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Abstract The studies about hybrid mappings are mainly focused for single-valued mappings in Hilbert

spaces. We define a new class of multivalued mappings in CAT (κ) spaces which contains the multival-

ued nonexpansive mappings, α-nonexpansive mappings and some hybrid mappings such as (α, β)-hybrid

mappings and we study existence and convergence of this new class of mappings on CAT(κ) spaces which

is more general than CAT(0) spaces and also non-Euclidean generalization of Hilbert spaces.
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1. Introduction

Fixed point theory has a large application area as mathematics, economy, computer,
medicine and so on. But all of them mentioned above have different behavior according
to come true real life. In the real world, events have both linear and nonlinear structures.
Fixed point theory includes works about both of them. In this theory, nonlinear structures
is important more than linear ones. In this sense, geodesic spaces are an example to these
nonlinear structures. We also have to point out that the CAT(0) and Hilbert spaces are
similar structures. On the other hand, single and multi valued mappings in the theory
are important two concepts. There are huge studies about linear and nonlinear single
valued mappings. But nonlinear and multivalued studies are a few in the literature.

In this study we improve and generalize the wide mapping classes defined by P. Ko-
courek et. al. [P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and
weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese
J. Math., 14 (2010),2497-2511]. These classes are more general than nonspreading map-
pings, nonexpansive mappings, hybrid mappings and multivalued mappings. We also
prove some fixed point results in CAT(κ)-space for κ > 0.
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This new definition for multivalued mapping class is more general than most of mul-
tivalued mappings in literature, for example multivalued nonexpansive mapping. Along
with that it is also multivalued generalization of many mapping classes of single valued
hybrid mappings which are not their multivalued generalization in literature.

2. Preliminaries

Let H be a Hilbert space and K ⊆ H,K 6= ∅. Let us take T as a single valued mapping
from K to H. If T satisfies

||Tx− Ty|| ≤ ||x− y||,
2||Tx− Ty||2 ≤ ||Tx− y||2 + ||Ty − x||2

and

3||Tx− Ty||2 ≤ ||x− y||2 + ||Tx− y||2 + ||Ty − x||2

for all x, y ∈ K then it called non-expansive, non-spreading [1] and hybrid [2] respectively.
None of these classes of mappings is included in the other. In 2010, Aoyama et al. [3]
defined λ−hybrid as follows;

(1 + λ)||Tx− Ty||2 − λ||x− Ty||2 ≤ (1− λ)||x− y||2 + λ||Tx− y||2

where x, y ∈ K and λ is fixed real number. λ−hybrid mappings are general than non-
expansive mappings, non-spreading mappings and hybrid mappings. In 2011, Aoyama
and Kohsaka [4] introduced α−non-expansive mappings in Banach spaces as follows;

||Tx− Ty||2 ≤ (1− 2α)||x− y||2 + α||Tx− y||2 + α||x− Ty||2

where x, y ∈ K and α < 1 is fixed. They showed that α−non-expansive and λ−hybrid
are equivalent in Hilbert spaces for λ < 2. Kocourek et al. [5], introduced more general
class of mappings than the above mappings in Hilbert spaces, called (α, β)−generalized
hybrid, as follows;

α||Tx− Ty||2 + (1− α)||x− Ty||2 ≤ β||Tx− y||2 + (1− β)||x− y||2

where x, y ∈ K and α, β are fixed real numbers.
Many iterative processes to find a fixed point of multivalued mappings have been

introduced in metric and Banach spaces. The well known one is defined by Nadler as
generalization of Picard as follows;

xn+1 ∈ Txn.
A multivalued version of Mann and Ishikawa fixed point procedures goes as follow;

xn+1 ∈ (1− ζn)xn + ζnTxn

and

xn+1 ∈ (1− ζn)xn + ζnTyn,

yn ∈ (1− ςn)xn + ςnTxn

where {ζn} and {ςn} are sequences in [0, 1].
Gursoy and Karakaya [6] introduced Picard-S iteration as follows;

xn+1 = Tyn,

yn = (1− ζn)Txn + ζnTzn,

zn = (1− ςn)xn + ςnTxn
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where {ζn} and {ςn} are sequences in [0, 1]. Now, we give definition of the multivalued
version of Picard-S iteration in CAT(κ) spaces as follows

xn+1 = PK(un),

yn = PK((1− ζn)wn ⊕ ζnvn),

zn = PK((1− ςn)xn ⊕ ςnwn) (2.1)

where {ζn} and {ςn} are sequences in [0, 1] with lim infn(1−ςn)ςn > 0, un ∈ Tyn, vn ∈ Tzn
and wn ∈ Txn.

Let (X, d) be a metric space and take K ⊆ X,K 6= ∅ . In the rest of this paper, we
will use following notations; C(X) for all nonempty, closed subsets of X, CC(X) for all
nonempty closed and convex subsets of X, KC(X) for nonempty, compact and convex
subsets of X and CB(X) for all nonempty, closed and convex subsets of X. Let H be
Hausdorff metric on CB(X), defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)}

where d(x,B) = inf{d(x, y); y ∈ B}. A point p is called fixed point of multivalued mapping
T if p ∈ Tp and the set of all fixed points of T is denoted by F (T ).

Let (X, d) be bounded metric space and take x, y ∈ X and K ⊆ X,K 6= ∅ . A geodesic
path (or shortly a geodesic) joining x and y is a map c : [0, t] ⊆ R → X such that
c(0) = x, c(t) = y and d(c(r), c(s)) = |r − s| for all r, s ∈ [0, t]. In fact, c is an isometry
and d(c(0), c(t)) = t. The image of c, c([o, t]) is called geodesic segment from x to y and it
is not necessarily be unique. It is unique then it is denoted by [x, y]. z ∈ [x, y] if and only
if there exists t ∈ [0, 1] such that d(z, x) = (1− t)d(x, y) and d(z, y) = td(x, y). The point
z is denoted by z = (1 − t)x ⊕ ty. For fixed r > 0, the space (X, d) is called r-geodesic
space if any two point x, y ∈ X with d(x, y) < r there is a geodesic joining x to y. if for
every x, y ∈ X, there is a geodesic path then (X, d) called geodesic space and uniquely
geodesic space if that geodesic path is unique for any pair x, y. We call a subset K ⊆ X
as a convex subset if it contains all geodesic segment joining any pair of points in it.

Definition 2.1 ([7]). Let take κ ∈ R.

i) if κ = 0 then Mn
κ is Euclidean space En,

ii) if κ > 0 then Mn
κ is obtained from the sphere Sn by multiplying distance

function by 1√
κ

,

iii) if κ < 0 then Mn
κ is obtained from hyperbolic space Hn by multiplying distance

function by 1√
−κ .

In geodesic metric space (X, d), a geodesic triangle, ∆(x, y, z) consist of three point
x, y, z as vertices and three geodesic segments of any pair of these points, that is, q ∈
∆(x, y, z) means that q ∈ [x, y] ∪ [x, z] ∪ [y, z]. The triangle ∆(x, y, z) in M2

κ is called
comparison triangle for the triangle ∆(x, y, z) such that d(x, y) = d(x, y), d(x, z) = d(x, z)
and d(y, z) = d(y, z) and such a comparison triangle always exists provided that the
perimeter d(x, y) + d(y, z) + d(z, x) < 2Dκ(Dκ = π√

K
if κ > 0 and ∞ otherwise) in M2

κ

(Lemma 2.14 in [7]). A point point z ∈ [x, y] is called comparison point for z ∈ [x, y] if
d(x, z) = d(x, z). A geodesic triangle ∆(x, y, z) in X with perimeter less than 2Dκ (and
given a comparison triangle ∆(x, y, z) for ∆(x, y, z) in M2

κ) satisfies CAT (κ) inequality
if d(p, q) ≤ d(p, q) for all p, q ∈ ∆(x, y, z) where p, q ∈ ∆(x, y, z) are the comparison points
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of p, q respectively. The Dκ-geodesic metric space (X, d) is called CAT (κ) space if every
geodesic triangle in X with perimeter less than 2Dκ satisfies the CAT (κ) inequality.

If for every x, y, z ∈ X, there is a R ∈ (0, 2] satisfying

d2(x, (1− λ)y ⊕ λz) ≤ (1− λ)d2(x, y) + λd2(x, z)− R

2
λ(1− λ)d2(y, z)

then (X, d) called R−convex [8]. Hence, (X, d) is a CAT (0) space if and only if it is a
2−convex space.

Lemma 2.2 ([9]). Let κ > 0 and (X, d) be a CAT (κ) space with diam(X) < π−ε
2
√
κ

for

some ε ∈ (0, π2 ). Then (X, d) is a R−convex space for R = (π − 2ε) tan(ε).

Proposition 2.3 ([7]). Let X be CAT (κ) space. Then any ball of radius smaller than
π

2
√
κ

are convex.

Proposition 2.4 (Exercise 2.3(1), [7]). Let κ > 0 and (X, d) be a CAT (κ) space with
diam(X) < Dκ

2 = π
2
√
κ

. Then, for any x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Proposition 2.5 ([10]). The modulus of convexity for CAT (κ) space X (of dimension
≥ 2) and number r < π

2
√
κ

and let m denote the midpoint of the segment [x, y] joining x

and y defined by the modulus δr by sitting

δ(r, ε) = inf{1− 1

r
d(a,m)}

where the infimum is taken over all points a, x, y ∈ X satisfying d(a, x) ≤ r, d(a, y) ≤ r
and ε ≤ d(x, y) < π

2
√
κ

.

Lemma 2.6 ([10]). Let X be a complete CAT (κ)space with modulus of convexity δ(r, ε)
and let x ∈ E. Suppose that δ(r, ε) increases with r (for a fixed ε) and suppose {tn} is a
sequence in [b, c] for some b, c ∈ (0, 1), {xn} and {yn} are the sequences in X such that
lim supn→∞ d(xn, x) ≤ r, lim supn→∞ d(yn, x) ≤ r and limn→∞ d((1−tn)xn⊕tnyn, x) = r
for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.

Let {xn} be a bounded sequence in a CAT (κ) space X and x ∈ X. Then, with setting

r(x, {xn}) = lim sup
n→∞

d(x, xn)

the asymptotic radius of {xn} is defined by

r({xn}) = inf{r(x, {xn});x ∈ X.},
the asymptotic radius of {xn} with respect to K ⊆ X is defined by

rK({xn}) = inf{r(x, {xn});x ∈ K.},
and the asymptotic center of {xn} is defined by

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}
and let ωw(xn) := ∪A({xn}) where union is taken on all subsequences of {xn}.

Definition 2.7 ([11]). A sequence {xn} ⊂ X is said to be ∆−convergent to x ∈ X if x
is the unique asymptotic center of all subsequence {un} of {xn}. In this case we write
∆− limn xn = x and read as x is the ∆−limit of {xn}.
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Proposition 2.8 ([11]). Let X be a complete CAT (κ) space, K ⊆ X nonempty, closed
and convex, {xn} is a sequence in X. If rK({xn}) < π

2
√
κ

then AK({xn}) consist exactly

one point.

Lemma 2.9 ([12]). We have the following facts.

i) Every bounded sequence in X has a ∆-convergent subsequence,
ii) If K is a closed convex subset of X and if {xn} is a bounded sequence in K,
then the asymptotic center of {xn} is in K.

Lemma 2.10 ([12]). If {xn} is a bounded sequence in X with A({xn}) = {x} and {un}
is a subsequence of {xn} with A({un}) = u and the sequence {d(xn, u)} converges, then
x = u.

Lemma 2.11 ([11]). Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2). Let K be a nonempty closed convex subset of X. Then

i) the metric projection PK(x) of x onto K is a singleton,
ii) if x /∈ K and y ∈ K with u 6= PK(x), then ∠PK(x)(x, y) ≥ π

2 ,
iii) for each y ∈ K, d(PK(x), PK(y)) ≤ d(x, y).

Definition 2.12. T is called (a1, a2, b1, b2)−generalized multivalued hybrid mapping from
X to CB(X) if

a1(x)H2(Tx, Ty) + a2(x)d2(Tx, y) ≤ b1(x)d2(x, Ty) + b2(x)d2(x, y)

is satisfied for all x, y ∈ X where a1, a2 : X → R and b1, b2 : X → R with a1(x)+a2(x) ≥ 1
and b1(x) + b2(x) ≤ 1 for all x ∈ X.

3. Main Results

Proposition 3.1. Let X be a complete CAT (κ) space, K be a nonempty, closed and
convex subset of X with rad(K) < π

2
√
κ

, T be (a1, a2, b1, b2)−multivalued hybrid mapping

from K to C(K) with F (T ) 6= ∅ and a1(p) ≥ 0 for all p ∈ F (T ) then F (T ) closed.

Proof. Let {xn} be a sequence in F (T ) and xn → x ∈ K. Then we have

d2(Tx, xn) ≤ a1(x)d2(Tx, xn) + a2(x)d2(Tx, xn)

≤ a1(x)H2(Tx, Txn) + a2(x)d2(Tx, xn)

≤ b1(x)d2(x, Txn) + b2(x)d2(x, xn)

≤ d2(x, xn)

then taking limit on n we have

d(Tx, x) = 0

so x ∈ Tx.

Theorem 3.2. Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for

some ε ∈ (0, π/2). Let K be a nonempty, convex and compact subset of X, T : K →
CC(X) be a (a1, a2, b1, b2)−generalized multivalued hybrid mapping with a1(x) ≥ 0 for all
x ∈ K. If {xn} is a sequence in K with limn→∞ d(xn, Txn) = 0 then F (T ) 6= ∅.
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Proof. Assume that {xn} is a sequence in K with limn→∞ d(xn, Txn) = 0 Then since
K is compact, there is convergent subsequence {xni} of {xn}, say xni → z ∈ K.Also, by
2.11 we can find a sequence {yn} such that d(xn, yn) = d(xn, Txn) for all n ∈ N. Since
d(xni , T z) ≤ d(xni , yni) + d(yni , T z) and d(yni , T z) ≤ d(xni , yni) + d(xni , T z) we have
that lim supi→∞ d(xni , T z) = lim supi→∞ d(yni , T z). Then using properties of T, we have

a1(z)d2(Tz, yni) + a2(z)d2(Tz, xni) ≤ a1(z)H2(Tz, Txni) + a2(z)d2(Tz, xni)

≤ b1(z)d2(z, Txni) + b2(z)d2(z, xni)

≤ b1(z)[d(z, xni) + d(xni , Txni)]
2

+b2(z)d2(z, xni)

so we get that

lim sup
i→∞

d(Tz, xni) ≤ lim sup
i→∞

d(xni , z) = 0.

Then

d(z, Tz) ≤ d(z, xni) + d(xni , T z)

implies that

d(z, Tz) ≤ lim sup
i→∞

d(z, xni) + lim sup
i→∞

d(xni , T z) = 0.

Hence we get that z ∈ Tz.

Example 3.3. Let X = [2, 10] with usual metric and T : X → C(X) be multivalued
mapping defined by

Tx =

{
{2}, x ∈ [2, 5];

[3, 4x
3+1

x3+1 ], x ∈ (5, 8].

We will show that T is a (a1, a2, b1, b2)−generalized multivalued hybrid mapping with

a1(x) = 2x+2
x+1 , a2(x) = −x−1

x+1 , b1(x) = x
x+1 , b2(x) = 1

x+2 for all x ∈ X.

Case 1: if x, y ∈ [2, 5], it is obvious.

Case 2: if x ∈ [2, 5], y ∈ (5, 8], then we have that H2(Tx, Ty) ≤ 4, 9 < d2(Tx, y), 0 <
d2(x, Ty) and so

2x+ 2

x+ 1
H2(Tx, Ty) ≤ 4x+ 8

x+ 1

≤ 9x+ 9

x+ 1
+
x+ 1

x+ 1
d2(x, Ty) +

1

x+ 2
d2(x, y)

≤ x+ 1

x+ 1
d2(Tx, y) +

x+ 1

x+ 1
d2(x, Ty) +

1

x+ 1
d2(x, y).
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Case 3: if x, y ∈ (5, 8], then we have that H2(Tx, Ty) ≤ 1, 1 < d2(Tx, y), 1 < d2(x, Ty)
and so

2x+ 2

x+ 1
H2(Tx, Ty) ≤ 2x+ 2

x+ 1

≤ x+ 1

x+ 1
+
x+ 1

x+ 1
+

1

x+ 1
d2(x, y)

≤ x+ 1

x+ 1
d2(Tx, y) +

x+ 1

x+ 1
d2(x, Ty) +

1

x+ 1
d2(x, y).

Thus T is a (a1, a2, b1, b2)−generalized multivalued hybrid mapping with fixed point,
T (2) = {2}.

Theorem 3.4. Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for

some ε ∈ (0, π/2). Let K be a nonempty, convex and compact subset of X and T : K →
CC(X) be a (a1, a2, b1, b2)−generalized multivalued hybrid mapping with a1(x) ≥ 0 for all
x ∈ K. If {xn} is a sequence in K with ∆− limn→∞ xn = z and limn→∞ d(xn, Txn) = 0,
then z ∈ K and z ∈ T (z).

Proof. It can be shown similar to proof of Theorem 3.2.

Lemma 3.5. Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2). Let K be a nonempty, convex and compact subset of X and
T : K → CC(X) be (a1, a2, b1, b2)−generalized multivalued hybrid mapping with a1(x) ≥ 0
for all x ∈ K. If {xn} is a sequence in K with limn→∞ d(xn, Txn) = 0 and {d(xn, p)}
converges for all p ∈ F (T ), then ωw(xn) ⊆ F (T ) and ωw(xn) include exactly one point.

Proof. Let take u ∈ ωw(xn) then there exist subsequence {un} of {xn} with A({un}) =
{u}.Then By Lemma 2.9 there exist subsequence {vn} of {un} with ∆− limn→∞ vn = v ∈
K . Then by Theorem 3.4 we have v ∈ F (T ) and by Lemma 2.10 we conclude that u = v,
hence we get ωw(xn) ⊆ F (T ). Let take subsequence {un} of {xn}with A({un}) = {u}
and A({xn}) = {x}. Because of v ∈ ωw(xn) ⊆ F (T ), {d(xn, u)} converges, so by Lemma
2.10 we have x = u, this means that ωw(xn) include exactly one point.

Theorem 3.6. Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2). Let K be a nonempty, convex and compact subset of X and T :
K → CC(X) be a (a1, a2, b1, b2)−generalized multivalued hybrid mapping with F (T ) 6= ∅,
Tp = {p} for all p ∈ F (T ) and a1(x) ≥ 1 for all x ∈ K. If {xn} be a sequence in K
defined by (2.1) with lim infn(1− ςn)ςn > 0, then it have a ∆−limit which in F (T ).

Proof. Let p ∈ F (T ) then for all x ∈ C we have

d2(Tx, p) ≤ a1(x)d2(Tx, p) + a2(x)d2(Tx, p)

≤ a1(x)H2(Tx, Tp) + a2(x)d2(Tx, p)

≤ b1(x)d2(x, p) + b2(x)d2(x, p)

≤ b1(x)d2(x, p) + b2(x)d2(x, p)

≤ d2(x, p).
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If a2(x) ≥ 0 for all x ∈ C then we have that

a1(x)H2(Tx, Tp) ≤ b1(x)d2(x, p) + b2(x)d2(x, p)− a2(x)d2(Tx, p)

≤ d2(x, p).

So we have

H2(Tx, Tp) ≤ 1

a1(x)
d2(x, p) ≤ d2(x, p).

And now if a2(x) ≤ 0 for all x ∈ C then since a1(x) + a2(x) ≥ 1 implies 1 ≥ 1
a1(x)

− a2(x)
a1(x)

so we have that

a1(x)H2(Tx, Tp) ≤ b1(x)d2(x, p) + b2(x)d2(x, p)− a2(x)d2(Tx, p)

≤ d2(x, p)− a2(x)d2(Tx, p)

which implies that

H2(Tx, Tp) ≤ 1

a1(x)
d2(x, p)− a2(p)

a1(p)
d2(Tx, p)

≤ 1

a1(x)
d2(x, p)− a2(x)

a1(x)
d2(x, p)

= (
1

a1(x)
− a2(x)

a1(x)
)d2(p, x)

≤ d2(p, x).

Hence we have that H(Tp, Tx) ≤ d(p, x).

d(zn, p) = d(PK((1− ςn)xn ⊕ ςnwn), PK(p))

= d(PK((1− ςn)xn ⊕ ςnwn), p)

≤ d((1− ςn)xn ⊕ ςnwn, p)
≤ (1− ςn)d(xn, p) + ςnd(wn, p)

≤ (1− ςn)d(xn, p) + ςnd(wn, Tp)

≤ (1− ςn)d(xn, p) + ςnH(Txn, Tp)

≤ (1− ςn)d(xn, p) + ςnd(xn, p)

≤ d(xn, p)

and

d(yn, p) = d(PK((1− ζn)wn ⊕ ζnvn, p)
≤ d(PK((1− ζn)wn ⊕ ζnvn, PK(p))

≤ d((1− ζn)wn ⊕ ζnvn), p)

≤ (1− ζn)d(wn, p) + ζnd(vn, p)

≤ (1− ζn)d(wn, Tp) + ζnd(vn, Tp)

≤ (1− ζn)H(Txn, p) + ζnH(Tzn, Tp)

≤ (1− ζn)d(xn, p) + ζnd(zn, p)

≤ d(xn, p)
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and

d(xn+1, p) = d(PK(un), PK(p))

≤ d(un, p)

≤ H(Tyn, Tp)

≤ d(yn, p)

so, d(xn+1, p) ≤ d(yn, p) ≤ d(xn, p) implies limn→∞ d(xn, p) = limn→∞ d(yn, p) exists.
Let us say, limn→∞ d(xn, p) = k. Since d(wn, p) ≤ d(xn, p) and d(vn, p) ≤ d(zn, p) ≤
d(xn, p), we have that lim supn→∞ d(wn, p) ≤ k, lim supn→∞ d(vn, p) ≤ k and

d(yn, p) = d(PK((1− ζn)wn ⊕ ζnvn, p)
≤ d((1− ζn)wn ⊕ ζnvn, p)
≤ (1− ζn)d(wn, p) + ζnd(vn, p)

≤ (1− ζn)d(xn, p) + ζnd(zn, p)

≤ d(xn, p)

which implies that that limn→∞ d((1− ζn)wn ⊕ ζnvn, p) = k, so by Lemma 2.6, we have
that limn→∞ d(wn, vn) = 0. And again from

d(yn, p) = d(PK((1− ζn)wn ⊕ ζnvn, p)
≤ d((1− ζn)wn ⊕ ζnvn, p)
≤ (1− ζn)d(wn, p) + ζnd(vn, p)

≤ (1− ζn)(d(wn, vn) + d(vn, p)) + ζnd(vn, p)

≤ (1− ζn)d(wn, vn) + d(vn, p)

we have that k ≤ lim infn→∞ d(vn, p) and since d(vn, p) ≤ d(zn, p) ≤ d(xn, p), we have
that limn→∞ d(zn, p) = k. By R−convexivity, we have

d2(zn, p) = d2(PK((1− ςn)xn ⊕ ςnwn), Pp)

≤ d2((1− ςn)xn ⊕ ςnwn, p)

≤ (1− ςn)d2(xn, p) + ςnd
2(wn, p)−

R

2
(1− ςn)ςnd

2(xn, wn)

≤ (1− ςn)d2(xn, p) + ςnd
2(xn, p)−

R

2
(1− ςn)ςnd

2(xn, wn)

≤ d2(xn, p)−
R

2
(1− ςn)ςnd

2(xn, wn)

which implies that

R

2
(1− ςn)ςnd

2(xn, wn) ≤ d2(xn, p)− d2(zn, p).

Since limn→∞(d2(xn, p) − d2(zn, p)) = 0 and lim infn(1 − ςn)ςn > 0, therefore we get
limn→∞ d(xn, wn) = 0 and hence limn→∞ d(xn, Txn) = 0. So, by Lemma 3.5, {xn} has
∆−limit which in F (T ).

Theorem 3.7. Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2). Let K be a nonempty, convex and compact subset of X and
T : K → CC(X) be a continuous (a1, a2, b1, b2)−generalized multivalued hybrid mapping.
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If {xn} is a sequence in K defined by (2.1) with lim infn(1− ςn)ςn > 0 and (ζn) ⊂ (0, 1)
then {xn} is strongly convergent to an element of F (T )

Proof. By Theorem 3.6, we have that limn→∞ d(Txn, xn) = 0 and limn→∞ d(xn, p) exists
for all p ∈ F (T ). Since K is compact there is a convergent subsequence {xni} of {xn},
say limi→∞ xni = z. Then we have

d(z, Tz) ≤ d(z, xni) + d(xni , Txni) +H(Txni , T z)

and taking limit on i, continuity of T implies that z ∈ Tz.
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