end{equation*}
$$

and from (2.11), it follows that

$$
\begin{align*}
R(X, Y) \xi & =\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y) \tag{2.13}\\
R(\xi, X) Y & =\left(\alpha^{2}-\beta^{2}\right)(g(X, Y) \xi-\eta(Y) X) \tag{2.14}
\end{align*}
$$

3. CPE on 3-Dimensional Trans-Sasakian Manifolds

In this section, we study CPE on 3-dimensional trans-Sasakian manifolds under the condition (1.2). To prove our main results, we first state the followings:

Lemma 3.1. (Lemma 3.1 of [19]) Let (g, λ) be a non-trivial solution of the CPE (1.1) on an n-dimentional Riemannian manifold M. Then the curvature tensor R can be expressed

$$
\begin{aligned}
R(X, Y) D \lambda= & (X \lambda) Q Y-(Y \lambda) Q X+(\lambda+1)\left(\nabla_{X} Q\right) Y \\
& -(\lambda+1)\left(\nabla_{Y} Q\right) X+(X f) Y-(Y f) X
\end{aligned}
$$

where D is the gradient operator and $f=-r\left(\frac{\lambda}{n-1}+\frac{1}{n}\right)$.
Lemma 3.2. (Theorem 1 of [20]) For a trans-Sasakian manifold M^{n}, $n>1$, under the condition $\phi \operatorname{grad} \alpha=(n-2) \operatorname{grad} \beta$, we have

$$
\begin{aligned}
& {\left[\left(\nabla_{\xi} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(\xi, Z)\right]} \\
& =\beta S(Y, Z)-(n-1)\left(\alpha^{2}-\beta^{2}\right) \beta g(Y, Z) \\
& -(n-1)\left(\alpha^{2}-\beta^{2}\right) \alpha g(Y, \phi Z)+\alpha S(Y, \phi Z)
\end{aligned}
$$

Now, for a 3-dimensional trans-Sasakian manifold under the condition (1.2), we can write from Lemma 3.2

$$
\begin{align*}
{\left[\left(\nabla_{\xi} Q\right) Y-\left(\nabla_{Y} Q\right) \xi\right]=} & \beta Q Y-2\left(\alpha^{2}-\beta^{2}\right) \beta Y \\
& +2\left(\alpha^{2}-\beta^{2}\right) \alpha \phi Y-\alpha \phi Q Y \tag{3.1}
\end{align*}
$$

Lemma 3.3. ([21]) A contact metric manifold $M^{2 n+1}$ satisfying the condition $R(X, Y) \xi=$ 0 for all X, Y is locally isometric to the Riemannian product of a flat $(n+1)$-dimensional manifold and an n-dimensional manifold of positive curvature 4 , i.e., $E^{n+1}(0) \times S^{n}(4)$ for $n>1$ and flat for $n=1$.

We now prove our main results.
Theorem 3.4. Let $(M, \phi, \xi, \eta, g, \alpha, \beta)$ be a 3-dimensional trans-Sasakian manifold such that α is identically zero or nowhere vanishing satisfying the condition $\phi \operatorname{grad} \alpha=\operatorname{grad} \beta$. If (g, λ) is a non-constant solution of the critical point equation (1.1), then the manifold M is either a space of constant curvature or β-Kenmotsu or flat.

Proof. From Lemma (3.1), we have

$$
\begin{align*}
R(X, Y) D \lambda= & (X \lambda) Q Y-(Y \lambda) Q X+(\lambda+1)\left(\nabla_{X} Q\right) Y \\
& -(\lambda+1)\left(\nabla_{Y} Q\right) X+(X f) Y-(Y f) X \tag{3.2}
\end{align*}
$$

Substituting ξ in place of X in the above equation and using (3.1), we get

$$
\begin{align*}
R(\xi, Y) D \lambda= & (\xi \lambda) Q Y-2\left(\alpha^{2}-\beta^{2}\right)(Y \lambda) \xi+(\lambda+1)(\beta Q Y \\
& \left.-2\left(\alpha^{2}-\beta^{2}\right) \beta Y+2\left(\alpha^{2}-\beta^{2}\right) \alpha \phi Y-\alpha \phi Q Y\right) \\
& -\frac{r}{2}(\xi \lambda) Y+\frac{r}{2}(Y \lambda) \xi . \tag{3.3}
\end{align*}
$$

Taking inner product of (3.3) with ξ and using (2.2), we obtain

$$
\begin{align*}
g(R(\xi, Y) D \lambda, \xi)= & 2\left(\alpha^{2}-\beta^{2}\right)(\xi \lambda) \eta(Y)-2\left(\alpha^{2}-\beta^{2}\right)(Y \lambda) \\
& -\frac{r}{2}(\xi \lambda) \eta(Y)+\frac{r}{2}(Y \lambda) . \tag{3.4}
\end{align*}
$$

Again,

$$
g(R(\xi, Y) D \lambda, \xi)=-g(R(\xi, Y) \xi, D \lambda)
$$

Making use of (2.13) the above equation yields

$$
\begin{equation*}
g(R(\xi, Y) D \lambda, \xi)=-\left(\alpha^{2}-\beta^{2}\right)(\xi \lambda) \eta(Y)+\left(\alpha^{2}-\beta^{2}\right)(Y \lambda) \tag{3.5}
\end{equation*}
$$

Equations (3.4) and (3.5) together implies

$$
\begin{equation*}
\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)(D \lambda-(\xi \lambda) \xi)=0 \tag{3.6}
\end{equation*}
$$

which implies that either $r=6\left(\alpha^{2}-\beta^{2}\right)$ or $D \lambda=(\xi \lambda) \xi$.
Case 1: If $r=6\left(\alpha^{2}-\beta^{2}\right)$, then from (2.10), we have

$$
S(X, Y)=2\left(\alpha^{2}-\beta^{2}\right) g(X, Y)
$$

which implies that the manifold is Einstein. Since the dimension of the manifold is 3 , therefore it becomes a space of constant curvature.

Case 2: Let $D \lambda=(\xi \lambda) \xi$. Then from (1.1), we can write

$$
\begin{equation*}
\nabla_{X} D \lambda=(\lambda+1) Q X+f X \tag{3.7}
\end{equation*}
$$

where $f=-r\left(\frac{\lambda}{2}+\frac{1}{3}\right)$.
Making use of $D \lambda=(\xi \lambda) \xi$ and (2.4) in (3.7), we obtain

$$
\begin{align*}
(\lambda+1) Q X= & {[X(\xi \lambda)-\beta \xi(\lambda) \eta(X)] \xi } \\
& +\left[\beta \xi(\lambda)+r\left(\frac{\lambda}{2}+\frac{1}{3}\right)\right] X-\alpha \xi(\lambda) \phi X \tag{3.8}
\end{align*}
$$

Comparing (3.8) with (2.10), we have the following equations:

$$
\begin{align*}
\beta \xi(\lambda)+r\left(\frac{\lambda}{2}+\frac{1}{3}\right) & =(\lambda+1)\left(\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)\right), \tag{3.9}\\
X(\xi \lambda)-\beta \xi(\lambda) \eta(X) & =-(\lambda+1)\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \tag{3.10}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha \xi(\lambda) \phi X=0 . \tag{3.11}
\end{equation*}
$$

The equation (3.11) implies that either $\alpha=0$ or $\xi(\lambda)=0$.
If $\alpha=0$, then by hypothesis α is identically zero on M. Hence, from (1.3), we have $\beta=$ constant. This implies that the manifold M is β-Kenmotsu.
If $\xi(\lambda)=0$, then (3.9) and (3.10) implies that $r=6(\lambda+1)\left(\alpha^{2}-\beta^{2}\right)$ and $r=6\left(\alpha^{2}-\beta^{2}\right)$, respectively. Equating these two values of r, we obtain $\alpha^{2}=\beta^{2}$ as λ is a non-constant function. Hence, from (2.13), we get $R(X, Y) \xi=0$. Since the manifold is of dimension 3, it follows from Lemma (3.3) that the manifold is flat. This completes the proof of our theorem.

Remark 3.5. In [22], the authors proposed that a trans-Sasakian 3-manifold M of type $(0, \beta)$ satisfying $\nabla \beta=(\xi \beta) \xi$ is not necessarily β-Kenmotsu even when M is compact. Here β is constant. If we change the metric g by βg by homothetic transformation, this homothetic transformation gives the homothety between β-Kenmotsu manifold and the Kenmotsu manifold.

Corollary 3.6. Let M be a 3-dimensional trans-Sasakian manifold satisfying the condition (1.2). If (g, λ) is a non-constant solution of the CPE (1.1), then the manifold M is homothetic to a Kenmotsu manifold, provided M is not of constant curvature.

Remark 3.7. In [23], the authors proves that if the condition (1.2) holds on M, then ξ is an eigenvector of the Ricci operator. Since, here $\alpha=0$ and $\beta=$ constant, from (2.7), it follows that

$$
S(X, \xi)=-2 \beta^{2} g(X, \xi)
$$

which implies that the characteristic vector field ξ is an eigen vector of the Ricci operator Q corresponding to the eigenvalue $-2 \beta^{2}$.

Theorem 3.8. Let ($M, \phi, \xi, \eta, g, \alpha, \beta$) be a complete 3-dimensional trans-Sasakian manifold such that α is identically zero or nowhere vanishing fulfilling the condition $\phi \operatorname{grad} \alpha=$ $\operatorname{grad} \beta$. If (g, λ) is a non-constant solution of the critical point equation, then the manifold M is either β-Kenmotsu or isometric to the sphere $S^{3}\left(\frac{1}{2}\right)$.

Proof. Taking inner product of (3.3) with X, we obtain

$$
\begin{align*}
g(R(\xi, Y) D \lambda, X)= & (\xi \lambda) S(X, Y)-2\left(\alpha^{2}-\beta^{2}\right)(Y \lambda) \eta(X)+(\lambda+1)(\beta S(X, Y) \\
& -2\left(\alpha^{2}-\beta^{2}\right) \beta g(X, Y)+2\left(\alpha^{2}-\beta^{2}\right) \alpha g(X, \phi Y) \\
& -\alpha g(X, \phi Q Y))-\frac{r}{2}(\xi \lambda) g(X, Y)+\frac{r}{2}(Y \lambda) \eta(X) \tag{3.12}
\end{align*}
$$

Again,

$$
g(R(\xi, Y) D \lambda, X)=-g(R(\xi, Y) X, D \lambda)
$$

Making use of (2.14) the above equation yields

$$
\begin{equation*}
g(R(\xi, Y) D \lambda, X)=-\left(\alpha^{2}-\beta^{2}\right) g(X, Y)(\xi \lambda)+\left(\alpha^{2}-\beta^{2}\right) \eta(X)(Y \lambda) \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), we get

$$
\begin{align*}
& -\left(\alpha^{2}-\beta^{2}\right) g(X, Y)(\xi \lambda)+\left(\alpha^{2}-\beta^{2}\right) \eta(X)(Y \lambda) \\
= & (\xi \lambda) S(X, Y)-2\left(\alpha^{2}-\beta^{2}\right)(Y \lambda) \eta(X)+(\lambda+1)(\beta S(X, Y) \\
& -2\left(\alpha^{2}-\beta^{2}\right) \beta g(X, Y)+2\left(\alpha^{2}-\beta^{2}\right) \alpha g(X, \phi Y) \\
& -\alpha g(X, \phi Q Y))-\frac{r}{2}(\xi \lambda) g(X, Y)+\frac{r}{2}(Y \lambda) \eta(X) . \tag{3.14}
\end{align*}
$$

Now, interchanging X and Y in (3.14) and subtracting the resulting equation from (3.14) gives

$$
\begin{align*}
& \left(\alpha^{2}-\beta^{2}\right)(\eta(X)(Y \lambda)-\eta(Y)(X \lambda)) \\
= & -2\left(\alpha^{2}-\beta^{2}\right)(\eta(X)(Y \lambda)-\eta(Y)(X \lambda)) \\
& +2 \alpha\left(\alpha^{2}-\beta^{2}\right)(\lambda+1)(g(\phi Y, X)-g(\phi X, Y)) \\
& +\alpha(\lambda+1)(g(\phi Q X, Y)-g(\phi Q Y, X))+\frac{r}{2}(\eta(X)(Y \lambda)-\eta(Y)(X \lambda)) \tag{3.15}
\end{align*}
$$

From (2.10), we can see that $Q \phi=\phi Q$ on M under the condition (1.2). Using this relation, the foregoing equation yields

$$
\begin{align*}
\left(\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)(\eta(X)(Y \lambda)-\eta(Y)(X \lambda))= & 4 \alpha\left(\alpha^{2}-\beta^{2}\right)(\lambda+1) g(\phi X, Y) \\
& -2 \alpha(\lambda+1) g(\phi Q X, Y) \tag{3.16}
\end{align*}
$$

Putting $X=\phi X$ and $Y=\phi Y$ in (3.16) and using (2.2), we get

$$
\begin{equation*}
2 \alpha(\lambda+1)\left(2\left(\alpha^{2}-\beta^{2}\right) g(\phi X, Y)-g(Q \phi X, Y)\right)=0 \tag{3.17}
\end{equation*}
$$

Replacing X by ϕX and using (2.1), we have

$$
\begin{equation*}
\alpha\left(S(X, Y)-2\left(\alpha^{2}-\beta^{2}\right) g(X, Y)+\left(2\left(\alpha^{2}-\beta^{2}\right)-1\right) \eta(X) \eta(Y)\right)=0 \tag{3.18}
\end{equation*}
$$

which implies that
either $\alpha=0$ or $S(X, Y)=2\left(\alpha^{2}-\beta^{2}\right) g(X, Y)-\left(2\left(\alpha^{2}-\beta^{2}\right)-1\right) \eta(X) \eta(Y)$.
Case 1: If $\alpha=0$, then by hypothesis α is identically zero on M. Hence, from (1.3), we have $\beta=$ constant. This implies that the manifold M is β-Kenmotsu.

Case 2: If $S(X, Y)=2\left(\alpha^{2}-\beta^{2}\right) g(X, Y)-\left(2\left(\alpha^{2}-\beta^{2}\right)-1\right) \eta(X) \eta(Y)$, then comparing it with (2.10), we obtain

$$
\begin{equation*}
\frac{r}{2}-\left(\alpha^{2}-\beta^{2}\right)=2\left(\alpha^{2}-\beta^{2}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r}{2}-3\left(\alpha^{2}-\beta^{2}\right)=2\left(\alpha^{2}-\beta^{2}\right)-1 \tag{3.20}
\end{equation*}
$$

Equating the values of the scalar curvature r obtained from (3.19) and (3.20), we have

$$
\begin{equation*}
\alpha^{2}-\beta^{2}=\frac{1}{2} \tag{3.21}
\end{equation*}
$$

Therefore, the scalar curvature r and the Ricci tensor S is given by

$$
\begin{equation*}
r=3 \quad \text { and } \quad S(X, Y)=g(X, Y) . \tag{3.22}
\end{equation*}
$$

Substituting (3.22) into (1.1), we get

$$
\nabla^{2} \lambda=-\frac{1}{2} \lambda g
$$

We now apply Tashiro's theorem [24] that states "If a complete Riemannian manifold M^{n} of dimension ≥ 2 admits a special concircular field ρ satisfying $\nabla \nabla \rho=\left(-c^{2} \rho+b\right) g$, then it is isometric to a sphere $S^{n}\left(c^{2}\right)$ " to conclude that M is isometric to the sphere $S^{3}\left(\frac{1}{2}\right)$. This completes the proof of our theorem.

4. ExAMPLES

Example 4.1. In [25], the authors have constructed an example of a 3-dimensional transSasakian manifold. They consider $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}=e^{-z}\left(\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}\right), \quad e_{2}=e^{-z} \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1 \\
& g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0
\end{aligned}
$$

Let η be the 1-form defined by $\eta(X)=g\left(X, e_{3}\right)$ for any vector field X. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=e_{2}, \quad \phi\left(e_{2}\right)=-e_{1}, \quad \phi\left(e_{3}\right)=0
$$

Then we have

$$
\begin{gathered}
\phi^{2}(X)=-X+\eta(X) e_{3} \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{gathered}
$$

for any vector fields X, Y. For $e_{3}=\xi$, they have shown that $\left(M^{3}, \phi, \xi, \eta, g\right)$ forms a trans-Sasakian manifold of type (α, β), where $\alpha=\frac{1}{2} e^{-2 z}$ and $\beta=1$. Then it follows that $\phi \operatorname{grad} \alpha=-e^{-2 z} \phi e_{3}=0=\operatorname{grad} \beta$. Note that, α is nowhere vanishing. Thus the existence of trans-Sasakian manifolds of type (α, β) satisfying (1.2) is verified.

Example 4.2. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1, \\
& g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0 .
\end{aligned}
$$

Let η be the 1 -form defined by $\eta(X)=g\left(X, e_{3}\right)$ for any vector field X. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then we have

$$
\begin{gathered}
\phi^{2}(X)=-X+\eta(X) e_{3} \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)
\end{gathered}
$$

for any vector fields X, Y. Hence the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M, where $e_{3}=\xi$. Now, after calculating we have

$$
\left[e_{1}, e_{3}\right]=-e_{1}, \quad\left[e_{1}, e_{2}\right]=0 \text { and }\left[e_{2}, e_{3}\right]=-e_{2}
$$

The Riemannian connection ∇ of the metric g is given by the Koszul's formula

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])-g(Z,[X, Y])
\end{aligned}
$$

By Koszul's formula we get

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=e_{3}, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=-e_{1}, \\
\nabla_{e_{2}} e_{1}=0, \quad \nabla_{e_{2}} e_{2}=e_{3}, \quad \nabla_{e_{2}} e_{3}=-e_{2} \\
\nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=0
\end{gathered}
$$

From the above we found that $\alpha=0, \beta=-1$ and $M^{3}(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold. Notice that, α is identically zero here.
The Riemannian curvature tensor is given by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

Therefore, we have

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, \quad R\left(e_{1}, e_{2}\right) e_{3}=0, \\
& R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, \\
& R\left(e_{1}, e_{3}\right) e_{1}=e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} .
\end{aligned}
$$

From the expression of the above curvature tensor we obtain

$$
S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2 .
$$

Therefore,

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-6
$$

The CPE (1.1) is given by

$$
\text { Hess } \lambda-\left(S-\frac{r}{2} g\right) \lambda=S-\frac{r}{3} g .
$$

Now, tracing the above equation we have

$$
\nabla^{2} \lambda=3 \lambda
$$

Therefore, the required function λ is given by the above Poison equation which satisfies the CPE. Notice that the condition (1.2) is satisfied and the manifold is a β-Kenmotsu manifold. Also from the expressions of the curvature tensor it follows that the manifold is a space of constant curvature $\mathbf{- 1}$. Therefore, Theorem 3.4 is verified.

Acknowledgements

The author is thankful to the anonymous referee for his/her valuable suggestions that have improved the article. The author is supported by the Council of Scientific and Industrial Research, India (File no: 09/028(1010)/2017-EMR-1) in the form of Senior Research Fellowship.

References

[1] D.E. Blair, Contact Manifold in Riemannian Geometry, Lecture Notes on Mathematics, Vol. 509, Springer, Berlin, 1976.
[2] D.E. Blair, J.A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math. 34 (1990) 199-207.
[3] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972) 93-103.
[4] A. Gray, M.H. Luis, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980) 35-58.
[5] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan. 14 (1962) 333-340.
[6] J.C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162 (1992) 77-86.
[7] D. Janssens, L. Vancheke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981) 1-27.
[8] U.C. De, M.M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003) 247-255.
[9] U.C. De, A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extr. Math. 23 (2008) 265-277.
[10] S. Deshmukh, M.M. Tripathi, A note on trans-Sasakian manifolds, Math. Slov. 63 (2013) 1361-1370.
[11] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakain manifolds, Mediterr. J. Math. 13 (2016) 2951-2958.
[12] J.S. Kim, R. Prasad, M.M. Tripathi, On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002) 953-961.
[13] V.F. Kirichenko, On the geometry of nearly trans-Sasakian manifolds (Russian), Dokl Akad. Nauk 397 (2004) 733-736.
[14] J.A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985) 187-193.
[15] A. Besse, Einstein Manifolds, Springer, New York, 2008.
[16] A. Barros, E.Jr. Ribeiro, Critical point equation on four dimensional compact manifolds, Math. Nachr. 287 (2014) 1618-1623.
[17] S. Hwang, Critical points of the total scalar curvature functionals on the space of metrics of constant scalar curvature, Manuscr. Math. 103 (2000) 135-142.
[18] B.L. Neto, A note on critical point metrics of the total scalar curvature functional, J. Math. Anal. Appl. 424 (2015) 1544-1548.
[19] A. Ghosh, D.S. Patra, The critical point equation and contact geometry, J. Geom. 108 (2017) 185-194.
[20] C.S. Bagewadi, D.G. Prakasha, Venkatesha, Conservative projective curvature tensor on trans-Sasakian manifolds with respect to semi-symmetric metric connection, An. St. Univ. Ovidius Constanta 15 (2017) 5-18.
[21] D.E. Blair, Two remarks on contact metric structure, Tohoku Math. J. 29 (1977) 319-324.
[22] Y. Wang, W. Wang, A remark on trans-Sasakian 3-manifolds, Rev. Un. Mat. Argentina 60 (2019) 257-264.
[23] R. Prasad, V. Srivastava, Some results on trans-Sasakian manifolds, Math. Vesniik 65 (2013) 346-352.
[24] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Am. Math. Soc. 117 (1965) 251-275.
[25] T. Dutta, N. Basu, A. Bhattacharyya, Almost conformal Ricci solitons on 3dimensional trans-Sasakian manifolds, Hacet. J. Math. Stat. 45 (2016) 1379-1392.

