Extension of Hall's theorem and an algorithm for finding the $(1, n)$-complete matching

V. Longani

Abstract

Hall's theorem provides the necessary and sufficient conditions for the existence of (1,1)-complete matching in bipartite graphs. The extension of Hall's theorem provides the necessary and sufficient conditions for the existence of ($1, n$)-complete matching, with $n \geq 1$. The proof of the extension exist in some few advanced texts with more advanced language, and therefore the extension is not widely known. In this paper we propose another approach of the proof which is simpler and less involved. Also, from this, an algorithm for finding the $(1, n)$-complete matching is derived.

Keywords : Hall's theorem, bipartite graph, complete matching, algorithm.

1 Hall's theorem

Let $V_{1}=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$ be a set of men, and $V_{2}=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}$, where $l \geq k$, be a set of l jobs(women, books, etc.). The set V_{1} and V_{2} form a bipartite graph $G\left(V_{1}, V_{2}\right)$. The line joining m_{i} in V_{1} with w_{j} in V_{2} means that the man m_{i} is qualified for the job w_{j}. Each job in V_{2} requires a man to complete it, while each man m_{i} is required to do the same number of jobs $n \geq 1$. A man can be assigned to do only the jobs they are qualified for. Consider a graph $G\left(V_{1}, V_{2}\right)$. We say that there is $(1, n)$-complete matching from V_{1} to V_{2} if each of all men in V_{1} can be assigned to do n jobs in V_{2}. For example, let $V_{1 a}=\left\{m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right\}$, and $V_{2 a}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}\right\}$. Figure 1(a) describes the bipartite graph $G\left(V_{1 a}, V_{2 a}\right)$. There is $(1,1)$-complete matching from $V_{1 a}$ to $V_{2 a}$. See bold letters in the Figure 1(a) for jobs that are assigned for the men in $V_{1 a}$. For another example, let $V_{1 b}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$, and $V_{2 b}=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{10}\right\}$. Figure 1(b) describes the bipartite graph $G\left(V_{1 b}, V_{2 b}\right)$. There is (1,2)-complete matching from $V_{1 b}$ to $V_{2 b}$. See bold letters in each line of Figure 1(b) for two jobs that are assigned for each man.

$G\left(V_{1 a}, V_{2 a}\right)$	
men in $V_{1 a}$	Jobs that men are qualified for in $V_{2 a}$
m_{1}	$\mathbf{w}_{\mathbf{1}}, w_{4}$
m_{2}	$w_{1}, \mathbf{w}_{\mathbf{3}}, w_{4}$
m_{3}	$w_{4}, \mathbf{w}_{\mathbf{5}}, w_{6}, w_{7}$
m_{4}	$w_{2}, \mathbf{w}_{\mathbf{4}}$
m_{5}	$w_{5}, \mathbf{w}_{\mathbf{6}}, w_{7}$

(1,1)-complete matching
(a)

$$
G\left(V_{1 b}, V_{2 b}\right)
$$

men in $V_{1 b}$	Jobs that men are qualified for in $V_{2 b}$
m_{1}	$\mathbf{w}_{\mathbf{1}}, w_{2}, \mathbf{w}_{\mathbf{3}}, w_{7}$
m_{2}	$\mathbf{w}_{\mathbf{4}}, \mathbf{w}_{\mathbf{5}}, w_{9}$
m_{3}	$w_{7}, \mathbf{w}_{\mathbf{8}}, \mathbf{w}_{\mathbf{9}}, w_{10}$
m_{4}	$w_{5}, \mathbf{w}_{\mathbf{6}}, w_{9}, \mathbf{w}_{\mathbf{1 0}}$

(1,2)-complete matching
(b)

Figure 1
Let A be a non empty subset of V_{1} and $\phi(A)$ be the set of all jobs in V_{2} that at least one man in A is qualified to do them. The sizes or the number of elements of A and $\phi(A)$ are denoted by $|A|$ and $|\phi(A)|$ respectively. Philip Hall, in 1935, proposed a famous theorem that provides the necessary and sufficient conditions for the existence of $(1,1)$-complete matching from V_{1} to V_{2}. Hall's theorem is usually discussed in most texts in graphs, combinatorics, or discrete mathematics. For examples, see [1], [2], [3], [5], [6], and [7].

Theorem 1 (Hall's theorem)
Let $G\left(V_{1}, V_{2}\right)$ be a bipartite graph. There exists a (1,1)-complete matching from V_{1} to V_{2} if and only if $|A| \leq|\phi(A)|$ for every subset A of V_{1}.

For example, from Figure 1(a) we can verify that $|A| \leq|\phi(A)|$ for every subset A of $V_{1 a}$, therefore there is (1,1)-complete matching, as shown in Figure $1(\mathrm{a})$, from $V_{1 a}$ to $V_{2 a}$.

2 Extension of Hall's theorem

Although Hall's theorem is well known, the theorem for the extension of Hall's theorem, see Theorem 2, is not widely known to students in graph theory. Perhaps, this is partly because the proof for the extension exist only in some few advanced texts, and in a form of more advanced language. See [4], for example. In this section, we propose another approach of the proof for the extension of Hall's
theorem, i.e. the necessary and sufficient conditions for the existence of $(1, n)$ complete matching, for $n \geq 1$. The proof is simple, less involved, so ones can gain immediate access to the extension of Hall's theorem. With $n=1$, this can also be used as another version of proof for Hall's theorem.

Theorem 2 Let $G\left(V_{1}, V_{2}\right)$ be a bipartite graph. There exists ($1, n$)-complete matching from V_{1} to V_{2} if and only if $n|A| \leq|\phi(A)|$ for every subset A of V_{1}.

Another Proof: First, we prove the necessary part. Suppose there exists $(1, n)$-complete matching from V_{1} to V_{2} but there is a subset A of V_{1} such that $n|A|>|\phi(A)|$. From the definition of $(1, n)$-complete matching, a man in A will has n jobs in $\phi(A)$ to do, so all men in A need $n|A|$ jobs in $\phi(A)$ to do. Therefore, this is not possible if $n|A|>|\phi(A)|$, and so $n|A| \leq|\phi(A)|$.

Next, we prove the sufficient part. Let $n|A| \leq|\phi(A)|$ for every subset A of $V_{1}=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$. We shall show by mathematical induction that, for all $k \geq 1$, there is $(1, n)$-complete matching from V_{1} to V_{2}, i.e. each of the k men in V_{1} can be assigned for n jobs. When $k=1, V_{1}=\left\{m_{1}\right\}$. Since $n\left|\left\{m_{1}\right\}\right| \leq\left|\phi\left(\left\{m_{1}\right\}\right)\right|$, then $n \leq\left|\phi\left(\left\{m_{1}\right\}\right)\right|$. So, we can assign n jobs in $\phi\left(\left\{m_{1}\right\}\right)$ for m_{1}. Therefore, the theorem is true when $k=1$. Consider the case when $k \geq 2$. Assume that there is $(1, n)$-complete matching for any $k-1$ men, we then consequently try to show that there also is $(1, n)$-complete matching for all of the k men. Let $A_{1}=\left\{m_{1}, m_{2}, \ldots, m_{k-1}\right\}$ be the set of $k-1$ men. From the assumption, we can assign n jobs for each man of A_{1}. From this, we shall try to assign n jobs for m_{k}. Here, it would be easier for the proof if we assign n jobs for m_{k} first.

From the condition $n|A| \leq|\phi(A)|$ for every subset A of V_{1}, before assigning n jobs for m_{k}, we have

$$
\begin{gather*}
n\left|A_{1}\right| \leq\left|\phi\left(A_{1}\right)\right| \tag{2.1}\\
n\left|A_{1} \cup\left\{m_{k}\right\}\right| \leq\left|\phi\left(A_{1} \cup\left\{m_{k}\right\}\right)\right| . \tag{2.2}
\end{gather*}
$$

We note that the number of jobs in $\phi\left(A_{1}\right)$ or any subset of $\phi\left(A_{1}\right)$ could be affected by some of the n jobs assigned for m_{k}, because some of these n jobs in $\phi\left(A_{1}\right)$ can no longer be assigned for men in A_{1}. So, to complete the assumption that we can assign n jobs for each man of A_{1}, we need to verify that the condition (2.1), after assigning n jobs for m_{k}, still holds for A_{1} and it's subsets. Some jobs of $\phi\left(\left\{m_{k}\right\}\right)$ could be outside $\phi\left(A_{1}\right)$, while some could be inside $\phi\left(A_{1}\right)$. Let $n_{\text {out }}$, and $n_{i n}$ be the numbers of jobs of $\phi\left(\left\{m_{k}\right\}\right)$ that are outside, and inside $\phi\left(A_{1}\right)$ respectively. So, we have $\left|\phi\left(\left\{m_{k}\right\}\right)\right|=n_{\text {out }}+n_{\text {in }}$. In assigning n jobs for m_{k} we consider two cases: case(1) when $n_{\text {out }} \geq n$, and case(2) when $n_{\text {out }}<n$. In both cases, we try to assign, as many as possible, jobs outside $\phi\left(A_{1}\right)$ for m_{k}.

First, consider case(1) when $n_{\text {out }} \geq n$. In this case we choose n jobs outside $\phi\left(A_{1}\right)$ for m_{k}. So, the number of jobs in $\phi\left(A_{1}\right)$ does not change after assigning n jobs for m_{k}. Therefore, condition (2.1) still holds for A_{1} and all subsets A of A_{1}.

Next, consider case(2) when $0 \leq n_{\text {out }}<n$. In this case, for m_{k}, we assign all $n_{\text {out }}$ jobs outside $\phi\left(A_{1}\right)$, and $n_{i}=\bar{n}-n_{\text {out }}$ jobs inside $\phi\left(A_{1}\right)$. After assigning n jobs for m_{k}, the number of jobs in $\phi\left(A_{1}\right)$ will be reduced by n_{i}, where $1 \leq n_{i} \leq n$. In verifying (2.1) for A_{1} and it's subsets, we remove these n_{i} jobs assigned for m_{k} from $\phi\left(A_{1}\right)$. The new $\phi\left(A_{1}\right)$ whose n_{i} jobs were removed shall be denoted by $\phi^{*}\left(A_{1}\right)$. So, we have $\left|\phi^{*}\left(A_{1}\right)\right|=\left|\phi\left(A_{1}\right)\right|-n_{i}$. We shall show that after assigning n
jobs for m_{k}, and with the new reduced values of $\left|\phi\left(A_{1}\right)\right|$, the condition (2.1) still holds for A_{1}. From (2.2), we can have

So, we have $n\left|A_{1}\right| \leq\left|\phi^{*}\left(A_{1}\right)\right|$, i.e. (2.1), with the new reduced value of $\left|\phi\left(A_{1}\right)\right|$, still holds for A_{1}. We have shown that the condition (2.1), after assigning n jobs for m_{k}, still holds for A_{1} with $k-1$ men. By using similar arguments as above we can show that the condition (2.1), after assigning n jobs for m_{k}, still holds for every other subset A of A_{1}.

From the results of case (1) and case (2), we have shown that, for sets V_{1} of any size $k \geq 2$, with $n|A| \leq|\phi(A)|$ for all subsets A of V_{1}, if we can assign n jobs for each of any $k-1$ men then we can also assign n jobs for all of the k men. Hence, we conclude that, with $n|A| \leq|\phi(A)|$ for all subsets A of V_{1}, there exists ($1, n$)-complete matching from V_{1} to V_{2} for all $k \geq 1$.

For example, consider every subset A of $V_{1 b}$ and the corresponding $\phi(A)$ of the bipartite $G\left(V_{1 b}, V_{2 b}\right)$ described in Figure 1(b). See Figure 2 for details. We can see that $2|A| \leq|\phi(A)|$ for every subset A. Therefore, by Theorem 2 , we shall have the existence of $(1,2)$-complete matching from $V_{1 b}$ to $V_{2 b}$. For another example, consider Figure 1(a), the subset $A=\left\{m_{1}, m_{4}\right\}$ has $\phi(A)=\left\{w_{1}, w_{2}, w_{4}\right\}$. Since $2|A|>|\phi(A)|$, therefore by Theorem 2, there is no (1,2)-complete matching from $V_{1 a}$ to $V_{2 a}$.

A	$\phi(A)$
$\left\{m_{1}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{7}\right\}$
$\left\{m_{2}\right\}$	$\left\{w_{4}, w_{5}, w_{9}\right\}$
$\left\{m_{3}\right\}$	$\left\{w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{4}\right\}$	$\left\{w_{5}, w_{6}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{2}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{7}, w_{9}\right\}$
$\left\{m_{1}, m_{3}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{4}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{5}, w_{6}, w_{7}, w_{9}, w_{10}\right\}$
$\left\{m_{2}, m_{3}\right\}$	$\left\{w_{4}, w_{5}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{2}, m_{4}\right\}$	$\left\{w_{4}, w_{5}, w_{6}, w_{9}, w_{10}\right\}$
$\left\{m_{3}, m_{4}\right\}$	$\left\{w_{5}, w_{6}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{2}, m_{3}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{2}, m_{4}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{3}, m_{4}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{5}, w_{6}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{2}, m_{3}, m_{4}\right\}$	$\left\{w_{4}, w_{5}, w_{6}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$
$\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$	$\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$

Figure 2

3 An algorithm for finding ($1, n$)-complete matching in bipartite graphs

Theorem 2 can guarantee the existence of $(1, n)$-complete matching in some bipartite graphs. Suppose we know, by Theorem 2, that a $G\left(V_{1}, V_{2}\right)$ contains $(1, n)$-complete matching. The next question is how to assign n jobs for all of each man in V_{1}. If we try to assign the jobs without proper algorithm we might face, at some steps, the situation that we can not assign n jobs for some men. For example, from Figure 2, with Theorem 2, we know that there exists (1, 2)-
complete matching in $G\left(V_{1 b}, V_{2 b}\right)$ of Figure 1(b). However, if we assign w_{1}, w_{3} for m_{1}, assign w_{4}, w_{5} for m_{2}, and assign w_{9}, w_{10} for m_{3}, then we can not assign 2 jobs for m_{4}. From this example, it is clear that, in order to assign n jobs for all of each man of V_{1}, it is desirable to have a proper algorithm which can assure us that we can assign the jobs for all men successfully.

The alternative proof of Theorem 2 above can help us to create such algorithm. First, we shall describe the idea of how to construct the algorithm, and, after that, explain why the algorithm works.

Given a bipartite graph $G\left(V_{1}, V_{2}\right)$, with the condition as in Theorem 2. Consider m_{1} and $A_{1}=V_{1}-\left\{m_{1}\right\}$. From $\phi\left(\left\{m_{1}\right\}\right)$, we shall choose n jobs for m_{1}. Let $n_{\text {out }}$, and $n_{\text {in }}$ be the numbers of jobs of $\phi\left(\left\{m_{1}\right\}\right)$ that are outside, and inside $\phi\left(A_{1}\right)$ respectively. We assign jobs for m_{1}, as many as possible, from outside $\phi\left(A_{1}\right)$. That is, when $n_{\text {out }} \geq n$, we choose n jobs outside $\phi\left(A_{1}\right)$ for m_{1}, and when $0 \leq n_{\text {out }}<n$ we assign all $n_{\text {out }}$ jobs outside $\phi\left(A_{1}\right)$, and $n_{i}=n-n_{\text {out }}$ jobs inside $\phi\left(A_{1}\right)$ for m_{1}. Remove m_{1} and the n jobs assigned for m_{1} from consideration. Consider m_{2} and $A_{2}=V_{1}-\left\{m_{1}, m_{2}\right\}$. From $\phi\left(\left\{m_{2}\right\}\right)$, we shall choose n jobs for m_{2}. Let $n_{\text {out }}$, and $n_{\text {in }}$ be the numbers of jobs of $\phi\left(\left\{m_{2}\right\}\right)$ that are outside, and inside $\phi\left(A_{2}\right)$ respectively.We, again, assign jobs for m_{2}, as many as possible, from outside $\phi\left(A_{2}\right)$. That is, when $n_{\text {out }} \geq n$, we choose n jobs outside $\phi\left(A_{2}\right)$ for m_{2}. When $0 \leq n_{\text {out }}<n$ we assign all $n_{\text {out }}$ jobs outside $\phi\left(A_{2}\right)$, and $n_{i}=n-n_{\text {out }}$ jobs inside $\phi\left(A_{2}\right)$ for m_{2}. Remove m_{2} and the n jobs assigned for m_{2} from consideration. Consider m_{3} and $A_{3}=V_{1}-\left\{m_{1}, m_{2}, m_{3}\right\}$. Repeat the procedure until we have assigned n jobs for m_{k-1}. Finally, we assign n jobs for m_{k} from the remaining jobs in $\phi\left(\left\{m_{k}\right\}\right)$.

Let us call the above algorithm as "Finding-complete-matching algorithm" or FICMA. Theorem 3 gives an explanation about the algorithm.

Theorem 3 Let there exist $(1, n)$-complete matching in a bipartite graph $G\left(V_{1}, V_{2}\right)$.Then the algorithm FICMA can be used in assigning n jobs for all men in V_{1}.

Proof: Consider a given $G\left(V_{1}, V_{2}\right)$ with the condition $n|A| \leq|\phi(A)|$ for every subset A of V_{1}. After assigning n jobs for m_{1} as described in the algorithm, we shall find, as in the proof of Theorem 2, that $A_{1}=V_{1}-\left\{m_{1}\right\}$ still satisfies the condition $n\left|A_{1}\right| \leq\left|\phi\left(A_{1}\right)\right|$. Also, as in the proof of Theorem 2 , every subset A of A_{1} shall satisfy the condition $n|A| \leq|\phi(A)|$. Therefore, after remove m_{1} and the n jobs assigned for m_{1} from consideration, and with the use of Theorem 2, we can claim that there still exist $(1, n)$-complete matching from A_{1} to the remaining jobs in V_{2}. Consider m_{2} and $A_{2}=V_{1}-\left\{m_{1}, m_{2}\right\}$. Again, after assigning n jobs for m_{2} as described in the algorithm, we shall find that $A_{2}=V_{1}-\left\{m_{1}, m_{2}\right\}$ still satisfies the condition $n\left|A_{2}\right| \leq\left|\phi\left(A_{2}\right)\right|$. Also, every subset A of A_{2} shall satisfy the condition $n|A| \leq|\phi(A)|$. Therefore, after remove m_{2} and the n jobs assigned for m_{2} from consideration, and with the use of Theorem 2, we can claim that there still exist $(1, n)$-complete matching from A_{2} to the remaining jobs in V_{2}. Repeat the procedure, until, finally, after remove m_{k-1} and the n jobs assigned for m_{k-1} from consideration, and with the use of Theorem 2, we can claim that there still exist $(1, n)$-complete matching from $A_{k-1}=V_{1}-\left\{m_{1}, m_{2}, \ldots, m_{k-1}\right\}$
to the remaining jobs in V_{2}. In fact, $A_{k-1}=\left\{m_{k}\right\}$, and so we can finally assign n jobs for the last man m_{k}.

For illustration, consider the bipartite $G\left(V_{1 b}, V_{2 b}\right)$ in Figure 1(b). Here $V_{1}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$. Consider m_{1} and $A_{1}=V_{1}-\left\{m_{1}\right\}=\left\{m_{2}, m_{3}, m_{4}\right\}$. Here $\phi\left(\left\{m_{1}\right\}\right)=\left\{w_{1}, w_{2}, w_{3}, w_{7}\right\}, \phi\left(A_{1}\right)=\left\{w_{4}, w_{5}, w_{6}, w_{8}, w_{9}, w_{10}\right\}$. So we can assign any 2 jobs in $\phi\left(\left\{m_{1}\right\}\right)$, say w_{1}, w_{2} for m_{1}. Remove m_{1} and the 2 jobs w_{1}, w_{2} from consideration. Consider m_{2} and $A_{2}=V_{1}-\left\{m_{1}, m_{2}\right\}=\left\{m_{3}, m_{4}\right\}$. Here $\phi\left(\left\{m_{2}\right\}\right)=\left\{w_{4}, w_{5}, w_{9}\right\}, \phi\left(A_{2}\right)=\left\{w_{5}, w_{6}, w_{7}, w_{8}, w_{9}, w_{10}\right\}$. According to the algorithm, we will try to assign jobs for m_{2}, as many as possible, from outside $\phi\left(A_{2}\right)$. Here, we can choose only w_{4} from outside $\phi\left(A_{2}\right)$ for m_{2}, so we need to choose one of the jobs, say w_{5}, in $\phi\left(A_{2}\right)$ for m_{2}. Now, we have assigned w_{4}, w_{5} for m_{2}. Remove m_{2} and w_{4}, w_{5} from consideration. Consider m_{3} and $A_{3}=V_{1}-\left\{m_{1}, m_{2}, m_{3}\right\}=\left\{m_{4}\right\}$. Here $\phi\left(\left\{m_{3}\right\}\right)=\left\{w_{7}, w_{8}, w_{9}, w_{10}\right\}, \phi\left(A_{3}\right)=$ $\left\{w_{6}, w_{9}, w_{10}\right\}$. Assign w_{7}, w_{8} for m_{3}. Remove m_{3} and w_{7}, w_{8} from consideration. Consider m_{4} and $\phi\left(\left\{m_{4}\right\}\right)=\left\{w_{6}, w_{9}, w_{10}\right\}$. We can assign w_{6}, w_{9} for m_{4}. Hence, we have assigned 2 jobs for each of the four men of V_{1}.

References

[1] V. K. Balakrisnan, Combinatorics, McGraw-Hill, Singapore, 1995.
[2] G. Chartrand. and L. Lesniak, Graphs and Digraphs, 3rd Edition, Chapman and Hall, California, 1996.
[3] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 3rd-Edition, Addison-Wesley, Reading, 1994.
[4] L. Mirsky, Transversal Theory, Academic Press, New York, 1971.
[5] F. S. Roberts, Applied Combinatorics, Prentice-Hall, New Jersy, 1984.
[6] A. Tucker, Applied Combinatorics, 3rd Edition, John Wiley, Singapore, 1995.
[7] R. J. Wilson, Introduction to Graph Theory, 3rd Edition, Longman Scientific and Technical, Hong Kong, 1985.
(Received 30 May 2007)
Vites Longani
Department of Mathematics
Chiang Mai University
Chiang Mai 50200, Thailand
e-mail: vites@chiangmai.ac.th

