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Extension of Hall’s theorem and an algorithm
for finding the (1, n)-complete matching

V. Longani

Abstract : Hall’s theorem provides the necessary and sufficient conditions for
the existence of (1, 1)-complete matching in bipartite graphs. The extension of
Hall’s theorem provides the necessary and sufficient conditions for the existence
of (1, n)-complete matching, with n ≥ 1. The proof of the extension exist in some
few advanced texts with more advanced language, and therefore the extension
is not widely known. In this paper we propose another approach of the proof
which is simpler and less involved. Also, from this, an algorithm for finding the
(1, n)-complete matching is derived.
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1 Hall’s theorem

Let V1 = {m1, m2, ..., mk} be a set of men, and V2 = {w1, w2, ..., wl}, where
l ≥ k, be a set of l jobs(women, books, etc.). The set V1 and V2 form a bipartite
graph G(V1, V2). The line joining mi in V1 with wj in V2 means that the man mi

is qualified for the job wj . Each job in V2 requires a man to complete it, while each
man mi is required to do the same number of jobs n ≥ 1. A man can be assigned
to do only the jobs they are qualified for. Consider a graph G(V1, V2). We say
that there is (1, n)-complete matching from V1 to V2 if each of all men in V1 can
be assigned to do n jobs in V2. For example, let V1a = {m1, m2, m3, m4, m5},
and V2a = {w1, w2, w3, w4, w5, w6, w7}. Figure 1(a) describes the bipartite
graph G(V1a, V2a). There is (1, 1)-complete matching from V1a to V2a. See bold
letters in the Figure 1(a) for jobs that are assigned for the men in V1a. For another
example, let V1b = {m1, m2, m3, m4}, and V2b = {w1, w2, w3, ..., w10}. Figure
1(b) describes the bipartite graph G(V1b, V2b). There is (1, 2)-complete matching
from V1b to V2b. See bold letters in each line of Figure 1(b) for two jobs that are
assigned for each man.
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Let A be a non empty subset of V1 and φ(A) be the set of all jobs in V2 that
at least one man in A is qualified to do them. The sizes or the number of elements
of A and φ(A) are denoted by |A| and |φ(A)| respectively. Philip Hall, in 1935,
proposed a famous theorem that provides the necessary and sufficient conditions
for the existence of (1, 1)-complete matching from V1 to V2. Hall’s theorem is
usually discussed in most texts in graphs, combinatorics, or discrete mathematics.
For examples, see [1], [2], [3], [5], [6], and [7].

Theorem 1 (Hall′s theorem)
Let G(V1, V2) be a bipartite graph. There exists a (1, 1)-complete matching

from V1 to V2 if and only if |A| ≤ |φ(A)| for every subset A of V1.
For example, from Figure 1(a) we can verify that |A| ≤ |φ(A)| for every

subset A of V1a, therefore there is (1, 1)-complete matching, as shown in Figure
1(a), from V1a to V2a.

2 Extension of Hall’s theorem

Although Hall’s theorem is well known, the theorem for the extension of
Hall’s theorem, see Theorem 2, is not widely known to students in graph theory.
Perhaps, this is partly because the proof for the extension exist only in some few
advanced texts, and in a form of more advanced language. See [4], for example. In
this section, we propose another approach of the proof for the extension of Hall’s
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theorem, i.e. the necessary and sufficient conditions for the existence of (1, n)-
complete matching, for n ≥ 1. The proof is simple, less involved, so ones can gain
immediate access to the extension of Hall’s theorem. With n = 1, this can also be
used as another version of proof for Hall’s theorem.

Theorem 2 Let G(V1, V2) be a bipartite graph. There exists (1, n)-complete
matching from V1 to V2 if and only if n|A| ≤ |φ(A)| for every subset A of V1.

Another Proof: First, we prove the necessary part. Suppose there exists
(1, n)-complete matching from V1 to V2 but there is a subset A of V1 such that
n|A| > |φ(A)|. From the definition of (1, n)-complete matching, a man in A will
has n jobs in φ(A) to do, so all men in A need n|A| jobs in φ(A) to do. Therefore,
this is not possible if n|A| > |φ(A)|, and so n|A| ≤ |φ(A)|.

Next, we prove the sufficient part. Let n|A| ≤ |φ(A)| for every subset A of
V1 = {m1, m2, ..., mk}. We shall show by mathematical induction that, for all
k ≥ 1, there is (1, n)-complete matching from V1 to V2, i.e. each of the k men in V1

can be assigned for n jobs. When k = 1, V1 = {m1}. Since n|{m1}| ≤ |φ({m1})|,
then n ≤ |φ({m1})|. So, we can assign n jobs in φ({m1}) for m1. Therefore,
the theorem is true when k = 1. Consider the case when k ≥ 2. Assume that
there is (1, n)-complete matching for any k − 1 men, we then consequently try
to show that there also is (1, n)-complete matching for all of the k men. Let
A1 = {m1, m2, ..., mk−1} be the set of k− 1 men. From the assumption, we can
assign n jobs for each man of A1. From this, we shall try to assign n jobs for mk.
Here, it would be easier for the proof if we assign n jobs for mk first.

From the condition n|A| ≤ |φ(A)| for every subset A of V1, before assigning
n jobs for mk, we have

n|A1| ≤ |φ(A1)| (2.1)
n|A1 ∪ {mk}| ≤ |φ(A1 ∪ {mk})|. (2.2)

We note that the number of jobs in φ(A1) or any subset of φ(A1) could be
affected by some of the n jobs assigned for mk, because some of these n jobs in
φ(A1) can no longer be assigned for men in A1 . So, to complete the assumption
that we can assign n jobs for each man of A1, we need to verify that the condition
(2.1), after assigning n jobs for mk, still holds for A1 and it’s subsets. Some jobs
of φ({mk}) could be outside φ(A1), while some could be inside φ(A1). Let nout,
and nin be the numbers of jobs of φ({mk}) that are outside, and inside φ(A1)
respectively. So, we have |φ({mk})| = nout + nin. In assigning n jobs for mk we
consider two cases: case(1) when nout ≥ n, and case(2) when nout < n. In both
cases, we try to assign, as many as possible, jobs outside φ(A1) for mk.

First, consider case(1) when nout ≥ n. In this case we choose n jobs outside
φ(A1) for mk. So, the number of jobs in φ(A1) does not change after assigning n
jobs for mk. Therefore, condition (2.1) still holds for A1 and all subsets A of A1.

Next, consider case(2) when 0 ≤ nout < n. In this case, for mk, we assign all
nout jobs outside φ(A1), and ni = n − nout jobs inside φ(A1). After assigning n
jobs for mk, the number of jobs in φ(A1) will be reduced by ni, where 1 ≤ ni ≤ n.
In verifying (2.1) for A1 and it’s subsets, we remove these ni jobs assigned for
mk from φ(A1). The new φ(A1) whose ni jobs were removed shall be denoted by
φ∗(A1). So, we have |φ∗(A1)| = |φ(A1)|−ni. We shall show that after assigning n
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jobs for mk, and with the new reduced values of |φ(A1)|, the condition (2.1) still
holds for A1. From (2.2), we can have

n|A1|+ n ≤ |φ(A1)|+ |φ({mk})| − |φ(A1) ∩ φ({mk})|
= (|φ∗(A1)|+ ni) + (nout + nin)− nin

= |φ∗(A1)|+ ni + nout

= |φ∗(A1)|+ n
So, we have n|A1| ≤ |φ∗(A1)|, i.e. (2.1), with the new reduced value of |φ(A1)|,

still holds for A1. We have shown that the condition (2.1), after assigning n jobs
for mk, still holds for A1 with k − 1 men. By using similar arguments as above
we can show that the condition (2.1), after assigning n jobs for mk, still holds for
every other subset A of A1.

From the results of case (1) and case (2) , we have shown that, for sets V1

of any size k ≥ 2 , with n|A| ≤ |φ(A)| for all subsets A of V1, if we can assign n
jobs for each of any k− 1 men then we can also assign n jobs for all of the k men.
Hence, we conclude that, with n|A| ≤ |φ(A)| for all subsets A of V1, there exists
(1, n)-complete matching from V1 to V2 for all k ≥ 1.

For example, consider every subset A of V1b and the corresponding φ(A) of
the bipartite G(V1b, V2b) described in Figure 1(b). See Figure 2 for details. We can
see that 2|A| ≤ |φ(A)| for every subset A. Therefore, by Theorem 2, we shall have
the existence of (1, 2)-complete matching from V1b to V2b. For another example,
consider Figure 1(a), the subset A = {m1, m4} has φ(A) = {w1, w2, w4}. Since
2|A| > |φ(A)|, therefore by Theorem 2, there is no (1, 2)-complete matching from
V1a to V2a.
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Figure 2

A φ(A)

{m1, m2, m3, m4} {w1, w2, w3, w4, w5, w6, w7, w8, w9, w10}

{m2, m3, m4} {w4, w5, w6, w7, w8, w9, w10}

{m1, m3, m4} {w1, w2, w3, w5, w6, w7, w8, w9, w10}

{m1, m2, m4} {w1, w2, w3, w4, w5, w6, w7, w9, w10}

{m1, m2, m3} {w1, w2, w3, w4, w5, w7, w8, w9, w10}

{m3, m4} {w5, w6, w7, w8, w9, w10}

{m2, m4} {w4, w5, w6, w9, w10}

{m2, m3} {w4, w5, w7, w8, w9, w10}

{m1, m4} {w1, w2, w3, w5, w6, w7, w9, w10}

{m1, m3} {w1, w2, w3, w7, w8, w9, w10}

{m1, m2} {w1, w2, w3, w4, w5, w7, w9}

{m4} {w5, w6, w9, w10}

{m3} {w7, w8, w9, w10}

{m2} {w4, w5, w9}

{m1} {w1, w2, w3, w7}

3 An algorithm for finding (1, n)-complete match-
ing in bipartite graphs

Theorem 2 can guarantee the existence of (1, n)-complete matching in some
bipartite graphs. Suppose we know, by Theorem 2, that a G(V1, V2) contains
(1, n)-complete matching. The next question is how to assign n jobs for all of
each man in V1. If we try to assign the jobs without proper algorithm we might
face, at some steps, the situation that we can not assign n jobs for some men.
For example, from Figure 2, with Theorem 2, we know that there exists (1, 2)-
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complete matching in G(V1b, V2b) of Figure 1(b). However, if we assign w1, w3

for m1, assign w4, w5 for m2, and assign w9, w10 for m3, then we can not assign
2 jobs for m4. From this example, it is clear that, in order to assign n jobs for all
of each man of V1, it is desirable to have a proper algorithm which can assure us
that we can assign the jobs for all men successfully.

The alternative proof of Theorem 2 above can help us to create such algorithm.
First, we shall describe the idea of how to construct the algorithm, and, after that,
explain why the algorithm works.

Given a bipartite graph G(V1, V2), with the condition as in Theorem 2.
Consider m1 and A1 = V1 − {m1}. From φ({m1}), we shall choose n jobs for
m1. Let nout, and nin be the numbers of jobs of φ({m1}) that are outside, and
inside φ(A1) respectively. We assign jobs for m1, as many as possible, from outside
φ(A1). That is, when nout ≥ n, we choose n jobs outside φ(A1) for m1, and when
0 ≤ nout < n we assign all nout jobs outside φ(A1), and ni = n− nout jobs inside
φ(A1) for m1. Remove m1 and the n jobs assigned for m1 from consideration.
Consider m2 and A2 = V1 − {m1,m2}. From φ({m2}), we shall choose n jobs for
m2. Let nout, and nin be the numbers of jobs of φ({m2}) that are outside, and
inside φ(A2) respectively.We, again, assign jobs for m2, as many as possible, from
outside φ(A2). That is, when nout ≥ n, we choose n jobs outside φ(A2) for m2.
When 0 ≤ nout < n we assign all nout jobs outside φ(A2), and ni = n− nout jobs
inside φ(A2) for m2. Remove m2 and the n jobs assigned for m2 from consideration.
Consider m3 and A3 = V1 − {m1, m2, m3}. Repeat the procedure until we have
assigned n jobs for mk−1. Finally, we assign n jobs for mk from the remaining
jobs in φ({mk}).

Let us call the above algorithm as ”Finding-complete-matching algorithm” or
FICMA. Theorem 3 gives an explanation about the algorithm.

Theorem 3 Let there exist (1, n)-complete matching in a bipartite graph
G(V1, V2).Then the algorithm FICMA can be used in assigning n jobs for all men
in V1.

Proof: Consider a given G(V1, V2) with the condition n|A| ≤ |φ(A)| for every
subset A of V1. After assigning n jobs for m1 as described in the algorithm, we
shall find, as in the proof of Theorem 2, that A1 = V1 − {m1} still satisfies the
condition n|A1| ≤ |φ(A1)|. Also, as in the proof of Theorem 2, every subset A
of A1 shall satisfy the condition n|A| ≤ |φ(A)|. Therefore, after remove m1 and
the n jobs assigned for m1 from consideration, and with the use of Theorem 2, we
can claim that there still exist (1, n)-complete matching from A1 to the remaining
jobs in V2. Consider m2 and A2 = V1 − {m1,m2}. Again, after assigning n jobs
for m2 as described in the algorithm, we shall find that A2 = V1 − {m1,m2} still
satisfies the condition n|A2| ≤ |φ(A2)|. Also, every subset A of A2 shall satisfy
the condition n|A| ≤ |φ(A)|. Therefore, after remove m2 and the n jobs assigned
for m2 from consideration, and with the use of Theorem 2, we can claim that
there still exist (1, n)-complete matching from A2 to the remaining jobs in V2.
Repeat the procedure, until, finally, after remove mk−1 and the n jobs assigned
for mk−1 from consideration, and with the use of Theorem 2, we can claim that
there still exist (1, n)-complete matching from Ak−1 = V1 − {m1,m2, ...,mk−1}
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to the remaining jobs in V2. In fact, Ak−1 = {mk}, and so we can finally assign n
jobs for the last man mk.

For illustration, consider the bipartite G(V1b, V2b) in Figure 1(b). Here
V1 = {m1, m2, m3, m4}. Consider m1 and A1 = V1 − {m1} = {m2, m3, m4}.
Here φ({m1}) = {w1, w2, w3, w7}, φ(A1) = {w4, w5, w6, w8, w9, w10}. So we
can assign any 2 jobs in φ({m1}), say w1,w2 for m1. Remove m1 and the 2 jobs
w1, w2 from consideration. Consider m2 and A2 = V1 − {m1, m2} = {m3, m4}.
Here φ({m2}) = {w4, w5, w9}, φ(A2) = {w5, w6, w7, w8, w9, w10}. According
to the algorithm, we will try to assign jobs for m2, as many as possible, from
outside φ(A2). Here, we can choose only w4 from outside φ(A2) for m2, so we
need to choose one of the jobs, say w5, in φ(A2) for m2. Now, we have assigned
w4, w5 for m2. Remove m2 and w4, w5 from consideration. Consider m3 and
A3 = V1 − {m1, m2, m3} = {m4}. Here φ({m3}) = {w7, w8, w9, w10}, φ(A3) =
{w6, w9, w10}. Assign w7, w8 for m3. Remove m3 and w7, w8 from consideration.
Consider m4 and φ({m4}) = {w6, w9, w10}. We can assign w6, w9 for m4. Hence,
we have assigned 2 jobs for each of the four men of V1.
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