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1. Introduction

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let C be a nonempty closed convex subset of H. Let T : C → C be a
nonlinear mapping. A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed
points of T is the set F (T ) := {x ∈ C : Tx = x}. The mapping T : C → C is said to be
nonexpansive if ||Tx− Ty|| ≤ ||x− y|| for any x, y ∈ C. In 1965, Browder [1] shown that
if a nonexpansive mapping T : H → H of a Hilbert space H into itself is asymptotically
regular and has at least one fixed point then, for any x ∈ H, a weak limit of a weakly
convergent subsequence of the sequence of successive approximations Tnx is a fixed point
of T.

In 2011, Aoyama and Kohsaka [2] introduced the class of α-nonexpansive mappings in
Banach spaces as follows: Let E be a Banach space and let C be a nonempty subset of
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E. A mapping T : C → E is said to be α-nonexpansive for some real number 0 ≤ α < 1
if

||Tx− Ty|| ≤ α||Tx− y||+ α||Ty − x||+ (1− 2α)||x− y||,

for all x, y ∈ C. Clearly, 0-nonexpansive maps are exactly nonexpansive maps. This
mapping was generalized and extanded by many authors in several directions; see for
instance [3, 4] and references therein.

One of the most interesting iteration processes is the viscosity approximation method
introduced by Moudafi [5]. In 2004, Xu [6] studied such method for a nonexpansive
mapping in a Hilbert space and introduced an iterative scheme for finding the set of fixed
points of a nonexpansive mapping in a Hilbert space as follows:

x1 ∈ C, xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 1,

where T : C → C is a nonexpansive mapping with F (T ) 6= ∅, f : C → C is a contraction,
and {αn} ⊆ (0, 1). Then, they proved a strong convergence theorem under suitable
conditions of the sequence {αn}.

Over the past few decades, the convergence theorem was extended and improved in
many directions (see [7], [8]) due to its applications are desirable and can be used in real-
world applications. So, many authors have been trying to construct new iterations to
prove strong convergence theorems for nonexpansive semigroups; see for instance [9–11]
and references therein. Especially, in 2008, Song and Xu [12] introduced the following
implicit and explicit viscosity iterative schemes,

xn = αnf(xn) + (1− αn)T (tn)xn,

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1.

Then they proved strong convergence theorems of a nonexpansive semigroup under suit-
able conditions. Very recently, Song et al. [13] proved a strong convergence theorem of
the Halpern iteration for an α-nonexpansive semigroup in Hilbert spaces under suitable
conditions as the following schemes,

xn+1 = αnu+ (1− αn)T (tn)xn, n ≥ 1. (1.1)

Moreover, they also proved some strong convergence theorems of Halperns iteration de-
fined by a such iterative method for a family {Tn} of α-nonexpansive mappings.

Our work improves and generalizes some of the results obtained in the above paper,
we introduce a new class of nonexpansive type of mapping namely, AK-generalized non-
expansive mapping, which is more general than an α-nonexpansive mapping in Hilbert
spaces as follow.

Definition 1.1. Let C be a nonempty closed convex subset of a Hilbert space H. A
mapping T : C → C is said to satisfy condition (AK) (or AK-generalized nonexpansive)
for some real numbers α1, α2, α3, α4 with max{α1, α2, α3, α4} < 1 if

||Tx− Ty|| ≤ α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Ty − x||
+ (1− 4 max{α1, α2, α3, α4})||x− y||, (1.2)

for all x, y ∈ C.

Notice that the class of AK-generalized nonexpansive mappings covers several well-
known mappings. For example, every α-nonexpansive mappings is an AK-generalized
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nonexpansive mapping and also 0-nonexpansive maps are exactly nonexpansive maps.
Hence we have the following diagram.

The following example shows that the reverse implication does not hold.

Example 1.2 ([14]). Let X = {(0, 0), (2, 0)(0, 4), (4, 0), (4, 5), (5, 4)} be a subset of R2

with dictionary order. Define a inner product (X, 〈· , · 〉 = ||· , · ||). by ||x1, x2|| = (|x1| +
|x1|)2. Then (X, 〈· , · 〉) is a Hilbert space. Define a mapping T : X → X by

T (0, 0) = (0, 0), T (2, 0) = (0, 0), T (0, 4) = (0, 0),

T (4, 0) = (2, 0), T (4, 5) = (4, 0), T (5, 4) = (0, 4).

Then, we have T is not an α-nonexpansive mapping for any α < 1, and x = (4, 5) and
y = (5, 4), but, we consider ||T (x)− x|| = 25 and ||T (y)− y|| = 25. Then, we have

||Tx− Ty|| = 64 <
3

4
100 +

1

4
4

≤ α125 + α225 + α325 + α425 + (1− 4 max{α1, α2, α3, α4})4
≤ α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Tx− y||

+ (1− 4 max{α1, α2, α3, α4})||x− y||, (1.3)

where min{α1, α2, α3, α4} = 16
25 . Thus, T is an AK-generalized nonexpansive.

Example 1.3. Let X = [0, 2] be a nonempty closed convex subset of a Hilbert space
(H = R, 〈· , · 〉 = |· |). Suppose that T : [0, 2] → [0, 2] be given by Tx = sinx + cosx, for
all x ∈ [0, 2]. Now, we consider

||Tx− Ty|| = 1

2
|2 sinx+ 2 cosx− 2 sin y − 2 cos y|

≤ 1

2
| sinx+ cosx− x|+ 1

2
| sin y + cos y − y|+ 1

2
| sinx+ cosx− y|

+
1

2
| sin y + cos y − x|

≤ α1| sinx+ cosx− x|+ α2| sin y + cos y − y|+ α3| sinx+ cosx− y|
+ α4| sin y + cos y − x|+ (1− 4 max{α1, α2, α3, α4})|x− y|

= α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Tx− y||
+ (1− 4 max{α1, α2, α3, α4})||x− y||, (1.4)

where α1 = α2 = α3 = α4 = 1
2 . Then T is an AK-generalized nonexpansive.

Our work improves and generalizes some of the results obtained in the above pa-
per. We introduce the AK-generalized nonexpansive mapping as generalization of an
α-nonexpansive mapping. We also discuss sucient and necessary conditions of some
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property for such mappings and obtain a convergence result of the viscosity approxi-
mation method for an AK-generalized nonexpansive semigroups under some assumptions
in Hilbert spaces. Moreover, we prove a strong convergence theorem for a family of
AK-generalized nonexpansive mapping in Hilbert spaces.

2. Preliminaries

Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let C be a nonempty closed convex subset of H. Recall that the (nearest
point) projection PC from H onto C assigns to each x ∈ H, there exists the unique point
PCx ∈ C satisfying the property

‖x− PCx‖ = min
y∈C
‖x− y‖.

For any x ∈ H and y ∈ C. Then, PCx = y if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0,∀z ∈ C.

In a real Hilbert space H, it is well known that H satisfies Opial’s condition, i.e., for any
sequence {xn} with xn ⇀ x, the inequality

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf ‖xn − y‖ ,

holds for every y ∈ H with y 6= x.

Lemma 2.1 ([15]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + δn,∀n ∈ N,

where αn is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=1

αn =∞, (2) lim sup
n→∞

δn
αn
≤ 0 or

∞∑
n=1

|δn| <∞.

Then, lim
n→∞

sn = 0.

Lemma 2.2. Let H be a real Hilbert space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉,

for all x, y ∈ H.

Now, we introduce the definitions follow on the results of Song et al. [13].
Let E be a Banach space. An (one-parameter) AK-generalized nonexpansive semigroup
is a family T = {T (t) : t > 0} of mappings D(T ) =

⋂
t>0D(T (t)) and range R(T ) such

that

(1): T (0)x = x for all x ∈ D(T );
(2): T (t+ s)x = T (t)T (s)x for all t, s > 0 and x ∈ D(T );
(3): for each t > 0, T (t) is an AK-generalized nonexpansive mapping, that is,

||Tx− Ty|| ≤ α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Ty − x||
+ (1− 4 max{α1, α2, α3, α4})||x− y||, (2.1)

for all x, y ∈ C, max{α1, α2, α3, α4} < 1.
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Example 2.3. Let X = [0, 2] be a nonempty closed convex subset of a Hilbert space
(H = R, 〈· , · 〉 = |· |). Suppose that T : [0, 2] → [0, 2] be given by Tx = 3−x, for all
x ∈ [0, 2]. Now, for any t, s > 0 and x ∈ D(T );

(1) T (0)x = 30x = x;
(2) T (t+ s)x = 3−(t+s)x = 3−(t)3−(s)x = T (t)T (s)x;
(3) for each t > 0, T (t) is an AK-generalized nonexpansive mapping, that is,

||Tx− Ty|| = |3−x − 3−y|

=
1

2
|2(3−x − 3−y)|

=
1

2
|(3−x − 3−y) + (3−x − 3−y) + x− x+ y − y|

=
1

2
|3−x − x− 3−y + y + 3−x − y − 3−y + x|

=
1

2
|(3−x − x)− (3−y − y) + (3−x − y)− (3−y − x)|

≤ 1

2
|3−x − x|+ 1

2
|3−y − y|+ 1

2
|3−x − y|+ 1

2
|3−y − x|

≤ α1|3−x − x|+ α2|3−y − y|+ α3|3−x − y|
+ α4|3−y − x|+ (1− 4 max{α1, α2, α3, α4})|x− y|

= α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Tx− y||
+ (1− 4 max{α1, α2, α3, α4})||x− y||,

where α1 = α2 = α3 = α4 = 1
2 .

Let T = {T (t) : t > 0} stants for one-parameter AK-generalized nonexpansive semi-
group and F (T ) =

⋂
t>0 F (T (t)). We give the concept of the uniformly asymptotically

regular as the following definitions.

Definition 2.4. An AK-generalized nonexpansive semigroup T = {T (t) : t > 0} is said
to be uniformly asymptotically regular (in short, u.a.r.) if, for any s ≥ 0 and any bounded
subset K of D(T ),

lim
t→∞

sup
x∈K
‖T (s)(T (t)x)− T (t)x‖ = 0.

Definition 2.5. A family {Tn} of an AK-generalized nonexpansive mapping is said to
be uniformly asymptotically regular (in short, u.a.r.) if, for each positive integer m and
any bounded subset K of

⋂
nD(Tn),

lim
n→∞

sup
x∈K
‖Tm(Tnx)− Tnx‖ = 0.

3. Main Results

In this section, we first study some properties of an AK-generalized nonexpansive
mapping in a Hilbert space.

Lemma 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and T :
C → C be an AK-generalized nonexpansive mapping with F (T ) 6= ∅. Then F (T ) is closed
convex and ||Tx− p|| ≤ ||x− p|| for all x ∈ C and p ∈ F (T ).
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Proof. Since T is an AK-generalized nonexpansive mapping, for all x ∈ C and p ∈ F (T )

||Tx− p|| = ||Tx− Tp||
≤ α1||Tx− x||+ α2||Tp− p||+ α3||Tx− p||+ α4||Tp− x||
+ (1− 4 max{α1, α2, α3, α4})||x− p||
≤ α1(||Tx− p||+ ||p− x||) + α3||Tx− p||+ α4||p− x||
+ (1− 4 max{α1, α2, α3, α4})||x− p||, (3.1)

and so

||Tx− p|| ≤ 1− 2 max{α1, α2, α3, α4}
1− α1 − α3

||x− p|| < ||x− p||. (3.2)

Let p, q ∈ F (T ), (0 ≤ λ ≤ 1) and set z = λp+ (1− λ)q. Using the Parallelogram Law, we
get

||z − p
2
− Tz − p

2
||2 +

1

4
||z − Tz||2 =

1

2
||z − p||2 +

1

2
||Tz − p||2

≤ ||z − p||2,

||z − q
2
− Tz − q

2
||2 +

1

4
||z − Tz||2 =

1

2
||z − q||2 +

1

2
||Tz − q||2

≤ ||z − q||2.

(3.2) implies that

||z + Tz

2
− p||2 = ||z − p

2
+
Tz − p

2
||2 ≤ ||z − p||2 − 1

4
||z − Tz||2

= (1− λ)2||p− q||2 − 1

4
||z − Tz||2,

||z + Tz

2
− q||2 = ||z − q

2
+
Tz − q

2
||2 ≤ ||z − q||2 − 1

4
||z − Tz||2

= λ2||p− q||2 − 1

4
||z − Tz||2.

Suppose that z 6= Tz. Then, we have

||z + Tz

2
− p||2 < (1− λ)2||p− q||2, ||z + Tz

2
− q||2 < λ2||p− q||2.

So, we obtain that

||p− q|| ≤ ||z + Tz

2
− p||+ ||z + Tz

2
− q|| < (1−λ)||p− q||+ λ||p− q|| = ||p− q||,

which is a contradiction and so z = Tz. Thus F (T ) is convex. Now, we show F (T )
is closed. Suppose that {xn} ∈ F (T ) with limn→∞ xn = x, it follows from (3.3) that
||xn − Tx|| = ||xn − x|| → 0 as n → ∞ and hence limn→∞ xn = Tx = x, Thus F (T ) is
closed.

Proposition 3.2. Let H be a nonempty closed convex subset of a Hilbert space H and
T : C → C be an AK-generalized nonexpansive mapping. If a sequence {xn} in C
converges weakly to x ∈ C and limn→∞ ||xn − Txn|| = 0, then x = Tx.
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Proof. Since {xn} is weakly convergent, we have {xn} is bounded. Since

||Txn|| ≤ ||Txn − xn||+ ||xn||,

we get {Txn} is bounded. If 0 ≤ max{α1, α2, α3, α4} < 1, then

||Txn − Tx|| ≤ α1||Txn − xn||+ α2||Tx− x||+ α3||Txn − x||+ α4||Tx− xn||
+ (1− 4 max{α1, α2, α3, α4})||xn − x||
≤ α1||Txn − xn||+ α2(||Tx− Txn||+ ||Txn − xn||+ ||xn − x||)

+ α3(||Txn − xn||+ |xn − x||) + α4(||Tx− Txn||+ ||Txn − xn||)
+ (1− 4 max{α1, α2, α3, α4})||xn − x||. (3.3)

This implies that

||Txn − Tx|| ≤
1− 2 max{α1, α2, α3, α4}

1−α2−α4
||xn−x||+

α1+α2+α3+α4

1−α2−α4
||Txn−xn||

≤ ||xn − x||+
α1 + α2 + α3 + α4

1− α2 − α4
||Txn − xn||. (3.4)

If max{α1, α2, α3, α4} < 0,

||Txn − Tx|| ≤ α1||Txn − xn||+ α2||Tx− x||+ α3||Txn − x||+ α4||Tx− xn||
+ (1− 4 max{α1, α2, α3, α4})||xn − x||
≤ α1||Txn − xn||+ α2(||Tx− Txn|| − ||Txn − xn||+ ||xn − x||)

+ α3(||xn − x|| − ||Txn − xn||) + α4(||Tx− Txn|| − ||Txn − xn||)
+ (1− 4 max{α1, α2, α3, α4})||xn − x||. (3.5)

This implies that

||Txn − Tx|| ≤
1− 2 max{α1, α2, α3, α4}

1−α2−α4
||xn−x||+

α1−α2−α3−α4

1−α2−α4
||Txn−xn||

≤ ||xn − x||+
α1 + α2 + α3 + α4

1− α2 − α4
||Txn − xn||. (3.6)

In other cases, we obtain that

||Txn − Tx|| ≤ ||xn − x||+
α1 + |α2|+ |α3|+ |α4|

1− α2 − α4
||Txn − xn||. (3.7)

Thus,

lim sup
n→∞

||Txn − Tx|| ≤ lim sup
n→∞

||xn − x||. (3.8)

Thus, by the properties of a Hilbert space H, we have

||xn − x||2 = ||(xn − Tx) + (Tx− x)||2

= ||xn − Tx||2 + ||Tx− x||2 + 2〈xn − Tx, Tx− x〉
≤ (||xn − Txn||+ ||Txn − Tx||)2 + ||Tx− x||2 + 2〈xn − Tx, Tx− x〉.
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Since {xn} weakly converges to x ∈ C, it follows from (3.8) that

lim sup
n→∞

||xn − x||2 ≤ lim sup
n→∞

||Txn − Tx||2 + ||Tx− x||2

+ 2 lim sup
n→∞

〈xn − Tx, Tx− x〉

≤ lim sup
n→∞

||Txn − Tx||2 + ||Tx− x||2 + 2〈x− Tx, Tx− x〉

≤ lim sup
n→∞

||xn − x||2 − ||Tx− x||2

respectively, and hence ||Tx− x||2 ≤ 0.

From the proof of Proposition 3.2, we have the following lemma:

Lemma 3.3. Let C be a nonempty closed convex subset of a Hilbert space H and T :
C → C be an AK-generalized nonexpansive mapping. Then

||Txn − Tx|| ≤ ||xn − x||+
α1 + |α2|+ |α3|+ |α4|

1− α2 − α4
||Txn − xn|| (3.9)

for all x, y ∈ C.

Now, we prove a strong convergence theorem of the viscosity approximation method for
an AK-generalized nonexpansive semigroup under some assumptions in a Hilbert space.

Theorem 3.4. Let C be a nonempty closed convex subset of a Hilbert space H and
T = {T (t) : t > 0} be the u.a.r. semigroup of AK-generalized nonexpansive mappings
from C into itself with F (T ) 6= ∅. Let f : C → C be a contraction mapping with coefficient
γ ∈ (0, 1). Let the sequence {xn} be generated by x1 ∈ C and

xn+1 = βnf(xn) + (1− βn)T (tn)xn, n ≥ 1, (3.10)

where {βn} ⊆ (0, 1) and tn > 0 satisfy the following conditions:

(i) lim
n→∞

βn = 0, (ii)

∞∑
n=1

βn =∞, (iii) lim
n→∞

tn = +∞.

Then the sequence {xn} converge strongly to z0 = PF (T )f(z0).

Proof. Firstly, we show that the sequence {xn} is bounded. Let x∗ = PF (T )f(x0). From
Lemma 3.1, then ‖T (t)x− x∗‖ ≤ ‖x− x∗‖ for all x ∈ C and t > 0. From the definition of
xn, we get

‖xn+1 − x∗‖ ≤ βn‖f(xn)− x∗‖+ (1− βn)‖T (tn)xn − x∗‖
≤ βn‖f(xn)− x∗‖+ (1− βn)‖xn − x∗‖
≤ βn‖f(xn)− f(x∗)‖+ βn‖f(x∗)− x∗‖+ (1− βn)‖xn − x∗‖
≤ βnγ‖xn − x∗‖+ (1− βn)‖xn − x∗‖+ βn‖f(x∗)− x∗‖
= (1− βn(1− γ))‖xn − x∗‖+ βn‖f(x∗)− x∗‖.

By mathematical induction, we obtain that

‖xn − x∗‖ ≤ max

{
‖x0 − x∗‖,

‖f(x∗)− x∗‖
1− α

}
,∀n ∈ N.
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Therefore, {xn} is bounded and so are {T (tn)xn} and {f(xn)}.
From the condition limn→∞ βn = 0, we have

lim
n→∞

‖xn+1 − T (tn)xn‖ = lim
n→∞

βn‖f(xn)− T (tn)xn‖ = 0. (3.11)

Since {T (t) : t > 0} is the u.a.r. AK-generalized nonexpansive semigroup, then for s > 0,

lim
n→∞

‖T (s)T (tn)xn − T (tn)xn‖ ≤ lim
n→∞

sup
x∈K
‖T (s)T (tn)x− T (tn)x‖ = 0. (3.12)

where K is any bounded subset of C containing {xn}.
From the definition of a AK-generalized nonexpansive and Lemma 3.3, we have

||T (s)(T (tn)xn)− T (s)xn+1|| ≤||T (tn)xn − xn+1||

+
α1 + |α2|+ |α3|+ |α4|

1− α2 − α4
||T (s)(T (tn)xn)− T (tn)xn||. (3.13)

Hence, for all s > 0,

‖xn+1 − T (s)xn+1‖ ≤ ‖xn+1 − T (tn)xn‖+ ‖T (tn)xn − T (s)(T (tn)xn)‖
+ ‖T (s)(T (tn)xn) + T (s)xn+1‖
≤ ‖xn+1 − T (tn)xn‖+ ‖T (tn)xn − T (s)(T (tn)xn)‖

+ ||xn+1 − T (tn)xn||

+
α1 + |α2|+ |α3|+ |α4|

1− α2 − α4
||T (tn)xn − T (s)(T (tn)xn)||

≤ 2‖xn+1 − T (tn)xn‖

+

(
1 +

α1+|α2|+|α3|+|α4|
1−α2−α4

)
‖T (tn)xn − T (s)(T (tn)xn)‖.

(3.14)

From (3.11), (3.12), and (3.14), we have

lim
n→∞

‖xn+1 − T (s)xn+1‖ = 0 (3.15)

for all s > 0.
Next, we show that lim

n→∞
sup 〈f(z0)− z0, xn − z0〉 ≤ 0 where z0 = PF (T )f(z0). To show

this, choose a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 = lim
k→∞

〈f(z0)− z0, xnk
− z0〉 . (3.16)

Without loss of generality, we may assume {xnk
} ⇀ ω for some ω ∈ C. By Lemma 3.1

and (3.15), we have ω ∈ F (T (s)). Since s is arbitrary, then ω ∈ F (T ).
Since xnk

⇀ ω as k → ∞ and ω ∈ F (T ). By (3.16) and the properties of the metric
projection, we have

lim sup
n→∞

〈f(z0)− z0, xn − z0〉 = lim
k→∞

〈f(z0)− z0, xnk
− z0〉

= 〈f(z0)− z0, ω − z0〉
≤ 0. (3.17)
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Finally, we show that lim
n→∞

xn = z0, where z0 = PF (T )f(z0). By Lemma 2.2, we have

‖xn+1 − z0‖2 = ‖βn(f(xn)− z0) + (1− βn)(T (tn)xn − z0)‖2

≤ ‖(1− βn)(T (tn)xn − z0)‖2 + 2βn〈f(xn)− z0, xn+1 − z0〉
≤ (1− βn)2‖xn − z0‖2 + 2βn〈f(xn)− z0, xn+1 − z0〉
= (1− βn)2‖xn − z0‖2 + 2βn〈f(xn)− f(z0), xn+1 − z0〉

+ 2βn〈f(z0)− z0, xn+1 − z0〉
≤ (1− βn)2‖xn − z0‖2 + 2βn‖f(xn)− f(z0)‖‖xn+1 − z0‖

+ 2βn〈f(z0)− z0, xn+1 − z0〉
≤ (1− βn)2‖xn − z0‖2 + 2βnγ‖xn − z0‖‖xn+1 − z0‖

+ 2βn〈f(z0)− z0, xn+1 − z0〉
≤ (1− βn)2‖xn − z0‖2 + βnγ‖xn − z0‖2 + βnγ‖xn+1 − z0‖2

+ 2βn〈f(z0)− z0, xn+1 − z0〉.

It implies that

‖xn+1 − z0‖2 ≤
(1− βn)2 + βnγ

1− βnγ
‖xn − z0‖2 +

2βn
1− βnγ

〈f(z0)− z0, xn+1 − z0〉

=

(
1− 2βn(1− γ)

1− βnγ

)
‖xn − z0‖2 +

2βn(1− γ)

1− βnγ

(
βn

2(1− γ)
‖xn − z0‖2

+
1

1− γ
〈f(z0)− z0, xn+1 − z0〉

)
.

From the conditions (i),(ii), (3.17), and Lemma 2.1, we can conclude that the sequence
{xn} converges strongly to z0 = PF (T )f(z0). This completes the proof.

By continuing in the same direction as in Theorem 3.4, we obtian the following theorem.

Theorem 3.5. Let C be a nonempty closed convex subset of a Hilbert space H and
{Tn} be a family of u.a.r. AK-generalized nonexpansive mappings from C into itself with
F = F (Tn) 6= ∅. Let f : C → C be a contraction mapping with coefficient γ ∈ (0, 1). Let
the sequence {xn} be generated by x1 ∈ C and

xn+1 = βnf(xn) + (1− βn)Tnxn, n ≥ 1, (3.18)

where {βn} ⊆ (0, 1) and tn > 0 satisfy the following conditions:

(i) lim
n→∞

βn = 0, (ii)

∞∑
n=1

βn =∞.

Then the sequence {xn} converge strongly to z0 = PFf(z0).

Proof. Put the terms T (tn) and T (s) with the terms Tn and Tm in Theorem 3.4. Us-
ing Definition 2.5 and the same method of proof in Theorem 3.4, we have the desired
conclusion.
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Remark 3.6. In this work, we introduce a new class of nonexpansive type of map-
ping namely, AK-generalized nonexpansive mapping, which is more general than an α-
nonexpansive mapping. Moreover, we obtain convergence results of the viscosity approxi-
mation method for an AK-generalized nonexpansive semigroups under some assumptions
in Hilbert spaces. However, we should like remark the following:

(1) The main theorem of Song et al. [13] gave a strong convergence theorem of
the Halpern iteration for an α-nonexpansive semigroups in Hilbert spaces by
using the iterative scheme (1.1), while the main theorem of this paper give a
convergence result for an AK-generalized nonexpansive semigroup by using the
iterative scheme (3.10) which is improve and extend than the main results of Song
et al. [13].

(2) The class of mappings studied in this paper is more general than the class of
mappings studied in Aoyama and Kohsaka [2].

(3) We studied the AK-generalized nonexpansive mapping in Hilbert spaces as
Aoyama and Kohsaka [2], Muangchoo-in et al. [3] and Ariza-Ruiz et al. [4] stud-
ied α-nonexpansive mappings in Banach space. Moreover, Xu [6] investigated a
nonexpansive mapping in Hilbert spaces.
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