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1. Introduction

Thoughout this paper, we use the following symbols;
i) H, Hi are real Hilbert spaces and Ci is a nonempty closed convex subset of Hi, for

all i = 1, 2,
ii) 88 ⇀′′ and 88 →′′ to denoted weak and strong convergence, respectively,
iii) Ww (xn) = {x : xnk

⇀ x,∃a subsequence {xnk
} of {xn}},

iv) F (T ) = {x ∈ C : Tx = x} is the set of solution of fixed points problem of T : C → C
with C ⊆ H.

The split feasibility problem (SFP) was first introduced by Censor and Elfving [1] in
a finite dimension on Hilbert space. The SFP is to find a point x∗ ∈ C1, and Ax∗ ∈ C2,
where A : H1 → H2 is a bounded linear operator. The set of all solution of SFP is denoted
by ΓSFP .

If ΓSFP 6= ∅. It is obvious that x∗ ∈ ΓSFP ⇔ x∗ = PC1 (I − λA∗ (I − PC2))x∗.
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The SFP has been extremely popular, since it can be applied to various fields such as
the modelling of inverse problem in mathematics, in radiation therapy treatment plan-
ning, neural networks and so on. This problem have been studied by many researcher,
for example [2], [3], [4].

Byrne [5] is introduced the most widely algorithm to solve SFP. This algorithm gener-
ated by sequence {xn} such that

xn+1 = PC (xn − γA∗ (I − PC)Axn) ,

for all n ∈ N, where A∗ is adjoint operator of A, L is spectal radius of A∗A and PC is a
metric projection on H onto C. Many researchers use this algorithm as a basis to create
their algorithm for solving SFP, see for example [6], [7].

To increase the potential of SFP, Moudafi [8, 9] introduced the following split equality
problem. Let H3 be a real Hilbert space and let A : H1 → H3, B : H2 → H3 be two
bounded linear operators. The split equality problem (SEP) is to find x ∈ C1 and y ∈ C2

such that Ax = By. The set of all solution of SEP is denoted by ΓSEP .
To solve SEP, he introduce the following iteration:{

xn+1 = PC1 [xn − γnA∗ (Axn −Byn)] ,

yn+1 = PC2
[yn + γnB

∗ (Axn −Byn)] ,
(1.1)

where A∗ and B∗ denote the adjoint of A and B respectively. Under condition γn ∈

(ε,min

{
1

λA
,

1

λB

}
−ε} with λA and λB are spectral radius of A∗A and B∗B, respectively,

then the sequence {(xn, yn)} generated by (1.1) converges weakly to (x, y) ∈ ΓSEF .
If B = I and H2 = H3, then (SEP) reduces to (SFP). The interest of SEP is to cover

many situations such as decomposition methods for PDEs, applications in game theory.
Let S : H1 → H1 and T : H2 → H2 be two nonlinear operators such that F (S) 6= ∅ and

F (T ) 6= ∅. The split equality fixed point problem (SEFP) is to find x ∈ F (S) and y ∈ F (S)
such that Ax = By which allows asymmetric and partial relations between the variables
x and y. The such problem introduced by Moudafi and Al-Shemas [8]. The set of all
solutions of SEFP is denoted by Ω = {(x, y) ∈ C1 × C2 : x ∈ F (S), y ∈ F (T ) and Ax =
By}. Zhao [10] proposed a theorem for finding the solution of SEFP as follows:

Theorem 1.1. Let H1, H2, H3 be a real Hilbert spaces, A : H1 → H3 and B : H2 →
H3 be bounded linear operators. Let S : H1 → H1 and T : H2 → H2 be quasi-
nonexpansive mappings such that S − I and T − I are demiclosed at 0. Suppose that
Ω = {x ∈ F (S) , y ∈ F (T ) : Ax = By} 6= ∅. Let {xn} and {yn} be sequence generated by
x0 ∈ H1 and y0 ∈ H2 and by

un = xn − γnA∗ (Axn −Byn) ,

xn+1 = βnun + (1− βn)Sun,

wn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = βnwn + (1− βn)Twn, ∀n ≥ 0.

Assume that the step-size γn is chosen in such a way that

γn ∈

(
ε,

2 ‖Axn −Byn‖2

‖B∗ (Axn −Byn)‖2 + ‖A∗ (Axn −Byn)‖2
− ε

)
,
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for all n ∈ Π otherwise γn = γ (γ begin any nonnegative value), where the index set
Π = {n : Axn −Byn 6= 0}. Let {αn} ⊂ (δ, 1− δ) , {βn} ⊂ (η, 1− η) for small enough
δ, η > 0. Then, the sequence {(xn, yn)} converges weakly to (x∗, y∗) ∈ Ω.

Remark 1.2. If H2 = H3 and B = I , then the split equality fixed point problem is
reduces to the split common fixed point problem.

In 2015, Li and He [11] proved a strong convergence theorem to solve the split common
fixed point problem for quasi-nonexpansive mappings as follows.

Theorem 1.3. Let H1 and H2 be a real Hilbert spaces, let C and K be nonempty closed
convex subsets of H1 and H2, respectively. T1 : C → H1 and T2 : K → H2 be two
quasi-nonexpansive mappings with F (T1) 6= ∅ and F (T2) 6= ∅. A : H1 → H2 is a bounded
linear operator. Assume that T1 − I and T2 − I are demi-closed at 0. let x0 ∈ C,C0 = C
and {xn} be a sequence generated in the following manner:

yn = αnzn + (1− αn)T1zn,

zn = PC (xn + λA∗ (T2 − I)Axn) ,

Cn+1 = {x ∈ Cn : ‖yn − x‖ ≤ ‖zn − x‖ ≤ ‖xn − x‖} ,
xn+1 = PCn+1

(x0) , ∀n ∈ N ∪ {0} ,

where P is a projection operator and A∗ denotes the adjoint of A. {αn} ⊂ (0, η) ⊂

(0, 1) , λ ∈

(
0,

1

‖A‖2

)
. Assume that Γ = {p ∈ F (T1) , Ap ∈ F (T2)} 6= ∅, then xn → x∗ ∈

F (T1) and Axn → Ax∗ ∈ F (T2).

Many author prove a strong convergence theorem for quasi-nonexpansive mapping by
using the condition I − T is a demi-closed mapping, where T : C → C is a quasi nonex-
pansive mapping, see for more detail [10], [12], [13].

The variational inequality problem (V IP ) is to find a point v ∈ C such that

〈y − x∗, Ax∗〉 ≥ 0,

for all y ∈ C, where C is a subset of H and A : C → H is a mapping. The set of all
solution of VIP is denoted by V I(C,A). Such a problem was first introduced by Lions
and Stampacchia [14]. This problem is very important in many branches of mathematics.
The following is a well-known tool for solving variational inequality problem.

Lemma 1.4. Let C be a nonempty closed convex subset of Hilbert space H and let A :
C → H be a mapping. Then

u = PC (I − λA)u⇔ u ∈ V I (C,A) ,

for all u ∈ C and λ > 0.

Korpelevich [15] introduce a sequence {xn} generated by x1 ∈ C and{
yn = PC (I − λA)xn,

xn+1 = PC (xn − λAyn) ,

for all n ∈ N. Under suitable conditions of the mapping A and λ ∈
(

0,
1

k

)
. She proved

that the sequence {xn} converges strongly to an element of V I(C,A). Many research
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use this iteration as a model to prove their theorem for finding a solution of variational
inequality problem, see for example [16], [17], [18].

The split variational inequality problems (SVIP) is to find x∗ ∈ C1 such that 〈fx∗, x−
x∗〉 ≥ 0, for all x ∈ C1 and such that y∗ = Ax∗ ∈ C2 solves 〈gy∗, y − y∗〉 ≥ 0 for all
y ∈ C2, where f : C1 → H1, g : C2 → H2 and A : H1 → H2 is a bounded linear operator.
The set of all solution of SVIP is denoted by ΓSV IP . The such problem is introduced
by Censor et al. [19]. SVIP can be reduce to split minimization problem between two
spaces so that the image of a solution point of one minimization problem, under a given
bounded linear operator, is a solution point of another minimization problem.

Many author has been studied the split variational inequality problems, see for exam-
ple, [10], [19].

By combining the concept of the split equality problem and the split variational in-
equality problem, we introduce a new problem which is called the split equality variational
inequality problem (SEVIP) as follows;

Let Ai : Ci → Hi be a mapping for all i = 1, 2 and let A : H1 → H3 and B : H2 → H3

be bounded linear operators. The split equality variational inequality problem is to find
(x, y) ∈ C1 × C2 such that

x ∈ V I
(
C1, A

1
)
, y ∈ V I

(
C2, A

2
)

and Ax = By. (1.2)

The set of all solutions of (1.2) is denoted by

V I
(
C1,2, sA

1,2
)

= {(x, y) ∈ C1 × C2 : x ∈ V I
(
C1, A

1
)
, y ∈ V I

(
C2, A

2
)

and Ax = By}.

If H2 = H3 and B = I , then SEVIP is reduced to SVIP. Another special case of the
SEVIP is the split Feasibility Problem (SFP).

Motivated by above researches, the purpose of this paper is to introduce a method for
finding solution of SEVIP by improving the Halpern iteration. We also apply this method
to find solution of the split equality fixed problem and the null point problem of maximal
monotone which are introduced by Moudafi and Al-Shemas [8] and Chang and Agarwal
[20], respectively.

2. Preliminaries

In order to prove our main theorem. Therefore, these tools are needed.
Let PC be the metric projection of H onto C i.e., for x ∈ H, PCx satisfies the property

‖x− PCx‖ = min
y∈C
‖x− y‖.

The following lemma is a property of PC .

Lemma 2.1 (See [21]). Given x ∈ H and y ∈ C. Then PCx = y if and only if there
holds the inequality
〈x− y, y − z〉 ≥ 0 ∀z ∈ C.

Lemma 2.2 (See [22]). Let {sn} be a sequence of nonnegative real number satisfying

sn+1 = (1− αn)sn + αnβn, ∀n ≥ 0

where {αn}, {βn} satisfy the conditions:
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(1) {αn} ⊂ [0, 1],
∑∞
n=1 αn =∞;

(2) lim supn→∞ βn ≤ 0 or
∑∞
n=1 |αnβn| <∞.

Then limn→∞ sn = 0.

Lemma 2.3 (See [23]). Let {tn} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that tni < tni+1 for all i ∈ N. Then there exists a
nondecreasing sequence {τ (n)} ⊂ N such that τ (n)→∞ and the following properties are
satisfied by all (sufficiently large) numbers n ∈ N;

tτ(n) ≤ tτ(n)+1, tn ≤ tτ(n)+1.

In fact, τ (n) = max {k ≤ n : tk < tk+1}.

3. Main Results

Theorem 3.1. For every i = 1, 2, 3, let Hi be a real Hilbert space and let C1, C2 be
nonempty closed convex subset of H1 and H2, respectively. Let Ai : Ci → Hi be αi-
inverse strongly monotone mapping for all i = 1, 2 with α = min {α1, α2} and let the
mappings A : H1 → H3, B : H2 → H3 be bounded linear operator with adjoints A∗ and
B∗, respectively. Suppose that Ω = V I

(
C1,2, A

1,2
)

is a nonempty set. Let sequences {xn}
and {yn} generated by u, x1 ∈ C1; v, y1 ∈ C2 and

un = xn − γnA∗ (Axn −Byn) ,

xn+1 = αnu+ (1− αn)PC1

(
I − λ1A1

)
un,

vn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = αnv + (1− αn)PC2

(
I − λ2A2

)
vn, for all n ≥ 1,

where {αn} ⊆ [0, 1] with
∑∞
n=1 αn = ∞, limn→∞ αn = 0 and λi ∈ [0, 2α] for all i = 1, 2

and γn ∈ (a, b) ⊂
(
ε,

2

λA + λB
− ε
)

for all n ∈ N, where λA, λB are spectral radius of

A∗A and B∗B respectively and ε is small enough.

Then {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
∈ Ω, where x̂∗ = PV I(C1,A1)u and ŷ∗ =

PV I(C2,A2)v.

Proof. Let (x∗, y∗) ∈ Ω, we have

x∗ ∈ V I
(
C1, A

1
)
, y∗ ∈ V I

(
C2, A

2
)

and Ax∗ = By∗.

Since x∗ ∈ V I
(
C1, A

1
)

and y∗ ∈ V I
(
C2, A

2
)
, we have x∗ ∈ F

(
PC1

(
I − λ1A1

))
and

y∗ ∈ F
(
PC2

(
I − λ2A2

))
, respectively.

For every x, y ∈ C1, we have∥∥PC1

(
I − λ1A1

)
x− PC1

(
I − λ1A1

)
y
∥∥2 ≤

∥∥x− y − λ1(A1x−A1y)
∥∥2

= ‖x− y‖2 − 2λ1〈x− y,A1x−A1y〉
+λ21‖Ax−Ay‖2
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= ‖x− y‖2 − 2λ1α‖A1x−A1y‖2

+λ21‖Ax−Ay‖2

= ‖x− y‖2 − λ1 (2α− λ1) ‖A1x−A1y‖2

≤ ‖x− y‖2.

Then PC1

(
I − λ1A1

)
is a nonexpansive mapping. Using the same method, we have

PC2

(
I − λ2A2

)
is a nonexpansive mapping.

From the definition of un, we have

‖un − x∗‖2 = ‖xn − x∗ − γnA∗ (Axn −Byn) ‖2

= ‖xn − x∗‖2 + γ2n‖A∗ (Axn −Byn) ‖2

−2γn〈xn − x∗, A∗ (Axn −Byn)〉
≤ ‖xn − x∗‖2 + γ2nλA‖Axn −Byn‖2

−γn‖Axn −Ax∗‖2 − γn‖Axn −Byn‖2

+γn‖Ax∗ −Byn‖2

= ‖xn − x∗‖2 − γn(1− λAγn)‖Axn −Byn‖2

−γn‖Axn −Ax∗‖2 + γn‖Ax∗ −Byn‖2 (3.1)

From the definition of vn and using the method as (3.1), we have

‖vn − y∗‖2 ≤ ‖yn − y∗‖2 − γn (1− λBγn) ‖Axn −Byn‖2 − γn ‖Byn −By∗‖2

+γn ‖Axn −By∗‖2 .

From the last two inequalities above, we have

‖un − x∗‖2 + ‖vn − y∗‖2 ≤ ‖xn − x∗‖2 + ‖yn − y∗‖2

−γn (2− γn (λA + λB)) ‖Axn −Byn‖2 . (3.2)

From the definition of xn, we have

‖xn+1 − x∗‖2 =
∥∥αn (u− x∗) + (1− αn)

(
PC1

(
I − λ1A1

)
un − x∗

)∥∥2
≤ αn ‖u− x∗‖2 + (1− αn)

∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2
≤ αn ‖u− x∗‖2 + (1− αn) ‖un − x∗‖2 .

Similarly, we have

‖yn+1 − y∗‖2 ≤ αn ‖v − y∗‖2 + (1− αn) ‖vn − y∗‖2 .

From above inequalities, we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
≤ max{‖u− x∗‖2 + ‖v − y∗‖2 , ‖x1 − x∗‖2

+ ‖y1 − y‖2}.
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From mathematical induction, we have {xn}, {yn} bounded and so are {un}, {vn}.
From the definitions of {xn} and {yn}, we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖un − x∗‖2 + ‖vn − y∗‖2

)
≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2

−γn (2− γn (λA + λB)) ‖Axn −Byn‖2
)

= αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
−γn (1− αn) (2− γn (λA + λB)) ‖Axn −Byn‖2 .

It implies that

γn (1− αn) (2− γn (λA + λB)) ‖Axn −Byn‖2 ≤ αn

(
‖u−x∗‖2+‖v−y∗‖2

)
+Cn−Cn+1, (3.3)

where Cn = ‖xn − x∗‖2 + ‖yn − y∗‖2, for all x∗ ∈ V I
(
C1, A

1
)
,y∗ ∈ V I

(
C2, A

2
)

and
n ∈ N.
From (3.3), we will divide the proof into two cases.

Case i Suppose that Cn+1 ≤ Cn for all n ≥ n0 (for n0 large enough).
Since a sequence {Cn} is bounded, we get limn→∞ Cn = c for some c ∈ R.
From (3.3) and properties of γn and αn, we have

lim
n→∞

‖Axn −Byn‖ = 0. (3.4)

From the definitions of un, vn, we have

‖un − xn‖ = γn ‖A∗ (Axn −Byn)‖ and ‖vn − yn‖ = γn ‖B∗ (Axn −Byn)‖ .
(3.5)

From (3.4) and (3.5), we have

lim
n→∞

‖un − xn‖ = lim
n→∞

‖vn − yn‖ = 0. (3.6)
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By using properties of PC1 , we have∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2 ≤
∥∥un − x∗ − λ1 (A1un −A1x∗

)∥∥2
= ‖un − x∗‖2 − 2λ1〈u− x∗, A1un −A1x∗〉

+λ21
∥∥A1un −A1x∗

∥∥2
≤ ‖un − x∗‖2 − 2λ1α

∥∥A1un −A1x∗
∥∥2

+λ21
∥∥A1un −A1x∗

∥∥2
= ‖un − x∗‖2

−λ1 (2α− λ1)
∥∥A1un −A1x∗

∥∥2 . (3.7)

Similarly, we have∥∥PC2

(
I − λ2A2

)
vn − y∗

∥∥2 ≤ ‖vn − y∗‖2 − λ2 (2α− λ2)
∥∥A2vn −A2y∗

∥∥2 . (3.8)

From (3.2), (3.7) and (3.8), we have∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2 +
∥∥PC2

(
I − λ2A2

)
vn − y∗

∥∥2
≤ ‖un − x∗‖2 + ‖vn − y∗‖2

−λ1 (2α− λ1)
∥∥A1un −A1x∗

∥∥2
−λ2 (2α− λ2)

∥∥A2vn −A2y∗
∥∥2

≤ ‖xn − x∗‖2 + ‖yn − y∗‖2

−γn (2− γn (λA + λB)) ‖Axn −Byn‖2

−λ1 (2α− λ1)
∥∥A1un −A1x∗

∥∥2
−λ2 (2α− λ2)

∥∥A2vn −A2y∗
∥∥2 . (3.9)

From the definition of xn, yn, we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2
+
∥∥PC2

(
I − λ2A2

)
vn − y∗

∥∥2)
≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2

−γn (2− γn (λA + λB)) ‖Axn −Byn‖2

−λ1 (2α− λ1)
∥∥A1un −A1x∗

∥∥2
−λ2 (2α− λ2)

∥∥A2vn −A2y∗
∥∥2).
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It implies that

(1− αn)

(
λ1 (2α− λ1)

∥∥A1un −A1x∗
∥∥2 + λ2 (2α− λ2)

∥∥A2vn −A2y∗
∥∥2)

≤ Cn − Cn+1 + αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
. (3.10)

Applications for (3.10) and limn→∞ Cn = c, we have

lim
n→∞

∥∥A1un −A1x∗
∥∥ = lim

n→∞

∥∥A2vn −A2y∗
∥∥ = 0. (3.11)

From the properties of PC1
, we have∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2 =
∥∥PC1

(
I − λ1A1

)
un − PC1

(
I − λ1A1

)
x∗
∥∥2

≤ 〈
(
I − λ1A1

)
un −

(
I − λ1A1

)
x∗, PC1

(
I − λ1A1

)
un − x∗〉

=
1

2

(
‖
(
I − λ1A1

)
un −

(
I − λ1A1

)
x∗‖2 + ‖PC1

(
I − λ1A1

)
un − x∗‖2

−‖
(
I − λ1A1

)
un −

(
I − λ1A1

)
x∗ − PC1

(
I − λ1A1

)
un + x∗‖2

)

≤ 1

2

(
‖un − x∗‖2 + ‖PC1

(
I − λ1A1

)
un − x∗‖2

−‖un − PC1

(
I − λ1A1

)
un − λ1

(
A1un −A1x∗

)
‖2
)

=
1

2

(
‖un − x∗‖2 + ‖PC1

(
I − λ1A1

)
un − x∗‖2

−‖un − PC1

(
I − λ1A1

)
un‖2 − λ21‖A1un −A1x∗‖2

+2λ1〈un − PC1

(
I − λ1A1

)
un, A

1un −A1x∗〉

)
. (3.12)

From (3.12), we have∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2 ≤ ‖un − x∗‖2 − ‖un − PC1

(
I − λ1A1

)
un‖2

−λ21‖A1un −A1x∗‖2 + 2λ1‖un − PC1

(
I − λ1A1

)
un‖‖A1un −A1x∗‖. (3.13)

Similarly, we have∥∥PC2

(
I − λ2A2

)
vn − y∗

∥∥2 ≤ ‖vn − y∗‖2 − ‖vn − PC2

(
I − λ2A2

)
vn‖2

−λ22‖A2vn −A2y∗‖2 + 2λ2‖vn − PC2

(
I − λ2A2

)
vn‖‖A2vn −A2y∗‖. (3.14)

From the definitions of xn, yn, (3.13) and (3.14), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ αn
(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(∥∥PC1

(
I − λ1A1

)
un − x∗

∥∥2 +
∥∥PC2

(
I − λ2A2

)
vn − y∗

∥∥2)
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≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖un − x∗‖2 + ‖vn − y∗‖2 − ‖un − PC1

(
I − λ1A1

)
un‖2

−λ21‖A1un −A1x∗‖2 + 2λ1‖un − PC1

(
I − λ1A1

)
un‖‖A1un −A1x∗‖

−‖vn − PC2

(
I − λ2A2

)
vn‖2 − λ22‖A2vn −A2y∗‖2

+2λ2‖vn − PC2

(
I − λ2A2

)
vn‖‖A2vn −A2y∗‖

)
≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ (1− αn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2 − ‖un − PC1

(
I − λ1A1

)
un‖2

−λ21‖A1un −A1x∗‖2 + 2λ1‖un − PC1

(
I − λ1A1

)
un‖‖A1un −A1x∗‖

−‖vn − PC2

(
I − λ2A2

)
vn‖2 − λ22‖A2vn −A2y∗‖2

+2λ2‖vn − PC2

(
I − λ2A2

)
vn‖‖A2vn −A2y∗‖

)
.

It implies that

(1− αn)

(
‖un − PC1

(
I − λ1A1

)
un‖2 + ‖vn − PC2

(
I − λ2A2

)
vn‖2

)
≤ αn

(
‖u− x∗‖2 + ‖v − y∗‖2

)
+ Cn − Cn+1

+2λ1‖un − PC1

(
I − λ1A1

)
un‖‖A1un −A1x∗‖

+2λ2‖vn − PC2

(
I − λ2A2

)
vn‖‖A2vn −A2y∗‖.

From (3.11) and limn→∞ Cn = c, we have

lim
n→∞

∥∥PC1

(
I − λ1A1

)
un − un

∥∥ = lim
n→∞

∥∥PC2

(
I − λ2A2

)
vn − vn

∥∥ = 0. (3.15)

From (3.6) and (3.15), we get

lim
n→∞

∥∥PC1

(
I − λ1A1

)
un − xn

∥∥ = lim
n→∞

∥∥PC2

(
I − λ2A2

)
vn − yn

∥∥ = 0. (3.16)

Since

xn+1 − xn = αn (u− xn) + (1− αn)
(
PC1

(
I − λ1A1

)
un − xn

)
,

yn+1 − yn = αn (v − yn) + (1− αn) (PC2
(I − λ2A) vn − yn)

and (3.16), we have

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖yn+1 − yn‖ = 0. (3.17)

Since Ww (xn) ,Ww (yn) are nonempty sets, there exists x̂ ∈ C1, ŷ ∈ C2 such that
x̂ ∈Ww (xn) and ŷ ∈Ww (yn).
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We may assume that, there exists subsequences {xnk
}, {ynk

} of {xn} and {yn}, respec-
tively, such that

xnk
⇀ x̂ as k →∞, (3.18)

and

ynk
⇀ ŷ as k →∞. (3.19)

Next, we show that (x̂, ŷ) ∈ Ω.
From (3.6) and (3.18), we get unk

⇀ x̂ as k →∞.
Assume that x̂ /∈ V I

(
C1, A

1
)
. Since V I

(
C1, A

1
)

= F
(
PC1

(
I − λ1A1

))
, then we get

x̂ 6= PC1

(
I − λ1A1

)
x̂. From Opial’s condition and (3.15), we have

lim inf
k→∞

‖unk
− x̂‖ < lim inf

k→∞

∥∥unk
− PC1

(
I − λ1A1

)
x̂
∥∥

≤ lim inf
k→∞

‖unk
− PC1

(
I − λ1A1

)
unk
‖

+‖PC1

(
I − λ1A1

)
unk
− PC1

(
I − λ1A1

)
x̂‖

≤ lim inf
k→∞

‖unk
− x̂‖ .

This is a contradiction. Then x̂ ∈ V I
(
C1, A

1
)
.

From (3.6) and (3.19), we get vnk
⇀ ŷ as k → ∞. Using the methods similar to

x̂ ∈ V I
(
C1, A

1
)
, we can conclude that ŷ ∈ V I

(
C2, A

2
)
.

From Ax̂−Bŷ ∈Ww (Axn −Byn) and weakly lower semi-continuous of normed, we have

‖Ax̂−Bŷ‖ ≤ lim inf
k→∞

‖Axnk
−Bynk

‖ = 0.

Then Ax̂ = Bŷ. Therefore (x̂, ŷ) ∈ Ω.
It is clear that

lim sup
n→∞

〈u− x̂∗, xn − x̂∗〉 = lim sup
k→∞

〈u− x̂∗, xnk
− x̂∗〉 = 〈u− x̂∗, x̂− x̂∗〉 ≤ 0,

where x̂∗ = PV I(C1,A1)u
and

lim sup
n→∞

〈v − ŷ∗, yn − ŷ∗〉 = lim sup
k→∞

〈v − ŷ∗, ynk
− ŷ∗〉 = 〈v − ŷ∗, ŷ − ŷ∗〉 ≤ 0,

where ŷ∗ = PV I(C2,A2)v.

Next, we show that a sequence {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
∈ Ω, where

x̂∗ = PV I(C1,A1)u and ŷ∗ = PV I(C2,A2)v.
From the definitions of xn and yn, we get∥∥∥xn+1 − x̂∗

∥∥∥2 ≤ (1− αn)
∥∥∥xn − x̂∗∥∥∥2 + 2αn〈u− x̂∗, xn+1 − x̂∗〉

and ∥∥yn+1 − ŷ∗
∥∥2 ≤ (1− αn)

∥∥yn − ŷ∗∥∥2 + 2αn〈v − ŷ∗, yn+1 − ŷ∗〉.
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Then ∥∥∥xn+1 − x̂∗
∥∥∥2 +

∥∥yn+1 − ŷ∗
∥∥2 ≤ (1− αn)

( ∥∥∥xn − x̂∗∥∥∥2 +
∥∥yn − ŷ∗∥∥2 )

+2αn
(
〈u− x̂∗, xn+1 − x̂∗〉

+〈v − ŷ∗, yn+1 − ŷ∗〉
)

or

Cn+1 ≤ (1− αn)Cn + 2αnηn, (3.20)

where ηn = 〈u− x̂∗, xn+1 − x̂∗〉+ 〈v − ŷ∗, yn+1 − ŷ∗〉, for all n ∈ N.
From lim supn→∞ ηn ≤ 0,

∑∞
n=1 αn =∞ and Lemma 2.2, we obtain

lim
n→∞

Cn = lim
n→∞

(∥∥∥xn − x̂∗∥∥∥2 +
∥∥yn − ŷ∗∥∥2) = 0.

It implies that {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
.

Since Ax̂∗ −Bŷ∗ ∈Ww (Axn −Byn) and lower semi-continuous of normed, we have∥∥∥Ax̂∗ −Bŷ∗∥∥∥ ≤ lim inf
k→∞

‖Axnk
−Byn‖ = 0.

Hence Ax̂∗ = Bŷ∗. Therefore
(
x̂∗, ŷ∗

)
∈ Ω.

Case ii Suppose that Cn is not monotone sequence, then there exists an integer n0 such
that Cn0 ≤ Cn0+1.
Define the integer sequence τ (n) for all n ≥ n0 as follows

τ (n) = max {k ≤ n : Ck < Ck+1} .

It is clear that τ (n) is a nondecreasing with limn→∞ τ (n) =∞ and Cτ(n) < Cτ(n)+1.
From (3.20), we have

Cτ(n)+1 ≤
(
1− ατ(n)

)
Cτ(n) + 2ατ(n)ητ(n).

From Lemma 2.2, we have limn→∞ Cτ(n) = 0. Applying (3.17), we have
limn→∞ Cτ(n)+1 = 0.
By Lemma 2.3, we have

Cn ≤ max
{
Cn, Cτ(n)

}
≤ Cτ(n)+1.

From inequality above and limn→∞ Cτ(n)+1 = 0, we have

lim
n→∞

(∥∥∥xn − x̂∗∥∥∥2 +
∥∥yn − ŷ∗∥∥2) = lim

n→∞
Cn = 0.

It implies that {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
. By using the same methods

as case 1, we have
(
x̂∗, ŷ∗

)
∈ Ω, where x̂∗ = PV I(C1,A1)u and ŷ∗ = PV I(C2,A2)v. This

complete the proof.
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Remark 3.2. i) If we take A1 ≡ A2 ≡ 0 in Theorem 3.1, we have{
xn+1 = αnu+ (1− αn)PC1

(xn − γnA∗ (Axn −Byn)) ,

yn+1 = αnv + (1− αn)PC2
(yn + γnB

∗ (Axn −Byn)) , for all n ≥ 1,

(3.21)

which is modified (1.1). If ΓSEP = {(x, y) ∈ C1 ×C2 : x ∈ C1, y ∈ C2 and Ax = By} 6= ∅
and {αn}, {γn} are the same as in Theorem 3.1, we have {(xn, yn)} generated by (3.21)
converges strongly to (x∗, y∗) ∈ ΓSEP .
ii) If take H2 ≡ H3 and B ≡ I in Theorem 3.1, we have{

xn+1 = αnu+ (1− αn)PC1

(
I − λ1A1

)
(xn − γnA∗ (Axn − yn)) ,

yn+1 = αnv + (1− αn)PC2

(
I − λ2A2

)
((1− γn) yn + γnAxn) , for all n ≥ 1.

(3.22)

If ΓSV IP =
{

(x, y) ∈ C1 × C2 : x ∈ V I
(
C1, A

1
)
, y ∈ V I

(
C2, A

2
)
and Ax = y

}
6= ∅ and

{αn}, {γn}, λ1, λ2 are the same as in Theorem 3.1, we have {(xn, yn)} generated by (3.22)
converges strongly to (x∗, y∗) ∈ ΓSV IP .

4. Application

We can apply our main theorem to solve the following problems.

4.1. Split Equality Fixed Point Problem

In order to solve SEFP, Zhao [10] introduced the following iterative scheme:
un = xn − γnA∗ (Axn −Byn) ,

xn+1 = βnun + (1− βn)Sun,

vn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = yn+1 = βnvn + (1− βn)Twn,∀, for all n ≥ 0,

where S : H1 → H1, T : H2 → H2 are two quasi-nonexpansive mapping with S − I and
T − I are demi-closed at 0. Under the suitable conditions of every parameter and Ω 6= ∅,
he prove the sequence {(xn, yn)} converges weakly to an element in Ω.

To use a different method of [10] for solving SEFP and a strong convergence theorem,
we needed the following lemma.

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H and
let T : C → C be a nonlinear mapping with a property 〈(I − T )x − (I − T ) y, x − y〉 ≥
γ̂ ‖(I − T )x− (I − T ) y‖2 for all x, y ∈ C for all γ̂ ∈ (0,

1

2
]. Then F (T ) = V I (C, I − T ),

where F (T ) 6= ∅.

Proof. Let the conditions hold; It is easy to see that F (T ) ⊆ V I (C, I − T ).
Let x0 ∈ V I (C, I − T ) and let x∗ ∈ F (T ). Since x0 ∈ V I (C, I − T ), we have

〈y − x0, (I − T )x0〉 ≥ 0, (4.1)
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for all y ∈ C.
From the property of T and (4.1) we have

γ̂‖ (I − T )x0 − (I − T )x∗‖2 ≤ 〈(I − T )x0 − (I − T )x∗, x0 − x∗〉
= −〈(I − T )x0, x

∗ − x0〉 ≤ 0.

Then,

‖ (I − T )x0 − (I − T )x∗‖2 ≤ 0.

It implies that x0 ∈ F (T ). Hence V I (C, I − T ) ⊆ F (T ).

Let C be closed convex subset of a real Hilbert space H. Recall the classical mapping
T : C → C is called κ-strictly pseudo contractive if there exists κ ∈ [0, 1) such that
‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2 for all x ∈ C.

If κ = 0, T is called nonexpansive mapping.

Theorem 4.2. For every i = 1, 2, 3, let Hi be a real Hilbert space and let C1, C2 be
nonempty closed convex subset of H1 and H2, respectively. For every i = 1, 2, let T i :
Ci → Ci be a nonlinear mapping with a property 〈

(
I − T i

)
x −

(
I − T i

)
y, x − y〉 ≥

γ̂T i

∥∥(I − T i)x− (I − T i) y∥∥2 for all x, y ∈ Ci and γ̂T i ∈ (0,
1

2
], α = min {γ̂T 1 , γ̂T 2}.

Assume that Ω = {(x, y) ∈ C1 × C2 : x ∈ F (T 1), x ∈ F (T 2) and Ax = By} is nonempty.
Let the mappings A : H1 → H3, B : H2 → H3 be bounded linear operator with adjoints
A∗ and B∗, respectively. Let sequences {xn} and {yn} generated by u, x1 ∈ C1; v, y1 ∈ C2

and 
un = xn − γnA∗ (Axn −Byn) ,

xn+1 = αnu+ (1− αn)PC1

(
I − λ1(I − T 1)

)
un,

vn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = αnv + (1− αn)PC2

(
I − λ2(I − T 2)

)
vn, for all n ≥ 1,

where {αn} ⊆ [0, 1] with
∑∞
n=1 αn = ∞, limn→∞ αn = 0 and λi ∈ [0, 2α] for all i = 1, 2

and γn ∈ (a, b) ⊂
(
ε,

2

λA + λB
− ε
)

for all n ∈ N, where λA, λB are spectral radius of

A∗A and B∗B respectively and ε is small enough.

Then {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
∈ Ω, where x̂∗ = PF (T 1)u and ŷ∗ =

PF (T 2)v.

Proof. From Theorem 3.1 and Lemma 4.1, we can conclude the desired result.

Corollary 4.3. For every i = 1, 2, 3, let Hi be a real Hilbert space and let C1, C2

be nonempty closed convex subset of H1 and H2, respectively. For every i = 1, 2, let

T i : Ci → Ci be κi-strictly pseudocontractive mapping with α = min

{
1− κ1

2
,

1− κ2
2

}
.

Assume that Ω = {(x, y) ∈ C1 × C2 : x ∈ F (T 1), x ∈ F (T 2) and Ax = By} is nonempty.
Let the mappings A : H1 → H3, B : H2 → H3 be bounded linear operator with adjoints
A∗ and B∗, respectively. Let sequences {xn} and {yn} generated by u, x1 ∈ C1; v, y1 ∈ C2
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and 
un = xn − γnA∗ (Axn −Byn) ,

xn+1 = αnu+ (1− αn)PC1

(
I − λ1(I − T 1)

)
un,

vn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = αnv + (1− αn)PC2

(
I − λ2(I − T 2)

)
vn, for all n ≥ 1,

where {αn} ⊆ [0, 1] with
∑∞
n=1 αn = ∞, limn→∞ αn = 0 and λi ∈ [0, 2α] for all i = 1, 2

and γn ∈ (a, b) ⊂
(
ε,

2

λA + λB
− ε
)

for all n ∈ N, where λA, λB are spectral radius of

A∗A and B∗B respectively and ε is small enough.

Then {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
∈ Ω, where x̂∗ = PF (T 1)u and ŷ∗ =

PF (T 2)v.

Proof. Since T i is κi-strictly pseudocontractive mapping, for all i = 1, 2, we have∥∥T ix− T iy∥∥2 =
∥∥x− y − ((I − T i)x− (I − T i) y)∥∥2

= ‖x− y‖2 − 2〈x− y,
((
I − T i

)
x−

(
I − T i

)
y
)
〉

+‖
(
I − T i

)
x−

(
I − T i

)
y‖2

≤ ‖x− y‖2 + κi
∥∥(I − T i)x− (I − T i) y∥∥2 ,

for all x, y ∈ C.
It implies that

〈
(
I − T i

)
x−

(
I − T i

)
y, x− y〉 ≥ 1− κi

2

∥∥(I − T i)x− (I − T i) y∥∥2 ,
where x, y ∈ Ci, for all i = 1, 2.
From Theorem 4.2, we can conclude the desired result.

4.2. Null Point Problem of Maximal Monotone Operators

In 2014, Chang and Agarwal [20] introduce null point problem related to strictly maxi-
mal monotone operators which is to find x∗ ∈M−1(0), y∗ ∈ N−1(0) such thatAx∗ = By∗,
where M : H1 → H1 and N : H2 → H2 be two strictly maximal monotone operators and
C1, C2, H1, H2, H3, A,B,A

∗, B∗ are the same as in Theorem 3.1. The set of all solution of
null point problem of maximal monotone operators is denote by Υ = {(x, y) ∈ C1 × C2 :
x∗ ∈M−1(0), y∗ ∈ N−1(0) and Ax = By}.

In order to find an element in Υ they introduce the following iterative scheme {wn};

wn+1 = P (αnwn + βnf (wn) + γnK (I − λnG∗G)wn) , n ≥ 0,

where S : H1 → H1 and T : H2 → H2 are one-to-one and quasi-nonexpansive mappings

with K =

[
S
T

]
and P =

[
PC1

PC2

]
, G =

[
A −B

]
, G∗G =

[
A∗A −A∗B
−B∗A B∗B

]
Under the

suitable conditions of every parameter, we have the sequence {wn} converges strongly to
an element in Υ.

To prove a strong convergence theorem for finding an element in Υ we needed the
following lemma.
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Lemma 4.4. Let C be a nonempty closed convex subset of H and let A : C → H be an
α-inverse strongly monotone mapping with A−1(0) 6= ∅. Then V I (C,A) = A−1 (0).

Proof. Let z ∈ A−1 (0), we have 0 = Az. Then 〈y − z,Az〉 = 0. So z ∈ V I (C,A). Then
A−1 (0) ⊆ V I (C,A).

Let z ∈ V I (C,A) and z∗ ∈ A−1 (0). Then 〈y − z,Az〉 ≥ 0, ∀y ∈ C and Az∗ = 0.
Since A is an α-inverse strongly monotone mapping, we have

α‖Az −Az∗‖2 ≤ 〈z − z∗, Az −Az∗〉 ≤ 0.

Then Az = 0. So, we havez ∈ A−1 (0). Therefore V I (C,A) ⊆ A−1 (0).

Theorem 4.5. For every i = 1, 2, 3, let Hi be a real Hilbert space and let C1, C2 be
nonempty closed convex subset of H1 and H2, respectively. Let Ai : Ci → Hi be αi-inverse
strongly monotone mapping for all i = 1, 2 with α = min {α1, α2} and let the mappings A :
H1 → H3, B : H2 → H3 be bounded linear operator with adjoints A∗ and B∗, respectively.
Suppose that Υ = {(x, y) ∈ C1 × C2 : x∗ ∈ A−11 (0), y∗ ∈ A−12 (0) and Ax = By} is a
nonempty set. Let sequences {xn} and {yn} generated by u, x1 ∈ C1; v, y1 ∈ C2 and

un = xn − γnA∗ (Axn −Byn) ,

xn+1 = αnu+ (1− αn)PC1

(
I − λ1A1

)
un,

vn = yn + γnB
∗ (Axn −Byn) ,

yn+1 = αnv + (1− αn)PC2

(
I − λ2A2

)
vn, for all n ≥ 1,

where {αn} ⊆ [0, 1] with
∑∞
n=1 αn = ∞, limn→∞ αn = 0 and λi ∈ [0, 2α] for all i = 1, 2

and γn ∈ (a, b) ⊂
(
ε,

2

λA + λB
− ε
)

for all n ∈ N, where λA, λB are spectral radius of

A∗A and B∗B respectively and ε is small enough.

Then {(xn, yn)} converges strongly to
(
x̂∗, ŷ∗

)
∈ Υ, where x̂∗ = PA−1

1 (0)u and ŷ∗ =

PA−1
2 (0)v.

Proof. From Theorem 3.1 and Lemma 4.4, we can conclude the desired result.

5. Conclusion

The variational inequality problem has been extensively studied because of this method
is easy to apply to solving fixed point problem, minimization problem, zero point problem,
etc. In order to improve the efficiency of this method, we introduced the split equality
variational inequality problem (SEVI)and the method to solve SEVI. By using our main
results we have the methods for solving the split equality fixed problem and the null point
problem of maximal monotone which are introduced by Moudafi and Al-Shemas [8] and
Chang and Agarwal [20], respectively.
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