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1. INTRODUCTION

The metric space was originated in the Ph.D. thesis of Maurice Fréchet [1] in 1906.
After that many authors generalized this concept and obtained partial metric space,
generalized metric space, rectangular metric space, K-metric space i.e. cone metric space
by some authors, cone metric space, rectangular b-metric space, b, (s)-metric space (see
for example [2—13]). One of the generalization of metric space is given by Bakhtin [14], in
1989, known as b-metric space, where the triangular inequality is replaced by b-triangular
inequality with coefficient s > 1. In 2016 Huang and Radenovié¢ [15] introduced the
concept of cone b-metric space over a Banach algebra. Recently, in 2017 second and
third author [16] define algebra cone generalized b-metric space over a Banach algebra by
replacing the constant s with the vector, an element of a cone P with r(s) > 1.

Now, this paper defines cone generalized b-metric-like space over a Banach algebra by
replacing the coefficient of b-metric, s > 1 with a vector s > e, an element of cone P and
obtain Banach and Kannan fixed point results on such space for contractive generalized
Lipschitz mappings.
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The following definitions and results will be needed in the sequel.
In 1998, Czerwik [17] introduced the notion of a b-metric space.

Definition 1.1. Let X be a nonempty set, s > 1 and d : X x X — [0,400) a function
such that for all z,y,z € X,

(1) d(z,y) =0 if and only if z = y,

(2) d(z,y) = d(y, ),

(3) d(x, 2) < sld(x,y) +d(y, 2)].

Then d is called a b-metric on X and (X,d, s) is called a b-metric space.

Let A be a real Banach algebra that is a real Banach space in which an operation of
multiplication is defined subject to the following properties
(1) (zy)z = =(y2),
(2) 2(y+2)=zy+axzand (x+y)z = zz +yz,
(3) a(zy) = (ax)y = z(ay),
(4) [lzyll < llzllllyll,
for all x,y,z € A, a € R.
An algebra A with unit element e, is called unital algebra A, i.e. multiplicative identity
e such that ex = xze = x for all x € A. An element = € A is said to be invertible if there
is an inverse element y € A such that xy = yx = e. The inverse of z is denoted by z~!.
A subset P of a Banach algebra A is called a cone if
(1) P is non-empty, closed and {6,e} C P,
(2) aP 4+ bP C P, for all non-negative real numbers a and b,
(3) P2=PPC P,
(4) PN (=P)={0},
where 6 denotes the null of the Banach algebra A. For a given cone P C A, we can define
a partial ordering < with respect to P by <X y if and only if y — z € P and we write
x <y if x <y and z # y while z < y will stands for y — z € intP, where intP denotes
the interior of P. If intP # () then P is called a solid cone. The cone P is called normal
if there is a number M > 0 such that for all z,y € A,

0=z =2y= |z < Mlyll.

Definition 1.2. ([18]) Let A be a Banach algebra with unit elements e and P C A be a
cone, P is algebra cone if ¢ € P and ab € P for all a,b € P.

Definition 1.3. ([19]) Let X be a non-empty set. Let A be a Banach algebra and P C A
be an algebra cone. Suppose the mapping d: X x X — A satisfies

(1) 6 < d(x,y) for every z,y € X and d(z,y) = 0 if and only if x =y,

(2) d(z,y) = d(y,z) for every z,y € X,

(3) d(z,y) < d(x,z) + d(z,y) for every x,y,z € X.
Then (X, d) is called algebra cone metric space over a Banach algebra.

Definition 1.4. (6, 15]) Let (X, d) be a cone metric space over a Banach algebra A,
x € X and let {z,,} be a sequence in X. Then
(1) {zn} converges to x whenever for each ¢ € A with 8 < ¢ there is a natural
number N such that d(x,,z) < ¢ for all n > N;
(2) {x,} is a Cauchy sequence whenever for each ¢ € A with # < c¢ there is a
natural number N such that d(z,, z,,) < c for all n,m > Nj;
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(3) A cone metric space X is said to be complete if every Cauchy sequence in X
is convergent in X.

In the sequel we shall consider so-called solid cone (intP # ().

Lemma 1.5. ([15, 20]) Let A be a Banach algebra with a unity e and x € A, then
lim ||z"||"/™ exists and the spectral radius r(x) satisfies
T—r 00

= inf

r(z) = wli)ngo ||

If r(z) < |\| then Ae — k is invertible in A. Moreover,

—1
(Ae—2)"' =D
i=0
where X is a complex constant.

Lemma 1.6. ([15]) Let A be a Banach algebra with a unity e and k € A. If X is a complex
constant and r(k) < |\| then
1
R —
Al = (k)
Definition 1.7. ([21, 22]) If P be a solid cone in a Banach space X. A sequence {u,} C X
is a c-sequence if for each ¢ > 0 there exists ng € N such that u,, < ¢ for all n > ng.

r((Ae —

Proposition 1.8. ([21]) Let P be a solid cone in a Banach space X and let {x,} and
{yn} are sequences in X. If {x,} and {y,} are c-sequence and o, § € P then {ax, + Byn}
1S a c-sequence.

Proposition 1.9. ([21]) Let P be a solid cone in a Banach space X and let {x,} be a
sequence in P. Then the following conditions are equivalent

(1) {zn} is a c-sequence;

(2) for each ¢ > 0 there exists ng € N such that x,, < ¢ for n > ny;

(8) for each ¢ > 0 there exists ny € N such that z,, < ¢ for n > ny.

Proposition 1.10. ([22]) Let (X,d) be a complete cone metric space over a Banach
algebra A and let P be the underlying solid cone in A. Let {x,} be a sequence in X. If
{zn} converges to x € X then we have

(1) {d(xn, )} is a c-sequence,

(2) for any n,p € N,{d(xy, Tnip)} is a c-sequence.
Remark 1.11. From Proposition 1.10 we have, for any m,n € N, m > n, {d(xn,z)} is

a c-sequence.

Lemma 1.12. ([22]) Let A Banach algebra A and z,y € A. If x and y commutes then
the following hold

(1) r(zy) <r(z)r(y),

(2) r(z+y) <r(x)+ry).
Lemma 1.13. ([15]) Let A be a Banach algebra with a unity e and P be a underlying
solid cone in A. Lety € A and u, = y". If r(y) <1 then {u,} is a c-sequence.

Lemma 1.14. ([23]) Let E is a real Banach space with a solid cone P and if § < u < ¢
for each ¢ > 6 then u = 6.
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Lemma 1.15. ([23]) Let E is a real Banach space with a solid cone P and if |z,| —
0(n — o0) then for any 6 < c¢ there exists N € N such that for any n > N we have
T, K C.

Remark 1.16. ([22]) If (k) < 1 then ||k™|| — 0 when (n — c0).

2. MAIN RESULT
This section defines cone b-metric-like space over a Banach algebra.

Definition 2.1. Let X be a non-empty set, P C A be a cone in a Banach algebra A and
d: X x X — A be a mapping such that for all x,y, z € X satisfies

(1) d(z,y) =0 if and only if x =y,

(2) d(z,y) = d(y, ),

(3) there exists s € P,e < s such that d(z,y) < s[d(z, z) + d(z,y)].
Then d is called algebra cone b-metric and (X, d) is called algebra cone b-metric space
over a Banach algebra (in short ACbMS-BA) with coefficient s.

Definition 2.2. Let X be a non-empty set, P C A be a cone in a Banach algebra A and
d: X x X — A be a mapping such that for all x,y, z € X satisfies

(1) d(z,y) = 0 implies = =y,

(2) d(z,y) = d(y, ),

(3) there exists s € P,e < s such that d(z,y) < s[d(z, z) + d(z,y)].

Then d is called cone b-metric-like and (X, d) is called cone generalized b-metric-like space
over a Banach algebra (in short CGbMLS-BA) with coefficient s.

A cone generalized b—metric-like space over a Banach algebra satisfies all of the con-
ditions of a cone b—metric space over a Banach algebra except that d(x,x) need not be 6
for z € X.

We present an example of a cone generalized b-metric-like space over a Banach algebra
in the following.

Example 2.3. Let A = {a = (a;;)3x3 : a;; € R,1 < 4,5 <3} and
1
lall = 3 > il
1<0,7<3

Take a cone P = {a € A :a;; > 0,1 <4,j <3}in A Let X = {1,2,3} . Define a
mapping d : X x X — A by and

3.2 2 4 3 2 7 6 3
d1,1)= (4 5 3|,d22=(2 5 3],d3,3)=[8 4 5],
5 7 4 1 3 2 7 3 2
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Then (X, d) is a cone generalized b-metric-like space over a Banach algebra with coefficient
s = 2I, where I is identity matrix.

Now we shall prove Banach fixed point theorem in setting of cone generalized b-metric
space over a Banach algebra.

Theorem 2.4. Let (X,d) be a complete cone generalized b-metric-like space over a Ba-
nach algebra A with coefficient s = e. Let k € P such that k commutes with s and
r(k) € [0,1). Suppose that the mapping T : X — X satisfies generalized Lipschitz condi-
tion

d(Tx,Ty) < kd(z,y), (2.1)
for all x,y € X, then T has a unique fixed point in X.

Proof. We use some ideas from [11]. Let zg € X be arbitrary and z,, = Tx,—1 = T"xo.
Then from (2.1) we have
d(xp, nt1) = d(Tzp—1,Txy,)
j kd(l‘n—17 x’ﬂ)
j k'2d(xn—27 xn—l)

IA

]ﬂnd(.’to, 1'1).
Similarly, as above, we get it
d(zm+p7xn+p) = k(T 20), (2.2)

for all m,n,p € N.
Next, as it is (k) < 1 we get it to exist pgp € N such that

r(s)?r(k)Po < 1. (2.3)
Now we have
d(@m,Tn) =2 S(d(@m, Tmgpy) + ATmtpo, Tn))
= s[d(@ms Tmapo) T S(A(Tmtpo> Tntpo) + ATntpy, Tn))]
= 8d(Tmy Tmtpg) + 5 (ATt pys Tntpe) + ATnipgs Tn))-

From (2.2) we obtain

E™d(zo, zp, ),
EPod(xpm, Tn),
k™ d(xp,, zo)-

d(Zm, Trmtpo)

ATmtpo> Tntpo)

A(Tntpy, Tn)

Based on the above, we conclude that it is valid

ATy ) = sK™d(x0,Tp) + STKPOA(Trn, ) + S2K" (2, T0).

A TA T

From here we get,
(e — 82kPO)d(Tp,2n) = sk™d(20,7p,) + 52K™d(2p,, o).
Since k commutes with s, by Lemma 1.6 and Lemma 1.12 we obtain that
r(s2kPo) < r(s)*r(k)Pe <1,
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and that (e — s?kP?) is invertible. Therefore, we conclude that it is valid
A(Tp, Tm) = (e — s2kPO) " [sk™d (w0, Tp) + $7k™d(2p,, T0)]

Now Lemma 1.13 implies that {z,} is a Cauchy sequence.
Since X is complete, there exists * € X such that z,, — z* (n — o0)

d(Tz* z*) =< s(d(Tz*,Tz,)+ dTx,,z*))
< skd(x*, x,) + sd(zpy1,x")
From Definition 1.7, Propositions 1.8, 1.9 and 1.10 we have
d(Tz*, %) < Uy,

where w,, = skd(z*,z,,) + sd(xp+1,2*) is a c-sequence in cone P. Hence for each ¢ > 6
we have d(Tz*,z*) < ¢ so by Lemma 1.14 we obtain

d(Tz*,z*) = 0.

From Definition 2.2 we obtain that z* is a fixed point of T
Let y* be the another fixed point of T. Then we have

d(z*,y") = d(Tz",Ty") = kd(z*,y").

So,
(e — k)d(z™,y*) = 0 and d(z*,y*) =0

again from Definition 2.2 we have x* = y*. Hence T has a unique fixed point in X. [

Now, we shall prove Kannan fixed point theorem in the framework of cone generalized
b-metric space over a Banach algebra.

Theorem 2.5. Let (X,d) be a complete cone generalized b-metric-like space over a Ba-
nach algebra A with coefficient s = e. Let ky,ko,s € P commutes and (k1 + ko) <
min{1, %} If the mapping T : X — X satisfies

d(Tz,Ty) = k1d(Tx, x) + kod(Ty, y), (2.4)

for all x,y € X, then T has a unique fized point in X.

Proof. Let xy € X be arbitrary and x, = Tx,_1 = T"xq, for all n € N.
d(xps1,2n) = d(Txp, Txp_1)
2 k1d(Txy, xp) + kod(Txp—1,Tpn-1)
= k1d(Tnt1, Tn) + kod(Tpn, Tp_1).
So, we have
(e — k1)d(xps1,@n) X kod(zp, 2p—1). (2.5)
Also we have,
d(xp, Tpt1) = d(Txp—1,Txy)
2 k1d(Txp—1,0-1) + kod(Txy, zp)
=R k1d(zn, Tn-1) + kod(Xpni1,Tn).
Therefore,
(e — ko)d(xps1,Tn) X k1d(zy, 2p_1). (2.6)
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Add up equation (2.5) and (2.6), we have
(2e — k1 — ka)d(xn, nt1) = (k1 + k2)d(xn, Tn-1))-
Let k = ki + ko so r(k) = r(k1 + k2) <1 < 2 so by Lemma 1.5 (2e — k) is invertible.
d(Tn, Tni1) = k(2e — k) (21, 20)

Let h = k(2e — k)1, since k commutes with (2e — k)~!, we have

_ -1 -1 _ r(k)
r(h) =r((2e —k)"'k) <r((2e — k)" ")r(k) = 5 (k) <1 (2.7)
Therefore,
d(Tpn, Tnt1) 2 R"d(x0, x1). (2.8)

Now, for n,m € N with m > n, from (2.4) and (2.8), we have,
d(Tn, ) = k1d(zp, Tp_1) + kod(2pm, Tm-1))
= kyh"d(wy, w0) + koh™ (1, o)
< (kih" ™! + koh™ ™ )d(21, x0).

Since k1 and ko commutes we obtain (see (2.7))
(ks + k) < (e < 51
This implies that it is {x,} is a Cauchy sequence. Since X is complete, there exists
x* € X such that x, — z* (n — 00). Therefore, we obtain
d(Tz*,z*) < s(d(Tx*, Txy) + d(Txy, z"))
= s(k1d(Ta", ™) + kod(Txp, xy)) + sd(Txy, x*).

So,
(e — sk1)d(Tz*,x*) < skod(Txp, xy) + sd(Txy, x"). (2.9)
Now,
d(z*, Tx™) <X s(d(x™, Txy,) + d(Txy, Tx"))
< sd(z*, Txy) + s(krd(Tap, ) + kod(Tx*, z*)).
Therefore,

(e — sko)d(Tzx*,x*) = skid(Txp, xy) + sd(Txy, x*). (2.10)
From (2.9) and (2.10), we get,
(2e — sky — ska)d(Tx*,2%) =% s(k1 + ko)d(Txp, xy) + 2sd(Txy, ")
(2e — sk)d(Tz*,z*) < skd(Txy, x,) + 2sd(Tx,, )
(2e — sk)d(Tz",x") < skd(xpi1, Tn) + 28d(Tpi1,2)
From Definition 1.7, Propositions 1.8, 1.9, and 1.10 we have
(2e — sk)d(Tz*, %) < uy,

where
Up = Skd(Tpi1, Tn) + 28d(Tp41,27)
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is a c-sequence in cone P. Since r(k) < r(25) we have that r(sk) < 2 and 2e — sk is
invertible, hence for each ¢ > 6 we have

d(Tz*,z*) < (2¢ — sk) tu, < c.
So, by Lemma 1.14, we have
d(Tz*,z*) = 0.
Therefore,
d(Tz*,z*) =0,
and from Definition 2.2 we obtain that z* is a fixed point of T
Let y* be the another fixed point of T

d(z*,y") = d(Tz", Ty")
= kid(Tz*, z*) + kod(Ty™, y*)
<6.
This implies that d(z*,y*) = 0 so, from Definition 2.2 we obtain x* = y*. Hence T has a
unique fixed point in X. ]
It is easy to prove the following Theorems by Theorems 2.4 and 2.5, so we omits the

proofs.

Theorem 2.6. Let (X, d) be a complete algebra cone metric space over a Banach algebra.
If the mapping T : X — X satisfies

d(Tz,Ty) = kd(z,y)
for all z,y € X, where k € [0,1) then T has a unique fized point in X .
Theorem 2.7. Let (X, d) be a complete algebra cone metric space over a Banach algebra.
If the mapping T : X — X satisfies
for all z,y € X, where ky1,ko > 0 such that k1 + ko < 1 then T has a unique fized point
m X.
We present an example to illustrate Theorem 2.4.

Example 2.8. Consider Example 2.3, Let T : X — X be a mapping define by 71 =

05 02 04
T2=2,T3=1andlet k=101 03 0.6 | € P then r(k) =0.933 € [0,1). By simple
0.1 04 0.2

calculations we can see that all the conditions of Theorem 2.4 are satisfied. The point
x=2 is the unique fixed point of T.

From Theorems 2.4 and 2.5 we obtain the following results in b-metric spaces.

Theorem 2.9. ([24], Theorem 2.1) Let (X,d,s) be a complete b-metric space. If the
mapping T : X — X satisfies

d(Tz,Ty) = kd(z,y)
for all z,y € X, where k € [0,1) then T has a unique fized point in X .
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Theorem 2.10. Let (X,d, s) be a complete b-metric space. If the mapping T : X — X
satisfies

for all x,y € X, where ky,ky > 0 such that ki + ks < min{1, %} then T has a unique fixed
point in X.

Remark 2.11. 1. Theorem 2.9 is a proper generalization and improvement of Theorem
3.13. in [29] in the sense that the range of Lipschitzian constant A is increased from [0, 1)
to the interval [0,1) and the metric function d it does not have to be continuous.

2. Note that the Theorem of Kannan (see [26]) holds in b-metric space if s < 2.
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