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1. INTRODUCTION

Let (M, ¢,£,m,g) be a (2n + 1)-dimensional almost contact metric manifold [1]. Then,
the product M = M x R has a natural almost complex structure .J, which makes (M, Q)
an almost Hermitian manifold, where G is the product metric. The geometry of the
almost Hermitian manifold (M, J,G) dictates the geometry of the almost contact metric
manifold (M, ¢, £, 1, g) and gives different structures on M like Sasakian structure, quasi-
Sasakian structure, Kenmotsu structure and others (see [1-3]). Wy is the class of almost
Hermitian manifolds M satisfying the identity

Vx(B)Y,Z) = X,Y)OF(Z) — (X, Z)0F(Y)

-1
2(n—1) i
—(X,JY)YOF(JZ)+ (X, JZ)0F(JY)},
where 2n is the real dimension of M, F' is the Kaehler form and § denotes the coderivative.
Three facts about the class Wy are noteworthy: (1) Any manifold in W, automatically has
an integrable almost complex structure. (2) Any manifold locally conformally equivalent
to a Kaehler manifold is in Wy. (3) Let the Lee form 6 of an almost Hermitian manifold
M be defined by 8 = 0F - J. Suppose M € Wy, then M is locally or globally confor-
mally Kaehlerian according to whether 6 is closed or exact. It is known that there are
sixteen different types of structures on the almost Hermitian manifold (M, J, G) (see [1])
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and recently, using the structure in the class Wy on (M, J, G) a structure (¢,&,7, 9, «, 3)
on M called trans-Sasakian structure is introduced [5], which generalizes Sasakian struc-
ture and Kenmotsu structure on almost contact metric manifolds ([2], [3]), where «,
[ are smooth functions defined on M. Since the introduction of trans-Sasakian mani-
fold, important contribution of Blair and Oubina [2] and Marrero [6] have appeared to
study the geometry of trans-Sasakian manifolds. In general, a trans-Sasakian manifold
(M, $,¢,1n,9,a,3) is called a trans-Sasakian manifold of type (a, ) and trans-Sasakian
manifolds of type (0,0), («,0) and (0, 8) are called a cosymplectic, a a-Sasakian and a
B-Kenmotsu manifolds, respectively, provided «, 5 € R [7]. Marrero [6] has shown that a
trans-Sasakian manifold of dimension > 5 is either a cosymplectic manifold, a a-Sasakian
manifold or a f-Kenmotsu manifold. Since then, there is an attention on studying ge-
ometry of 3-dimensional trans-Sasakian manifolds only. In [8-13], authors have studied
3-dimensional trans-Sasakian manifolds with some restrictions on the smooth functions
«, B appearing in the definition of trans-Sasakian manifolds. There are several examples
of trans-Sasakian manifolds constructed mostly on 3-dimensional Riemannian manifolds

(see [2, 6, 14]).

A Riemannian manifold (M, g) of dimension n > 3 with constant scalar curvature
and unit volume together with a non-constant smooth potential function A satisfying the
equation

r

r
Hessh — (S — 1g)/\—Sfﬁg (1.1)

is called a critical point equation (in short, CPE) on M, where S is the Ricci tensor
defined by S(X,Y) = ¢(QX,Y), Q is the Ricci operator, r is the scalar curvature and
Hess) is the Hessian of the smooth function .

Note that if A = 0, then (1.1) becomes Einstein metric. Therefore, we consider only
non-trivial potential function . In [15], Besse conjectured that the solution of the CPE
is Einstein. Barros and Ribeiro [16] proved that the CPE conjecture is true for half con-
formally flat. In [17], Hwang proved that the CPE conjecture is also true under certain
conditions on the bounds of the potential function A. Very recently, Neto [18] deduced a
necessary and sufficient condition on the norm of the gradient of the potential function
for a CPE metric to be Einstein.

Throughout the paper, we assume that the smooth functions « and S satisfy the
condition
¢grad a = grad 3. (1.2)
Then it follows that
X8+ (¢X)a=0 (1.3)
and hence, £8 = 0.
Since trans-Sasakian manifold M generalizes a large class of almost contact metric
manifolds, we consider the CPE conjecture in the frame-work of 3-dimensional trans-
Sasakian manifolds of type («, 3). We proved that if (g, A) is a non-constant solution of

the critical point equation, then the manifold M is either a space of constant curvature
or B-Kenmotsu or flat. We also study the CPE on M when it is complete.
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2. PRELIMINARIES

Let (M, ¢,£,1,g) be a 3-dimensional almost contact metric manifold, where ¢ being a
(1,1)-tensor field, £ a unit vector field and 7 smooth 1-form dual to £ with respect to the
Riemanian metric g satisfying

¢’ =—T+n®E nE)=1, ¢£=0,n0¢=0 (2.1)

and

9(¢X,9Y) = g(X,Y) = n(X)n(Y) (2.2)

for any vector fields X,Y € x(M), where x(M) being the Lie algebra of smooth vector
fields on M [1]. If there are smooth functions «, 5 on an almost contact metric manifold

(M, ¢,&,n,g) satisfying
(Vx9)Y = a(g(X,Y)E —n(Y)X) + B(9(¢X,Y)E — n(Y)dX) (2.3)

for any vector fields X,Y € x(M), then it is said to be a trans-Sasakian manifold, where
V is the Levi-Civita connection with respect to the metric g [2, 6, 14]. We shall denote the
trans-Sasakian manifold by (M, ¢,&,n, g, a, §) and it is called trans-Sasakian manifold of
type (a, 8). From (2.3), it follows that

Vx€=—apX + B(X —n(X)E), (2.4)

(Vxn)Y = —ag(¢X,Y) + Bg(oX, ¢Y). (2.5)

A trans-Sasakian manifold is said to be

e cosymplectic or co-Kaehler if a = 5 = 0.

e quasi-Sasakian manifold if § =0 and £(a) = 0.

e «-Sasakian manifold if « is a non-zero constant and 8 = 0.
e [-Kenmotsu manifold if & = 0 and § is a non-zero constant.

Therefore, trans-Sasakian manifold generalizes a large class of almost contact manifolds.
For a 3-dimensional trans-Sasakian manifold (see [3]), we have

2a8 4 £a = 0. (2.6)
The Ricci operator @) satisfies [3]
Q) = (Va) = VB +2(a® — 5%)€ — g(VB, )& (2.7)
S(X,Y) = (5+E8- (0= B))g(X,Y)

(5 + €8 = 3(a® = B))n(X)n(Y)
~(YB+(@Y)an(X) = (X5 + (#X)a)n(Y) (2.8)
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and

R(X,Y)Z = (5+268—2(a” = #9)(9(Y. )X - g(X, 2)Y)

—9(Y, )(( +E6 = 3(a® = §%))n(X)¢
—n(X)(¢ grada —grad §) + (X5 + (¢X)a)¢)
9(X )(( +EB —3(a” = B2))n(Y)¢

n(Y)(sb grada —grad ) + (Y + (¢Y))§)
~((ZB + (6Z)a)n(Y) + (Y B+ (¢ )a)n(Z)
L eB—3(a® = B2V n(Z)X

_|_

+(2
((ZB+ ¢Z)a)n(X) + (X B+ (¢X)a)n(Z)
+( +E8 = 3(a® = B))n(X)n(2))Y (2.9)

hold, where S is the Ricci tensor of type (0,2), R is the Riemannian curvature tensor of
type (1,3) and r is the scalar curvature of the manifold M.
If M satisfies the condition (1.2), then equations (2.8) and (2.9) reduces to

S(XLY) = (5 = (@ = B2)g(X,Y) = (5 = 3(a” = B2)m(X)m(Y), (2.10)
RX,Y)Z = (52 = %)(g(Y, 2)X - g(X, 2)Y)
—9(Y. 2)((5 = 3(a® = B))m(X)

—(5 —3(a® = B)m(Y n(2)X
+(5 = 3(a® = B)m(X)m(2)Y. (2.11)
From (2.10), we get
S(X,€) = 2(a? = B2n(X) (2.12)
and from (2.11), it follows that
R(X,Y)E = (a® = B(n(Y)X — n(X)Y), (2.13)
R(EX)Y = (a = B)(g(X, )¢ = n(Y)X). (2.14)

3. CPE ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

In this section, we study CPE on 3-dimensional trans-Sasakian manifolds under the
condition (1.2). To prove our main results, we first state the followings:

Lemma 3.1. (Lemma 3.1 of [19]) Let (g, \) be a non-trivial solution of the CPE (1.1) on
an n-dimentional Riemannian manifold M. Then the curvature tensor R can be expressed
R(X,Y)DXN = (XN)QY — (Y NQX+ M+ 1)(VxQ)Y

A+ D(Vy@Q)X + (Xf)Y — (Y )X,
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where D is the gradient operator and f = —r(ﬁ +1).

Lemma 3.2. (Theorem 1 of [20]) For a trans-Sasakian manifold M™, n > 1, under the
condition ¢ grad a = (n — 2) grad 8, we have

[(VeS)(Y, Z2) = (VyS5) (&, Z)]

=BS(Y.Z) — (n—1)(o” = *)By(Y, 2)

—(n—1)(a® = B*)ag(Y,0Z) + aS(Y,$Z).

Now, for a 3-dimensional trans-Sasakian manifold under the condition (1.2), we can
write from Lemma 3.2

[(VeQ)Y — (VyQ)E] = QY —2(a® — %)Y
+2(a? — B2 agY — apQY. (3.1)
Lemma 3.3. ([21]) A contact metric manifold M*"** satisfying the condition R(X,Y )¢ =
0 for all X, Y is locally isometric to the Riemannian product of a flat (n+1)-dimensional

manifold and an n-dimensional manifold of positive curvature 4, i.e., E"T1(0) x S™(4)
forn > 1 and flat forn = 1.

We now prove our main results.

Theorem 3.4. Let (M, ¢$,£,n,9,a, ) be a 3-dimensional trans-Sasakian manifold such
that « is identically zero or nowhere vanishing satisfying the condition ¢ grad o = grad 3.
If (9, \) is a non-constant solution of the critical point equation (1.1), then the manifold
M s either a space of constant curvature or 3-Kenmotsu or flat.

Proof. From Lemma (3.1), we have

R(X,Y)DXN = (XN)QY —(YNQX+ A+ 1)(VxQ)Y
—A+D)(VyQ)X + (Xf)Y — (Y f)X. (3.2)
Substituting ¢ in place of X in the above equation and using (3.1), we get
R(EY)DA = (ENQY —2(a® = 1) (YNE+ (A +1)(BQY
—2(a? = B%)BY +2(a? = B%)agdY — adQY)
—g(f)\)Y n g(Y)\)f. (3.3)

Taking inner product of (3.3) with £ and using (2.2), we obtain
g(R(E,Y)DNE) = 2(a® = B%)(ENn(Y) = 2(a® = B*)(YN)
—S(Em(Y) + (V). (3.4)
Again,

Making use of (2.13) the above equation yields

g(R(EY)DAE) = —(a® = B*)(ENn(Y) + (o = B (Y N). (3.5)
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Equations (3.4) and (3.5) together implies
T

(53— 3(a® = %)) (DA = (EN)§) =0, (3.6)

which implies that either r = 6(a? — 82) or DX = (EM)E.

Case 1: If r = 6(a® — 3?), then from (2.10), we have
S(X,Y) = 2(a® = %)g(X,Y),
which implies that the manifold is Einstein. Since the dimension of the manifold is 3,
therefore it becomes a space of constant curvature.
Case 2: Let DA = (§A)€. Then from (1.1), we can write
VxDA=(A+1)QX + fX, (3.7

where f = —r(% + %)

Making use of DA = (§A)€ and (2.4) in (3.7), we obtain
A+1DRX = [X(EA) — BEN)n(X)E

HIBEO) +r(5 + DX — a(A)6X. (38)
Comparing (3.8) with (2.10), we have the following equations:
BEN) + (G +3) = A+ 1)L — (0>~ ), (39)
X(€N) = BEMN(X) = —(A + 1)(5 = 3(a® — %)) (3.10)
and
at(N)pX = 0. (3.11)

The equation (3.11) implies that either o =0 or £(A) = 0.

If @« = 0, then by hypothesis « is identically zero on M. Hence, from (1.3), we have
B = constant. This implies that the manifold M is S-Kenmotsu.

If £(\) = 0, then (3.9) and (3.10) implies that 7 = 6(\ + 1)(a? — £2) and r = 6(a? — 3?),
respectively. Equating these two values of 7, we obtain a? = 32 as A is a non-constant
function. Hence, from (2.13), we get R(X,Y)& = 0. Since the manifold is of dimension
3, it follows from Lemma (3.3) that the manifold is flat. This completes the proof of our
theorem. L]

Remark 3.5. In [22], the authors proposed that a trans-Sasakian 3-manifold M of type
(0, 8) satisfying VB = (£6)€ is not necessarily S-Kenmotsu even when M is compact.
Here B is constant. If we change the metric g by Sg by homothetic transformation, this
homothetic transformation gives the homothety between S-Kenmotsu manifold and the
Kenmotsu manifold.

Corollary 3.6. Let M be a 3-dimensional trans-Sasakian manifold satisfying the condi-
tion (1.2). If (g, \) is a non-constant solution of the CPE (1.1), then the manifold M is
homothetic to a Kenmotsu manifold, provided M is not of constant curvature.
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Remark 3.7. In [23], the authors proves that if the condition (1.2) holds on M, then &
is an eigenvector of the Ricci operator. Since, here a = 0 and /3 = constant, from (2.7),
it follows that

S(X7 g) = _2629()(75)7

which implies that the characteristic vector field £ is an eigen vector of the Ricci operator
Q corresponding to the eigenvalue —232.

Theorem 3.8. Let (M, ¢,£,n,9,a, ) be a complete 3-dimensional trans-Sasakian mani-
fold such that « is identically zero or nowhere vanishing fulfilling the condition ¢ grad o =
grad 8. If (g, \) is a non-constant solution of the critical point equation, then the manifold
M is either 3-Kenmotsu or isometric to the sphere S3(3).

Proof. Taking inner product of (3.3) with X, we obtain

g(REYIDAX) = (ENS(X.Y) —2(a” = F)(YAn(X) + (A + D(AS(X.Y)
~2(0” — §7)Bg(X.Y) + 2(0” — F)ag(X.6Y)
~ag(X,6QY)) — Z(ENG(X,Y) + 5 (Y N)n(X). (3.12)
Again,

9(R(&,Y)DA, X) = —g(R(£,Y) X, DA).
Making use of (2.14) the above equation yields
gR(EY)DAX) = —(o® = B%)g(X,Y)(EN) + (o = B*)n(X)(YA).  (3.13)
From (3.12) and (3.13), we get
—(a® = B%)g(X,Y)(EN) + (o® = B2)n(X) (Y A)
= (ENS(X,Y) —2(a® = B%) (Y \n(X) + (A + 1)(BS(X,Y)
—2(a® = 5%)Bg(X,Y) + 2(a” - 5*)ag(X, ¢Y)
—ag(X,6QY)) = S(ENI(X.Y) + S (Y An(X). (3.14)
Now, interchanging X and Y in (3.14) and subtracting the resulting equation from (3.14)
gives
(0 = B2)((X)(YX) = n(Y)(XN)
= —2(a” = ) ((X)(YN) = n(Y)(XN))
+2a(a” = 1) (A +1)(9(¢Y, X) — g(¢X.Y))
+a(A+1)(g(0QX,Y) — g(¢QY, X)) + g(n(X)(YA) —n(Y)(XA)). (3.15)
From (2.10), we can see that Q¢ = ¢Q on M under the condition (1.2). Using this

relation, the foregoing equation yields

(5 = 3(a* = )N HX)(YA) —n(V)(XN) = da(a?® = B)(A+1)g(6X,Y)

2
20\ +1)g(¢QX,Y).  (3.16)
Putting X = ¢X and Y = ¢Y in (3.16) and using (2.2), we get
20(A +1)(2(0” = 5%)g(¢X,Y) — g(Q¢X,Y)) = 0. (3.17)
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Replacing X by ¢X and using (2.1), we have
a(S(X,Y) —2(a? = %)g(X,Y) + (2(a® = 52) = )n(X)n(Y)) =0, (3.18)
which implies that
either a = 0 or S(X,Y) = 2(a? — 82)g(X,Y) — (2(a? — %) — 1)n(X)n(Y).

Case 1: If @ = 0, then by hypothesis « is identically zero on M. Hence, from (1.3), we
have 8 = constant. This implies that the manifold M is S-Kenmotsu.

Case 2: If S(X,Y) =2(a? — 8%)g(X,Y) — (2(a? — %) — 1)n(X)n(Y), then comparing
it with (2.10), we obtain

— —(a? = B%) =2(a® - 3?) (3.19)

and

et 2t . 50

Equating the values of the scalar curvature r obtained from (3.19) and (3.20), we have
1
a? — B = 3 (3.21)

Therefore, the scalar curvature r and the Ricci tensor S is given by

r=3 and S(X,Y)=g(X,)Y). (3.22)
Substituting (3.22) into (1.1), we get
1
VAN = —-)\g.
9 g
We now apply Tashiro’s theorem [24] that states “If a complete Riemannian manifold M™

of dimension > 2 admits a special concircular field p satisfying VVp = (—c?p + b)g, then
it is isometric to a sphere S™(c?)” to conclude that M is isometric to the sphere S3(3).
This completes the proof of our theorem. [

4. EXAMPLES

Example 4.1. In [25], the authors have constructed an example of a 3-dimensional trans-
Sasakian manifold. They consider M = {(z,y,2) € R® : z # 0}, where (z,y, 2) are the
standard coordinates in R3. The vector fields

0 0 _, 0 0

%*yg)a €2 =¢€ aiy’ 6315

are linearly independent at each point of M. Let g be the Riemannian metric defined by

e1 =e *(

gler,e1) = glez, ea) = gles, e3) = 1,

gler, e2) = g(ez, e3) = g(e1, e3) = 0.
Let 7 be the 1-form defined by n(X) = g(X, e3) for any vector field X. Let ¢ be the (1,1)
tensor field defined by

Pler) = ez, ¢lez2) = —e1, ¢(e3z) =0.
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Then we have

P*(X) = =X +n(X)es,
for any vector fields X, Y. For e3 = £, they have shown that (M?3,¢,¢,n,g) forms a
trans-Sasakian manifold of type (a, ), where a = %e’% and 8 = 1. Then it follows

that ¢ grada = —e ?*¢e3 = 0 = grad 8. Note that, o is nowhere vanishing. Thus the
existence of trans-Sasakian manifolds of type («a, ) satisfying (1.2) is verified.

Example 4.2. We consider the 3-dimensional manifold M = {(z,y,z) € R3 : z # 0},
where (,y, z) are the standard coordinates in R3. The vector fields

0 0 0

F =22
ox’

are linearly independent at each point of M. Let g be the Riemannian metric defined by

el =z

gler,e1) = glea,e2) = g(es,e3) =1,

gler,ea) = glea,e3) = g(er,es3) = 0.
Let 1 be the 1-form defined by n(X) = g(X, e3) for any vector field X. Let ¢ be the (1,1)
tensor field defined by
p(e1) = —e2, d(e2) =e1, ¢(e3) =0.
Then we have
¢*(X) = —X +n(X)es,

9(6X, ¢Y) = g(X,Y) = n(X)n(Y)
for any vector fields X, Y. Hence the structure (¢,&,n,g) defines an almost contact
metric structure on M, where e3 = £. Now, after calculating we have

[e1,e3] = —e1, [e1,ea] =0 and [e2,e3] = —ea.
The Riemannian connection V of the metric g is given by the Koszul’s formula
29(VxY,Z) = Xg(Y,Z2)+Yg(Z,X)— Zg(X,Y)
—9(X,[Y, Z]) = g(V, [X, Z]) — 9(Z,[X, Y]).

By Koszul’s formula we get

Ve e1 =e3, Ve ea =0, Vg ez =—eq,
Ve,e1 =0, Ve,ea =e3, Ve,e3 = —ea,
Vesel = 0, Vegeg = 0, V6363 =0.
From the above we found that a = 0, 3 = —1 and M3(¢,£,7,9) is a trans-Sasakian

manifold. Notice that, « is identically zero here.
The Riemannian curvature tensor is given by

R(X,Y)Z =VxVyZ —VyVxZ —Vxy1Z.
Therefore, we have
R(e1,ez)er = ez, R(e1,ez)es = —eq, R(er,eqz)es =0,
R(ea,e3)er =0, R(esz,esz)es =e3, R(ea,ez)es = —ea,

R(ey,e3)er = e3, R(ei,esz)ea =0, R(ei,e3)es = —ey.
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From the expression of the above curvature tensor we obtain
5(61,61) = 5(62,62) = 5(63,63) = —2.
Therefore,
r=S(e,e1) + S(ea, ea) + S(es, e3) = —6.
The CPE (1.1) is given by

Hessh — (S — gg))\ =5- gg.
Now, tracing the above equation we have
VZA = 3.

Therefore, the required function A is given by the above Poison equation which satisfies
the CPE. Notice that the condition (1.2) is satisfied and the manifold is a S-Kenmotsu
manifold. Also from the expressions of the curvature tensor it follows that the manifold
is a space of constant curvature —1. Therefore, Theorem 3.4 is verified.
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