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Abstract The main purpose of this paper is to construct a twin parametric margin support vector

machine combined an ε−insensitive loss function for finding a pair of parametric margin hyperplanes

that automatically adapts to the parametric noise with arbitrary shape to capture the data structure

more accurately. We exhaustively test several UCI datasets demonstrates that our SPTPMSVM is noise

insensitive, retains sparsity in most cases. Finally, we present the numerical experiment and compare our

model with other models.
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1. Introduction

The support vector machine (SVM) was proposed by Cortes and Vapnik [1, 2] for
classification. The SVM was describe by the maximum margin of hyperplane which the
margin means that the minimum of the distance between a point in the training set and
hyperplane. We suppose the training sets are defined by

TC = {(xi, yi), (i = 1, 2, ..,m)}, (1.1)

where the data xi ∈ Rn and labels yi ∈ {−1, 1} for i = 1, 2, ...,m. Let m1,m2 are patterns
having class label +1 and −1 respectively. Thus, the number of data is m1 + m2 = m.
The linear L1-norm SVM attempts to find a hyperplane of the form

wTx+ b = 0, (1.2)
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where w ∈ Rn, b ∈ R. Therefore, the optimization problem of SVM as follows:

min
(w,b,ξ)

1

2
‖w‖2 + C

m∑
i=1

ξi

subject to

yi(w
Txi + b) + ξi ≥ 1, (i = 1, 2, ...,m),

ξi ≥ 0, (i = 1, 2, ...,m) (1.3)

where C > 0 is constant and the term
∑m
i=1 ξi is misclassification error for each i =

1, 2, ...,m [2, 3]. We attempt to find a separating hyperplane f(x) = wTx + b = 0, w ∈
Rn, b ∈ R; so as to maximize the margin and minimize the training error by hinge loss
function

Lhinge(x, y, f(x)) = max(1− yf(x), 0). (1.4)

It is quite easy for finding training error, but sensitive with noise and bad re-sampling
[4–9].

In 2014, Huang [3] was introduce the pinball loss function for solved noise insensitive,
it follows that

Lτ (u) =

{
u , u ≥ 0

−τu , u < 0,
(1.5)

where u = 1− yf(x) and τ ≥ 0 [10–12]. Moreover, Huang was propose ε-insensitive zone
pinball loss function for solved noise insensitive and sparsity problem, which defined by

Lετ (u) =


u− ε , if u > ε

0 , if − ε
τ ≤ u ≤ ε

−τ(u+ ε
τ ) , u < − ε

τ ,

(1.6)

where u = 1− yf(x), ε ≥ 0 and τ ≥ 0 are user-defined parameters.
In 2007, Jayadeva [13] proposed twin support vector machine (TWSVM). The concept

of TWSVM is to find two non-parallel proximal hyperplanes of other classes for classifier
a points in the training set [14–17]. This model is smaller sized QPPs, as compared to
single large-sized QPP being solved by SVMs, which TWSVM faster than the model of
SVM.

In 2010, Hao improvement of ν-SVM [18] by using 0 ≤ ν ≤ 1 is parametric insensitive
for regression and classification. The par−ν−SVM [19] can be useful in many cases,
especially when the noise is heteroscedastic.

Later in 2011, Peng [20] introduced the combination models of TWSVM and par−ν−
SVM. They determine indirectly the separating hyperplane was solved by two smaller
sized support vector machine (SVM), we called that twin parametric-margin support
vector machine (TPMSVM). The TPMSVM suitable for the special case, when the data
has a heteroscedastic error structure. It clearly that, the speed of TPMSVM more than
par−ν−SVM.

For the motivation, we modification of TPMSVM for classification and using the ε-
insensitive zone pinball loss function. Then, this model can solve noise insensitive in
many cases, especially when the data heteroscedastic error structure, that is, the noise
strongly depends on the input value.
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2. Background

In this section, we present some ideas for modifying our model.

2.1. Par-ν-Support Vector Machine

Suppose two non-parallel separating hyperplanes satisfies wTx+b = ±(zTx+d), given
f(x) = wTx+b and g(x) = zTx+d are linear functions, and the classification hyperplane
is the bisector of them. The hyperplane wTx+ b = 0 separates the data as follows:

wTx+ b ≥ (zTx+ d) for ∀x ∈ A
wTx+ b ≤ (zTx+ d) for ∀x ∈ B.

Therefore the QPP as follows:

min
w,b,z,d,ξ

1

2
‖w‖2 + C(−ν(

1

2
‖z‖2 + d) +

1

m
eT ξ)

s.t. D(Xw + eb) ≥ Xz + ed− ξ, (2.1)

ξ ≥ 0, (2.2)

where X represents the training data and D is the diagonal matrix with each diagonal
element representing the label of the corresponding training point. Here, ξ is the error
variable.

2.2. Twin Support Vector Machine (TWSVM)

The linear TWSVM aims to find the two non-parallel hyperplanes given by wT1 x+b1 = 0
and wT2 x + b2 = 0. Let matrix data class +1 is A, matrix data class −1 is B of order,
m1 × n and m2 × n respectively. The TWSVM hyperplanes are obtained by solving the
following pair of quadratic programming problems:

(TWSVM1) min
w1,b1,ξ2

1

2
‖Aw1 + e1b1‖2 + c1e

T
2 ξ1

s.t. − (Bw1 + e2b1) + ξ1 ≥ e2, (2.3)

ξ1 ≥ 0,

and

(TWSVM2) min
w2,b2,ξ1

1

2
‖Bw2 + e2b2‖2 + c2e

T
1 ξ2

s.t. (Aw2 + e1b2) + ξ2 ≥ e1, (2.4)

ξ2 ≥ 0,

where the constant c1 ≥ 0 (c2 ≥ 0) is trade-off factor between sum of error vector ξ1(ξ2)
due to samples of class 1 (class −1) and proximity of hyperplane towards its own class;
and e1 and e2 are vectors of ones of appropriate dimensions. A new point x ∈ Rn is
assigned to class i(i = 1 or 2) depending on which of the two aforementioned hyperplanes
the point x is closer to, i.e.

Class(i) = arg min
i=1,2

|xTwi + bi|
‖wi‖

, (2.5)

where | · | is the perpendicular distance of point x from the plane xTwi + bi = 0, i = 1, 2.
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2.3. Twin Parametric Support Vector Machine (TPSVM)

Twin Parametric Support Vector Machine [20] considers a pair of parametric-margin
hyperplanes f1(x) = wT1 x + b1 = 0 and f2(x) = wT2 x + b2 = 0 such that each one
determines a positive or negative parametric margin. The optimization problems defined
by

(TPWSVM1) min
w1,b1,ξ1

1

2
‖w1‖2 +

ν1
m1

eT1 (Bw1 + e2b1) +
c1
m1

eT1 ξ1

s.t. Aw1 + e1b1 ≥ 0− ξ1, (2.6)

ξ1 ≥ 0,

and

(TPWSVM2) min
w2,b2,ξ2

1

2
‖w2‖2 +

ν2
m2

eT2 (Aw2 + e1b2) +
c2
m2

eT2 ξ2

s.t. Bw2 + e2b2 ≥ 0− ξ2, (2.7)

ξ2 ≥ 0,

where c1 ≥ 0(c2 ≥ 0) and ν1 ≥ 0(ν2 ≥ 0) are the regularization parameters which
determine the penalty weights, and ξ1, ξ2 represents the error variables.

After optimizing Eqs. (2.6) and (2.7), the classifier for TPSVM is given as follows:

f(x) = sign[(ŵ1 + ŵ2)Tx+ (̂b1 + b̂2)], (2.8)

where ŵ1 = wi

‖wi‖ and b̂1 = bi
‖wi‖ for i = 1, 2.

3. Sparse Pinball Twin Parametric Margin Support Vector
Machine (SPTPMSVM)

In this section, we introduce a spars pinball twin parametric margin support vector
machine in linear and nonlinear case. Moreover, calculated the dual problems of two case
by lagrangian and Karush-Kuhn-Tucker(KKT) optimal conditions.

3.1. Linear Case

For the linear case, the SPTPMSVM finds two hyperplanes in Rm:

f1(x) = wT1 x+ b1 = 0 and f2(x) = wT2 x+ b2 = 0, (3.1)

min
w1,b1,ξ1

1

2
[‖w1‖2 + b21] +

ν1
m2

eT2 (Bw1 + e2b1) +
c1
m1

eT1 ξ1 (3.2)

subject to Aw1 + b1e1 ≥ 0− (ξ1 + ε1e1)

Aw1 + b1e1 ≤ 0 +
1

τ1
(ξ1 + ε1e1)

ξ1 ≥ 0,

and
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min
w2,b2,ξ2

1

2
[‖w2‖2 + b22]− ν2

m1
eT1 (Aw2 + e1b2) +

c2
m2

eT2 ξ2 (3.3)

subject to Bw2 + b2e2 ≤ 0 + (ξ2 + ε2e2)

Bw2 + b2e2 ≥ 0− 1

τ2
(ξ2 + ε2e2)

ξ2 ≥ 0,

where ξ1, ξ2 are slack vectors and c1, c2 > 0, ν1, ν2 > 0, and τ1, τ2 > 0 are parameters
chosen in advance.

To solve problem (3.2) and (3.3). Consider (3.2) by using Lagrangian function as follow

L(w1,b1,ξ1,α,β,γ) =
1

2
[‖w1‖2 + b21] +

ν1
m2

eT2 (Bw1 + e2b1) +
c1
m1

eT1 ξ1

−αT ((Aw1 + b1e1) + ξ1 + ε1e1)

−βT (−(Aw1 + b1e1) +
1

τ1
ξ1 +

1

τ1
ε1e1)− γT ξ1 (3.4)

where α = (α1, α2, ..., αm1), β = (β1, β2, ..., βm1), γ = (γ1, γ2, ..., γm1) ≥ 0.

From Karush-Kuhn-Tucker(KKT) optimality condition, we get

∂L

∂w1
= w1 +

ν1
m2

BT e2 −ATα+ATβ = 0, (3.5)

∂L

∂b1
= b1 +

ν1
m2

eT2 e2 − eT1 α+ eT1 β = 0, (3.6)

∂L

∂ξ1
=

c1
m1

e1 − α−
1

τ1
β − γ = 0. (3.7)

Aw1 + b1e1 + ξ1 + ε1e1 ≥ 0 , ξ1 ≥ 0 (3.8)

αT ((Aw1 + b1e1) + ξ1 + ε1e1) = 0 , α ≥ 0 (3.9)

βT (−(Aw1 + b1e1) +
1

τ1
ξ1 +

1

τ1
ε1e1) = 0 , β ≥ 0 (3.10)

γT ξ1 = 0 , γ ≥ 0. (3.11)

From (3.7) we have,

α =
c1
m1

e1 −
1

τ1
β − γ (3.12)

and

β =
c1τ1
m1

e1 − τ1α− τ1γ. (3.13)

Since α, β, γ ≥ 0 so, we get 0 ≤ α ≤ c1
m1

e1 and 0 ≤ β ≤ c1τ1
m1

e1.

Let u =

[
w1

b1

]
, H = [A e1], G = [B e2] and we combine equation (3.5) and (3.6) to

get, [
w1

b1

]
+

ν1
m2

e2

[
BT

eT2

]
−
[
AT

eT1

]
α+

[
AT

eT1

]
β = 0 (3.14)
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from equation (3.14) can be rewritten as

u+
ν1
m2

GT e2 −HT (α− β) = 0. (3.15)

Set λ = α− β, we get that

u = HTλ− ν1
m2

GT e2. (3.16)

Then, the dual problem of the problem (3.2) is

max
λ,α,β

−1

2
λTHHTλ+

ν1
m2

λTHGT e2 − ε1αT e1 −
ε1
τ1
βT e1

subject to 0 ≤ α ≤ c1
m1

e1, 0 ≤ β ≤ c1τ1
m1

e1, λ = α− β. (3.17)

Similarly, let v =

[
w2

b2

]
, P = [A e1], Q = [B e2] such that v =

ν2
m1

PT e1−QTµ where

µ = ω − σ. The dual problem of (3.3) get that,

max
µ,ω,σ

−1

2
µTQQTµ+

ν2
m1

µTPQT e1 − ε2ωT e2 −
ε2
τ2
σT e2

subject to 0 ≤ ω ≤ c2
m2

e2, 0 ≤ σ ≤ c2τ2
m2

e2, µ = ω − σ. (3.18)

3.2. Non-Linear Case

In this case, we extend SPTPMSVM to the non-linear case [13]. Suppose that

K(xT , CT )z1 + b1 = 0,

and K(xT , CT )z2 + b2 = 0, (3.19)

where C =

[
Am1×n
Bm2×n

]
.

Where, K is the kernel function which can be chosen according to the specific task at
hand and z1, z2 ∈ Rm1+m2 . For instance, K(xT , CT ) = xTCT and define CT z1 = w1 and
CT z2 = w2, then we get the linear planes.

From (3.2) and (3.3), we formulate in case of non-linear case:

min
z1,b1,ξ1

1

2
[‖K(A,CT )z1‖2 + b21] +

ν1
m2

eT2 (K(B,CT )z1 + e2b1) +
c1
m1

eT1 ξ1 (3.20)

subject to K(A,CT )z1 + b1e1 ≥ 0− (ξ1 + ε1e1)

K(A,CT )z1 + b1e1 ≤ 0 +
1

τ1
(ξ1 + ε1e1)

ξ1 ≥ 0,

and

min
z2,b2,ξ2

1

2
[‖K(B,CT )z2‖2 + b22]− ν2

m1
eT1 (K(A,CT )z2 + e1b2) +

c2
m2

eT2 ξ2 (3.21)

subject to K(B,CT )z2 + b2e2 ≤ 0 + (ξ2 + ε2e2)

K(B,CT )z2 + b2e2 ≥ 0− 1

τ2
(ξ2 + ε2e2)

ξ2 ≥ 0,
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where ξ1, ξ2 are slack vectors and c1, c2 > 0, ν1, ν2 > 0 and τ1, τ2 > 0 are parameters
chosen in advance.

We can write the dual problem of problem (3.20), it’s follows

max
λ,α,β

−1

2
λTSSTλ+

ν1
m2

λTSRT e2 − ε1αT e1 −
ε1
τ1
βT e1

subject to 0 ≤ α ≤ c1
m1

e1, 0 ≤ β ≤ c1τ1
m1

e1, λ = α− β. (3.22)

Where, S = [K(A,CT ) e1] and R = [K(B,CT ) e2]. The augmented vector u =

[
z1
b1

]
and get,

u = STλ− ν1
m2

RT e2. (3.23)

We note that we apply well-conditioning, when required, in the same manner as in
(3.16). Similarly, the dual problem for (3.21) is:

max
µ,ω,σ

−1

2
µTNNTµ+

ν2
m1

µTLNT e1 − ε2ωT e2 −
ε2
τ2
σT e2

subject to 0 ≤ ω ≤ c2
m2

e2, 0 ≤ σ ≤ c2τ2
m2

e2, µ = ω − σ. (3.24)

Here, L = [K(A,CT ) e1] and N = [K(B,CT ) e2]. Further, the augmented vector

v =

[
z2
b2

]
is calculated by the relation:

v =
ν2
m1

LT e1 −NTµ. (3.25)

Once we obtain the required parameters from problems (3.22) and (3.24), we use the
decision function to predict the class of a new sample x ∈ Rn by assigning it to class l,
(l = 1, 2) in a manner similar to the linear case.

4. Noise Insensitivity

Here we explain, from an analytical perspective, how incorporating the ε-insensitive
pinball function leads to noise insensitivity.

For the sake of brevity, we consider SPTPMSVM (3.2) for the linear case. Consider
the generalized sign function, sgnετ (u) corresponding to (1.6):

sgnετ (u) =



{1} , if u > ε,

[0, 1] , if u = ε,

{0} ,− ε
τ < u < ε,

[−τ, 0] , if u = − ε
τ

{−τ} , if u < − ε
τ ,

(4.1)

sgnετ (u) is the subgradient of the ε−insensitive pinball loss function and, hence, the
optimality condition for (3.2) can be written as:

0 ∈ w1 +
ν1
m2

m2∑
j=1

xj +
c1
m1

m1∑
i=1

sgnε1τ1(0− (wT1 xi + b1)xi), (4.2)
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where 0 is the vector which has all its components equal to zero and xi ∈ A, xj ∈ B.
For a give w1, b1, we partition the index set into five sets

Sw1,b1
0 = {i : wT1 xi + b1 < −ε}
Sw1,b1
1 = {i : wT1 xi + b1 = −ε}

Sw1,b1
2 = {i : −ε < wT1 xi + b1 <

ε1
τ1
}

Sw1,b1
3 = {i : wT1 xi + b1 =

ε1
τ1
}

Sw1,b1
4 = {i : wT1 xi + b1 >

ε1
τ1
}.

Here, i = 1, 2, ...,m1. The data samples in Sw1,b1
2 do not contribute to w1 since the

sub-gradient at these data samples is zero, as is evident from (4.1). Thus, Sw1,b1
2 directly

affects sparsity of the model. Set Sw1,b1
2 is dependent on the value of ε. As ε approaches

0 sparsity is lost whereas if ε → ∞, more samples lie in Sw1,b1
2 and, as a result, we gain

sparsity. With the above notations and the existence of ψ1 ∈ [0, 1] and θ1 ∈ [−τ1, 0] Eq.
(4.2) can be rewritten as:

m1

c1
w1 +

m1

c1

ν1
m2

m2∑
j=1

xj +
∑

i∈Sw1,b1
0

xi +
∑

i∈Sw1,b1
1

ψxi −
∑

i∈Sw1,b1
3

θxi − τ
∑

i∈Sw1,b1
4

xi = 0. (4.3)

The above condition shows that when the value of ε is fixed, τ controls the number of

samples in the sets Sw1,b1
0 , Sw1,b1

1 , Sw1,b1
2 , Sw1,b1

3 , and Sw1,b1
4 . However, since the number of

data samples in Sw1,b1
1 and Sw1,b1

3 are much fewer than in the other sets, we are primarily

concerned with sets Sw1,b1
0 , Sw1,b1

2 and Sw1,b1
4 . When τ is small, the number of samples in

Sw1,b1
4 is quite large while the other sets have fewer data samples, thus making the result

sensitive to feature noise in the samples. On the contrary, having a larger value imparts
many data samples to all the five sets and the result is less sensitive to zero mean feature
noise.

Proposition 4.1. If the optimization problem (3.17) or (3.22) has a solution, parameters
must satisfy the condition ν1 + b1 ≤ c1.

Proposition 4.2. Let p0 denote the number of positive samples xi(i = 1, 2, ...,m1) in

Sw1,b1
0 . We have

p0
m1
≤ 1−

1− b1+ν1
c1

(1 + τ1)
. (4.4)

Proof. Consider an arbitrary sample xi0 ∈ S
w1,b1
0 , (1 ≤ i0 ≤ m1). From the KKT condi-

tion (3.10) and (3.11), we have βi0 = γi0 = 0. From (3.7), we have αi0 =
c1
m1

such that

λi0 = αi0 − βi0 =
c1
m1

. Also, from the KKT condition (3.6), we have

b1 + ν1 − (
∑

i∈Sw1,b1
0

λi +
∑

i/∈Sw1,b1
0

λi) = 0 (4.5)
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and then,

b1 + ν1 − (
p0c1
m1

+
∑

i/∈Sw1,b1
0

λi) = 0. (4.6)

Since αi ≥ 0, βi ≥ 0 and (3.7), we will consider

Case I

c1
m1
− αi −

1

τ1
βi − γi = 0

c1
m1
− αi −

1

τ1
(βi + αi − αi)− γi = 0

c1
m1
− αi −

1

τ1
(αi − (αi − βi))− γi = 0

c1
m1
− αi − γi +

1

τ1
(λi − αi) = 0

c1
m1
− γi +

1

τ1
λi + (−1− 1

τ1
)αi = 0

c1
m1

+
1

τ1
λi + (−1− 1

τ1
)αi = γi.

Since γ ≥ 0, we have

−τ1c1
m1
≤ λi. (4.7)

Case II

c1
m1
− αi −

1

τ1
βi − γi = 0

c1
m1
− (αi − βi + βi)−

1

τ1
βi − γi = 0

c1
m1
− (λi + βi)−

1

τ1
βi − γi = 0

c1
m1
− γi − λi + (−1− 1

τ1
)βi = 0

c1
m1
− λi + (−1− 1

τ1
)βi = γi.

Since γi ≥ 0, we have

λi ≤
c1
m1

. (4.8)

From equation (4.7) and (4.8), we get that

−τ1c1
m1
≤ λi ≤

c1
m1

. (4.9)

Since p0 denotes the number of samples in Sw1,b1
0 , by (4.9), we have
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−τ1c1
m1

(m1 − p0) ≤
∑
i/∈Sw1,b1

0
λi ≤ c1

m1
(m1 − p0)

−τ1c1
m1

(m1 − p0) ≤ b1 + ν1 −
p0c1
m1

≤ c1
m1

(m1 − p0)

−b1 − ν1 −
τ1c1
m1

(m1 − p0) ≤ −p0c1
m1

≤ −b1 − ν1
c1
m1

(m1 − p0)

b1 + ν1 −
c1
m1

(m1 − p0) ≤ p0c1
m1

≤ b1 + ν1 +
τ1c1
m1

(m1 − p0)

m1(b1 + ν1 − c1
m1

(m1 − p0))

c1
≤ p0 ≤

m1(b1 + ν1 + τ1c1
m1

(m1 − p0))

c1

which gives us

m1(b1 + ν1 − c1
m1

(m1 − p0))

c1
≤ p0

such that
b1 + ν1
c1

≤ 1

that is

b1 + ν1 ≤ c1. (4.10)

The second condition gives us

p0 ≤
m1(b1 + ν1 + τ1c1

m1
(m1 − p0))

c1
such that

p0
m1
≤ b1 + ν1 + τ1c1

c1(1 + τ1)

that is

p0
m1
≤ 1−

1− b1+ν1
c1

(1 + τ1)
. (4.11)

As is evident, the above proposition places an upper bound on the number of samples

in Sw1,b1
0 , when τ becomes small, p0 gets smaller and the result becomes more sensitive to

feature noise since a lot fewer data samples are distributed in sets other than Sw1,b1
4 . As

a result, feature noise around the decision boundary significantly affects the classification
results. A similar analysis holds for SPTPSVM2 problems (3.3) and (3.21).

The SPTPMSVM gives penalties on the misclassified points (i.e., ξ1 > 0 or ξ2 > 0)
and no weight on the correctly classified points (i.e., ξ1 = 0 or ξ2 = 0). By contrast,
the SPTPMSVM gives weights on both the correctly classified and misclassified points
by the pinball loss. For the SPTPMSVM, with the increase of parameter τ , the weights
on the correctly classified points become great. Thus, the margin between the positive
hyperplane and negative hyperplane becomes large.
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(a) (b)

Figure 1. Illustrations of (a) SPTPMSVM as τ = 0.1 , (b) SPTPMSVM
as τ = 0.5 on a 2−D artificial data set.

5. Numerical Experiment

In this section, we proposed the above figures represent the noise insensitive properties
compared between SPTPMSVM and C-SVM and Bar graph of the accuracies for four
algorithms on the 2−D artificial data. Moreover, presented the numerical experiment of
data from UCI datasets.

5.1. Synthetic Dataset

The objective of our SPTPMSVM is to be able to deal with noise around the deci-
sion boundary while retaining sparsity. To illustrate the noise insensitivity performance
consider Figure 2, we suppose a two dimensional synthetic dataset with equal number
of samples from two Gaussian distributions: xi, i ∈ {i : yi = 1} ∼ N(µ1,

∑
1) and

xi, i ∈ {i : yi = −1} ∼ N(µ2,
∑

2) where µ1 = [0.5,−3]T , µ2 = [−0.5, 3]T and
∑

1 =
∑

2 =[
0.2 0
0 3

]
. The Bayes classifier for the given Gaussian distribution is fc(x) = 2.5x(1)−x(2).

We now add noise to the dataset, with each noise sample drawn from the Gaussian

distribution N(µn,
∑
n) where µn = [0, 0]T and

∑
n =

[
1 −0.8
−0.8 1

]
.

From Figure 2 we have varying number of noise samples, from r = 0 (noise free) to r =
0.5. Where, r is the ratio of total number of noisy samples to the total number of samples
originally in the dataset (including both classes). We see that, if the amount of noise
increase (from r = 0 to r = 0.5) then, the hyperplanes of C-SVM and TPMSVM start
deviating from the ideal slope of 2.5 whereas the deviation in the slopes of hyperplanes
(with fixed values of τ = 0.5 and ε = 0.05) is significantly lesser in our SPTPMSVM. This
implies the sensitivity of the C-SVM models to noise around the boundary.
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(a) (b)

(c) (d)

Figure 2. The above four figures demonstrate the noise insensitive
properties possessed by our SPTPMSVM as compared to C-SVM.

Figure 3. Bar graph of the accuracies for four algorithms on the 2−D
artificial data. x-axis: number of noise points. y-axis: testing accuracy.



Sparse Pinball Twin Parametric Margin Support Vector Machine 619

5.2. UCI Datasets

We using our SPTPMSVM model with 5 UCI datasets [21] to exhibit the accuracy,
noise insensitivity and sparsity of our model. All of the experiments have been performed
on MATLAB R2020a on a Windows 10 machine with an Intel i3 Processor (2.0 GHz) with
16 GB RAM. To solve our SPTPMSVM model with lower computational complexity.
Suppose that c1 = c2 = c, τ1 = τ2 = τ , and ε1 = ε2 = ε. In all our experiments, c is
chosen from the set {10i : i = −3,−2,−1, ...,+1,+2,+3}, τ is set {0.01, 0.1, 0.2, 0.5, 1}
and ε is set {0, 0.05, 0.1, 0.5} [22–26]. We calculated accuracy by :

Acc =
Number of datas test set− Number of datas missclass

Number of datas test set
× 100. (5.1)

Table 1. Performance comparisons of four algorithms on UCI data sets.

SVM TPMSVM pin-TPMSVM SPTPMSVM
Data sets Noise(r) Accuracy Accuracy Accuracy Accuracy

Time Time Time Time
ε = 0 ε = 0.05 ε = 0.1 ε = 0.5

Heart r = 0 86.25 86.25 85.00 86.25 86.25 85.00 86.25
(270x13) 0.01 0.008 0.05 0.06 0.05 0.04 0.06

r = 0.1 83.75 86.25 86.25 85.00 87.50 85.00 87.50
0.02 0.01 0.08 0.05 0.1 0.05 0.09

r = 0.5 85.00 85.00 86.25 86.25 87.50 87.50 87.50
0.30 0.02 0.36 0.37 0.34 0.36 0.39

Monk3 r = 0 78.37 83.17 83.77 83.77 84.38 84.38 84.38
(432x6) 0.04 0.02 0.27 0.19 0.47 0.51 0.49

r = 0.1 78.37 85.58 84.38 84.38 85.58 84.98 85.58
0.05 0.02 0.41 0.34 0.34 0.39 0.56

r = 0.5 80.77 84.98 85.58 85.58 85.58 85.58 85.58
0.20 0.04 1.24 1.17 1.40 1.46 1.69

Fertility r = 0 87.50 71.88 75.00 75.00 75.00 84.38 75.00
(100x9) 0.12 0.01 0.02 0.02 0.02 0.02 0.02

r = 0.1 87.50 78.13 81.25 81.25 78.13 84.38 75.00
0.02 0.01 2.00 0.02 0.02 0.03 0.02

r = 0.5 87.50 84.38 78.13 84.38 78.13 87.50 78.13
0.01 0.01 0.05 0.04 0.04 0.05 0.04

Breast cancer r = 0 98.09 98.09 98.09 98.09 98.09 98.09 98.09
(699x10) 0.12 0.15 1.17 0.76 0.72 0.63 0.66

r = 0.1 98.09 98.09 98.09 98.09 98.09 98.09 98.09
1.53 0.17 1.79 1.20 0.88 0.91 0.88

r = 0.5 87.50 84.38 78.13 84.38 78.13 87.50 78.13
0.01 0.01 0.05 0.04 0.04 0.05 0.04

Banknote r = 0 98.31 84.96 94.92 95.13 95.34 95.76 95.34
(1,372x5) 0.71 0.12 3.80 2.53 2.71 2.87 2.53

r = 0.1 98.09 85.38 94.70 94.70 94.92 95.13 94.92
0.55 0.09 3.40 5.23 4.36 4.25 4.26

r = 0.5 87.50 84.38 78.13 84.38 78.13 87.50 78.13
0.01 0.01 0.05 0.04 0.04 0.05 0.04

From Table 1, we can learn that our proposed SPTPMSVM yields the best prediction
accuracy on 3 of 5 data sets. Among the 15 cases, our proposed SPTPMSVM achieves
the best prediction accuracy in the 9 cases. Followed by the SVM, TPMSVM and pin-
TPMSVM with comparable performance.
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Table 2. Sparsity on UCI data sets with linear kernel.

Datasets ε pin-TPMSVM SPTPMSVM
τ = 0 τ = 0

Heart 0 60 63 60 81

(270x13) 0.1 57 59

0.2 51 54
0.3 48 48

0.4 40 41

0.5 36 39

Monk 0 197 208 197 200
(432x6) 0.05 185 194

0.1 171 179

0.2 127 132
0.3 119 118

0.5 106 109

Banknote 0 360 353 360 353

(1372x5) 0.05 306 312
0.1 259 272

0.2 225 243

0.3 201 216
0.5 181 187

Fertility 0 69 11 69 11

(100x9) 0.05 65 10

0.1 60 10
0.2 55 10

0.3 53 10

0.5 51 8

Breast cancer 0 19 32 19 32
(699x10) 0.05 18 30

0.1 18 27

0.2 17 21
0.3 17 15

17 15

In Table 2, the sparsity of our proposed SPTPMSVM is analyzed as compared to
the original pin-TPMSVM for the linear. In tables, the two columns under each model
show the number of non-zero dual variables corresponding to each of the two separating
hyperplanes. From both the tables it is evident that our SPTPMSVM is more sparse as
compared to the original pin-TPMSVM.

Conclusion

Finally, we have completed constructing a Twin Parametric Margin Support Vector
Machine combined with ε−insensitive loss function for finding a pair of parametric margin
hyperplanes that automatically adapts to the parametric noise. Compared to the SVM,
our proposed SPTPMSVM is noise insensitive and sparse at the same time. The validity
of our proposed SPTPMSVM is demonstrated by numerical experiments performed on
several UCI benchmark and synthetic datasets for linear cases. Numerical experiments
clearly show that the classification accuracy of our SPTPMSVM better than the accuracy
of pin-TPMSVM and SVM in most of the cases, and simultaneously maintain sparsity and
insensitivity to outliers. Several parameters need to be regularized in our SPTPMSVM.
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