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Abstract This paper presents the binary code of perfect matching of hexagonal graph and its properties.

According to the results, it can be concluded that the hexagonal graph can be substituted by binary code

using Klavzar’s algorithm. The properties of the obtained binary code could be used in encoding and

decoding. In summary, the perfect matchings of the hexagonal graph can be applied in receiving and

delivering data after being replaced by the binary code.
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1. Introduction

This section, we will study about catacondensed hexagonal graphs [1], it is hexagonal
graph G such that each two adjacent hexagons have exactly one common edge and no
vertex is element of three hexagons.

(a) (b)
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Figure 1. (a) is not a catacondensed hexagonal graph, while (b) is a catacondensed
hexagonal graph.

Another important property of hexagonal graph G is a resonance graph of G denoted
by R(G). Its vertices are all perfect matching of G and each two vertices are adjacent if
only three double bond positions in the matchings are different [2].

Figure 2. All perfect matchings of G .

Figure 3. R(G) is a resonance graph of G .

In 2000, Klavzar and Zigert [3] show that every perfect matching of catacondensed
hexagonal graphs correspondence to binary code. The method of finding binary code of
perfect matching of catacondensed hexagonal graphs. In substitution procedure, types
of generating of double bonds in hexagonal graph of each hexagon need to be taken into
consideration as the following.

(1) A substitution for one hexagon refers to the following picture.

Figure 4. A substitution for one hexagon.
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It can be consistently seen that a hexagonal graph with 1 hexagon exactly has 2 perfect
matchings.

Definition 1.1. 1. Bn = {[u]n = [u1u2...un]n |ui ∈ {0, 1} ∀i = 1, 2, 3, ...n}
2. S (G) |n is the set of binary code substitution of the perfect matchings of hexagonal
graph with n hexagons.
3. Bnk is the set of codeword in Bn with each weighs k and all 1- bits are adjacent.

Therefore, S (G) |1 is defined in terms of binary code substitution of the perfect match-
ings of hexagonal graph with 1 hexagon which accounts for S (G) |1 = {[0]1 , [1]1}.

(2) Hexagonal graph with more than 1 hexagon can be substituted as demonstrated
in the following method. Let G be catacondensed hexagonal graphs with n hexagons.
We want to find the set of codewords S (G) |n. Given H is nth hexagon of G and e is a

common edge between H and (n− 1)th hexagon of G and G
′

= (G−H) ∪ {e}.

Figure 5. Definition of G
′

of G .

Thus there are only three possible patterns of double bounds of H .

Figure 6. Three possible patterns of double bounds of H .

If H is an (a) or (b) form, we will take a bit 0 to [x]n−1 ∈ S
(
G

′
)
|n−1 for all [x]n−1.

Hence [x0]n ∈ S (G) |n. In another way, if H is an (c) form, we will take a bit 1 to

[x]n−1 ∈ S
(
G

′
)
|n−1 for all [x]n−1. Hence [x1]n ∈ S (G) |n.
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Figure 7. Example of binary code of some perfect matching.

It can be seen that it is difficult to substitute the binary for the perfect matchings
according to the above-mentioned procedure, and it is difficult in a general case as well.
Later that same year, Klavzar [3] developed algorithm in binary code substitution for
perfect matchings of linear hexagonal graph. This provides an understanding and an
easy converting the binary code in general cases of linear hexagonal graphs. This causes
the researcher to use Klavzars algorithm in studying binary code properties, including
application in receiving and delivering the information.
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Linear hexagonal graph refers to hexagons lining up but not superimposing which
can produce straight lines and kinks. The binary code converting can be proceeded
hereinafter.

Definition 1.2. G is a linear hexagonal graph with hexagon named H1, H2, H3, ...,Hn

respectively. Hi is ith hexagon of G and ei−1 is a common edge between Hi−1 and Hi.
Then Hi is kink if ei−1 and ei are not parallel, up to isomorphism.

Let S (G) |i be specified as binary code of linear hexagonal graph with hexagon named
H1, H2, H3, ...,Hi respectively. S (G) |i is calculated from S (G) |i−1 which depends on
types of generating the double bonds of Hi−1 and Hi−2 which includes 6 possible types
as follows.

Figure 8. Possible types of Hi−2, Hi−1 and Hi.

According to the above picture, it can be concluded that the principles of generating
binary code are [3]:

(1) In case of straight lines, S (G) |i is calculated by adding the final bit to a member
of S (G) |i−1. That is S (G) |i composed of [u1u2u3...ui−10]i when [u1u2u3...ui−1]i−1 is a
binary code in S (G) |i−1, and of [u1u2u3...ui−11]i when binary code [u1u2u3...ui−1]i−1
ends with 1.

(2) In case of kink linear hexagonal graph, S (G) |i consisted of [u1u2u3...ui−10]i when
[u1u2u3...ui−1]i−1 is a binary code in S (G) |i−1, and of [u1u2u3...ui−11]i when binary
code [u1u2u3...ui−1]i−1 ends with 0.
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Example 1.3. We will consider G , which is linear hexagonal graph with connected kinks.
By Klavzar’s algorithm, we have

Figure 9. Example of a linear hexagonal graph with connected kinks.

This solution makes an easier method to find a resonance graph R(G) of catacondensed
hexagonal graphs G . To find edges of R(G), we suppose that G has n hexagons then
we will consider perfect matching u, v ∈ V (R(G)) such that correspondence to codeword
u, v ∈ Bn. uv is an edge in R(G) if and only if d(u, v) = 1. However, here we will study
properties of binary code of perfect matching of catacondensed hexagonal graphs G for
receiving and delivering information. We hope that future study will make new method
to receiving and delivering information by hydrocarbon melecules.

2. The Properties of Binary Code of Linear Hexagonal Graph

According to algorithm above, binary code of linear hexagonal graph can be produced
more easily and its the properties can be studied in general. With the algorithm, S (G) |i
could be calculated because the members of S (G) |i−1 are known. Consequently, a well-
known proving technique, mathematical induction is employed to help in the study of
binary code of linear hexagonal graph. However, in order to prevent any confusion, we
will define some notations in this section as follows.
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1. If [x]n−1 ∈ Bn−1 and y ∈ {0, 1}, then [xy]n ∈ Bn are binary codes of word length n.
It is added bit y to binary code [x]n−1.

2. If [u]n ∈ Bn and k ∈ {0, 1}, then k · [u]n ∈ Bn. It is a scalar multiplication.

Theorem 2.1. Let S (G) |n be the set of binary code of straight line (without kink)
of linear hexagonal graph. Then |S (G) |n| = n + 1 minimum weight w (S (G) |n) = 0,
min d (S (G) |n) = 1 and max d (S (G) |n) = n.

Proof. Let S (G) |n be the set of binary code of straight line (without kink) of linear hexag-
onal graph. By mathematical induction, it is obvious that |S (G) |n| = n+1. It can be seen
as follows: [0]n = [000...0]n ∈ S (G) |n , [100...0]n ∈ S (G) |n and [111...1]n ∈ S (G) |n ∀n ∈
N . Thus w (S (G) |n) = w ([0]n) = 0, min d (S (G) |n) = d ([000...0]n , [100...0]n) = 1 and
max d (S (G) |n) = d ([000...0]n , [111...1]n) = n.

Theorem 2.2. Let S (G) |n be the set of binary code of straight line (without kink) of
linear hexagonal graph. S (G) |n − {[0]n} is a basis of Bn.
Proof. Let Bn = {[u]n = [u1u2...un]n |ui ∈ {0, 1} ∀i = 1, 2, 3, ...n} and by Klavzar’s algo-
rithm we can write

S (G) |n =
{

[0]n , [x10]n , [x20]n , [x30]n , ..., [xn−10]n , [111...1]n |

[xi]n−1 ∈ S (G) |n−1 −
{

[0]n−1
}}

By mathematical induction, we assume that S (G) |k − {[0]k} is a basis of Bn ∀k < n.
(1) Suppose that a1 · [x10]n + a2 · [x20]n + ... + an−1 · [xn−10]n + an · [111...1]n = [0]n ,

where ai ∈ B. Then a1 · [x10]n + a2 · [x20]n + ...+ an−1 · [xn−10]n + [ananan...an]n = [0]n.
Therefore, the last bit 0+an = 0, then an = 0. We have a1 · [x10]n+a2 · [x20]n+ ...+an−1 ·
[xn−10]n + [000...0]n = [0]n and a1 · [x1]n−1 + a2 · [x2]n−1 + ...+ an−1 · [xn−1]n−1 = [0]n−1.

Since S (G) |n−1 −
{

[0]n−1
}

is linearly independent, then ai = 0 ∀i. And an = 0, thus
S (G) |n − {[0]n} is linearly independent.

(2) Suppose that [u]n = [u1u2...un]n ∈ Bn. By mathematical induction, we have

S (G) |n−1−
{

[0]n−1
}

span Bn−1 and there are a1, a2, ..., an−1 ∈ B such that a1 · [x1]n−1 +
a2·[x2]n−1+...+an−1·[xn−1 = 111...1]n−1 = [u1u2...un−1]n−1....(*) We know that ui+ui =
0 ∀ui ∈ B, then un · [111...10]n + un · [111...11]n = [000...0un]n...(**)

By (*) and (**), there are a1, a2, ..., an−2, an−1 + un, un ∈ B such that
a1 · [x10]n + a2 · [x20]n + ...+ an−2 · [xn−20]n + (an−1 + un) · [111...10]n +un · [111...11]n =
(a1 · [x10]n + a2 · [x20]n + ... + an−2 · [xn−20]n + an−1 · [111...10]n)
+ (un · [111...10]n + un · [111...11]n) = [u1u2...un−10]n + [000...0un]n = [u1u2...un]n =
[u]n. Consequently, S (G) |n − {[0]n} span Bn.
From (1) and (2), we can conclusion that S (G) |n − {[0]n} is basis of Bn.

3. Generating Matrix

We now use the meterial from previos section to create a martrix which is used in the
encoding process for linear code Bn. By theorem 2.2, generating matrices of Bn are as
follows:
Generating matrix [4] of B3 is

G3 =

1 0 0
1 1 0
1 1 1

.
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Generating matrix of B4 is

G4 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.

We conclude that generating matrix of Bn is

Gn =



1 0 0 . . . 0
1 1 0 .
1 1 1 .
. . .
. . .
. . 0
1 1 1 . . . 1


.

or Gn = [aij ]n×n such that aij = 1 when i ≥ j and aij = 0 when i < j. By this generating

matrix, it is easy to find that binary code S (G) |n is the set of binary code of straight
line (without kink) of linear hexagonal graph.

4. Encoding and Decoding

In this section, application of the binary code of linear hexagonal graph in receiving
and delivering data is demonstrated, it can be used in reality because S (G) |n−{[0]n} is
illustrated as the main base of Bn. That is why only some perfect matchings are selected
to generate effective linear codes in receiving and delivering the information. In fact, all
perfect matchings should not have been selected to be used in receiving and delivering the
information because delivering mistakes cannot be examined by using the properties of
the binary code. For better illustration, the researcher exemplifies how to put the binary
code of perfect matching of linear hexagonal graph to create Hamming codes in order to
use in receiving and delivering information. The properties of the Hamming codes are
linear code and 1-error correcting code. This means even though there is a mistake during
receiving and delivering information by hydrocarbon compound such as electron moving
that causes a change in position of double bonds, the binary code generated could still
correct that mistake.

Hydrocarbon compounds can be used in receiving and delivering information. More-
over, it is expected that if this study is further conducted, receiving and delivering infor-
mation might be more effective.

In applications of hydrocarbon graphs in a transmission of data, it should be beep in
mind that a vast volume of hydrocarbon molecules may be used or transmitted in the
current transmission of data. Thus, reducing the use of hydrocarbon molecules will be
considerably beneficial to the transmission of data. To illustrate, a the 16-bit codeword in
B16 is generated with S (G) |16 which is a set of binary codes in hydrocarbon graphs with
16 hexagons. In transmitting this codeword above, it allows us to use at most 16 words
of binary codes in the graphs which equal/represent 16 hydrocarbon molecules, while the
transmission of data in reality requires a higher number of codewords and that results in
a higher number of hydrocarbon molecules than expected.

From this reason, this section proposes a theorem for reducing hydrocarbon molecular
numbers. We intend to reduce the use of such molecules from the highest number of
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molecules equal to members of S (G) |n − {[0]n} to one molecule. In this concept, rather
than transmitting hydrocarbon molecules which act as generators to form a codeword,
we modified one generator by inserting atoms of certain elements into any hexagon or
inserting compounds between 2 hexagons, both of which can represent a codeword without
using multiple generators.

Transmitting data “101” by using members of S (G) |3 − {[0]3}, where G is straight
line (without kink) of linear hexagonal graph.

Figure 10. Transmitting data by using members of S (G) |3 − {[0]3}.

Transmitting data “101” by inserting atoms of certain elements into any hexagon or
inserting compounds between 2 hexagons.

(1) Compressing data by adding chlorine atom in place of hydrogen atom to a selected
hexagon to add 1 to a bit of a codeword.

[101]3 = [100]3 + [001]3

Figure 11. Diagram shows data compression by modification of atoms in compounds.
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(2) Compressing data by inserting carbon atoms and hydrogen atoms between hexag-
onal chains to add 1 to two adjacent bits.

[101]3 = [110]3 + [011]3

Figure 12. Diagram shows data compression by modification of atoms in compounds.

Thus, it is necessary to know whether members of Bn can generate such codewords.
First, we would like to explain our additional lemma which is used as an instrument for
proving our fundamental theorem.

Lemma 4.1. Let Bn2 be the set of codeword in Bn with each weighs 2 and two 1-bits are
adjacent.

Bn2 = {[y1]n = [1100...0]n , [y2]n = [0110...0]n , ..., [yn−1]n = [00...011]n}.
We have,

(1)
∑

i∈I [yi]n = [100...01]n with I = {1, 2, 3, ..., n− 1},
(2)

∑
i∈I [yi]n = [010...01]n with I = {2, 3, ..., n− 1},

(3)
∑

i∈I [yi]n = [0010...01]n with I = {3, ..., n− 1},
.
.
.

(n-1)
∑

i∈I [yi]n = [00...011]n with I = {n− 1}.

Proof. By rules of binary addition, it is obvious that
(1)

∑
i∈I [yi]n = [100...01]n with I = {1, 2, 3, ..., n− 1},

(2)
∑

i∈I [yi]n = [010...01]n with I = {2, 3, ..., n− 1},
(3)

∑
i∈I [yi]n = [0010...01]n with I = {3, ..., n− 1},

.

.

.
(n-1)

∑
i∈I [yi]n = [00...011]n with I = {n− 1}.

Theorem 4.2. ∀ [u]n ∈ Bn,∃ [x]n ∈ S (G) |n such that [u]n = [x]n + [v]n for some
[v]n ∈ span (Bn1 ), where Bn1 is the set of binary code in Bn with weight 1.

Proof. Assume that [u]n ∈ Bn such that [u]n = [u1u2u3...un]n; ui ∈ {0, 1}. We have
[u]n = [u1u2u3...un]n = [u100...0]n + [0u20...0]n + [00u3...0]n + ... + [000...un]n. Since
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ui ∈ {0, 1}, [u]n = [0]n +
∑

i∈I [yi]n with I = {i ∈ {1, 2, 3, ..., n} |ui 6= 0}. We have
∀i ∈ I, [yi]n ∈ Bn

1 . Then [u]n = [0]n + [v]n for some [v]n ∈ span (Bn1 ). We know that
[0]n ∈ S (G) |n, thus ∀ [u]n ∈ Bn, ∃ [x]n ∈ S (G) |n such that [u]n = [x]n + [v]n for some
[v]n ∈ span (Bn1 ), where Bn1 is the set of binary code in Bn with weight 1.

Theorem 4.3. ∀ [u]n ∈ Bn,∃ [x]n ∈ S (G) |n such that [u]n = [x]n + [v]n for some
[v]n ∈ span (Bn2 ), where Bn2 is the set of binary code in Bn with weight 2 and 1- bits are
adjacent.

Proof. We will use mathematical induction on n ∈ N,n ≥ 2. Let p(n) be the statement
that ∀ [u]n ∈ Bn,∃ [x]n ∈ S (G) |n such that [u]n = [x]n + [v]n for some [v]n ∈ span (Bn2 ).

(1) Consider p(2) : S (G) |2 = {[00]2 , [10]2 , [11]2}, we have
[00]2 = [00]2 + ([11]2 + [11]2), [10]2 = [10]2 + ([11]2 + [11]2), [01]2 = [10]2 + [11]2 and
[11]2 = [00]2 + [11]2. Thus ∀ [u]2 ∈ B2,∃ [x]2 ∈ S (G) |2 such that [u]2 = [x]2 + [v]2 for

some [v]2 ∈ span
(
B22
)
.

(2) Given that ∀ [u]k ∈ Bk,∃ [x]k ∈ S (G) |k such that [u]k = [x]k + [v]k for some

[v]k ∈ span
(
Bk2
)
,∀k < n. Let [u]n ∈ Bn and [u]n = [u1u2u3...un]n; ui ∈ {0, 1}.

We know that [u1u2u3...un−1]n−1 ∈ Bn−1. By inductive hypothesis, we have ∃ [x]n−1 =
[x1x2x3...xn−1]n−1 ∈ S (G) |n−1 such that [u1u2u3...un−1]n−1 = [x]n−1 + [v]n−1 for some

[v]n−1 ∈ span
(
Bn−12

)
. Since [u]n ∈ Bn, then un = 0 or un = 1.

Case I. un = 0, we have [x1x2x3...xn−10]n ∈ S (G) |n and [u1u2u3...un−10]n =
[x1x2x3...xn−10]n + [v0]n for some [v0]n ∈ span (Bn2 ).

Case II. un = 1, we categorize to several cases according to members in S (G) |n,

(II.1) If [x1x2x3...xn−1]n−1 = [000...00]n−1 ∈ S (G) |n−1. By definition of S (G) |n, we
have [100...000]n ∈ S (G) |n. From Lemma 4.1, we know that [100...01]n
∈ span (Bn2 ). Thus [x1x2x3...xn−11]n = [000...01]n = [100...00]n + [100...01]n which is

[u1u2u3...un−1un]n = [u1u2u3...un−11]n
= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [000...01]n + [v0]n
= ([100...00]n + [100...01]n) + [v0]n
= [100...00]n + ([100...01]n + [v0]n),

where [100...01]n + [v0]n ∈ span (Bn2 ).

(II.2) If [x1x2x3...xn−1]n−1 = [100...00]n−1. By definition of S (G) |n, we have [000...00]n
∈ S (G) |n. From Lemma 4.1, we know that [100...01]n ∈ span (Bn2 ). Thus
[x1x2x3...xn−11]n = [100...01]n = [000...00]n + [100...01]n which is

[u1u2u3...un−1un]n = [u1u2u3...un−11]n
= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [100...01]n + [v0]n
= ([000...00]n + [100...01]n) + [v0]n
= [000...00]n + ([100...01]n + [v0]n),

where [100...01]n + [v0]n ∈ span (Bn2 ).

(II.3) If [x1x2x3...xn−1]n−1 = [110...00]n−1. By definition of S (G) |n, we have [1110...00]n
∈ S (G) |n. From Lemma 4.1, we know that [0010...01]n ∈ span (Bn2 ). Thus
[x1x2x3...xn−11]n = [110...01]n = [1110...00]n + [0010...01]n which is
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[u1u2u3...un−1un]n = [u1u2u3...un−11]n
= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [110...01]n + [v0]n
= ([1110...00]n + [0010...01]n) + [v0]n
= [1110...00]n + ([0010...01]n + [v0]n),

where [0010...01]n + [v0]n ∈ span (Bn2 ).

(II.4) If [x1x2x3...xn−1]n−1 = [1110...00]n−1. By definition of S (G) |n, we have
[11110...00]n ∈ S (G) |n. From Lemma 4.1, we know that [00010...01]n ∈ span (Bn2 ). Thus
[x1x2x3...xn−11]n = [1110...01]n = [11110...00]n + [00010...01]n which is

[u1u2u3...un−1un]n = [u1u2u3...un−11]n
= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [1110...01]n + [v0]n
= ([11110...00]n + [00010...01]n) + [v0]n
= [11110...00]n + ([00010...01]n + [v0]n),

where [00010...01]n + [v0]n ∈ span (Bn2 ).
.
.
.

(II.n-1) If [x1x2x3...xn−1]n−1 = [1111...10]n−1. By definition of S (G) |n, we have
[1111...10]n−1 ∈ S (G) |n. From Lemma 4.1, we know that [000...011]n ∈ span (Bn2 ). Thus
[x1x2x3...xn−11]n = [111...101]n = [1111...10]n + [0000...011]n which is

[u1u2u3...un−1un]n = [u1u2u3...un−11]n
= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [111...101]n + [v0]n
= ([1111...10]n + [0000...011]n) + [v0]n
= [1111...10]n + ([0000...011]n + [v0]n),

where [0000...011]n + [v0]n ∈ span (Bn2 ).
(II.n) If [x1x2x3...xn−1]n−1 = [1111...11]n−1. By definition of S (G) |n, we have

[1111...11]n−1 ∈ S (G) |n. Thus [x1x2x3...xn−11]n = [1111...111]n ∈ S (G) |n which is
[u1u2u3...un−1un]n = [u1u2u3...un−11]n

= [x1x2x3...xn−11]n + [v0]n, where [v0]n ∈ span (Bn2 )
= [111...111]n + [v0]n

where [v0]n ∈ span (Bn2 ).
Conclude that ∃ [x]n ∈ S (G) |n such that [u]n = [x]n + [v]n for some [v]n ∈ span (Bn2 ).
By mathematical induction, it can be concluded that ∀ [u]n ∈ Bn,∃ [x]n ∈ S (G) |n such
that [u]n = [x]n + [v]n for some [v]n ∈ span (Bn2 ), where Bn2 is the set of binary code in
Bn with weight 2 and 1- bits are adjacent and n ∈ N,n ≥ 2.

5. Conclusion

According to the results, it can be concluded that the hexagonal graph can be substi-
tuted by binary code using Klavzar’s algorithm. The properties of the obtained binary
code could be used in encoding and decoding. In summary, the perfect matchings of the
hexagonal graph can be applied in receiving and delivering data after being replaced by
the binary code.

This study discovers that edge independent sets or perfect matchings could be con-
verted into binary codes. Given that Klavzar’s study[? ]eveloped algorithm for binary
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conversion, we could collect, at ease, data of perfect matchings of hydrocarbon graphs
in the form of binary codes. Moreover, we are aware that the basic use of binary codes
of perfect matchings in hydrocarbon graphs lay in communication. Hence the present
study seeks to investigate properties of such binary codes based on coding theory and
finds that they could be used as a tool for the transmission of data. Nevertheless, if there
is a need to use hydrocarbon molecules to transmit data or information, that will lead to
a number of research problems in many fields, such as engineering, information technol-
ogy, and chemistry. Hence, this study establishes theorems 4.2 and 4.3 to facilitate real
applications.

It is hoped that the results of this study would encourage more research on hydrocarbon
graphs in relation to both graph theory and coding theory, which would promote a clearer
understanding on hydrocarbon molecules. It could also provide practical results, which
would serve as a reminder that mathematics is a basic component of any development.

6. Suggestions for Further Study

Researchers who would like to learn more about independent set of hydrocarbon graph
can do in both chemistry and mathematics perspectives. There are 2 interesting issues
be further explored.
1. Seeking for more efficient methods than the one of Klavzar to convert perfect matchings
of hexagonal graph into binary code.
2. The study of the results of this reseach might be applicable for receiving and delivering
information by utilizing hydrocarbon compounds so that it might be used effectively in
reality.
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