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Abstract Our goal in this paper is to establish a new approach that is to define proximal spaces for

lattices. To make this, we used the opinion of the generalization of interval [0,1] to lattices and so we

introduce L-proximal spaces. In this paper, we define the L-proximity axioms that need to be satisfied

by a L-relation on proximal relator spaces. Also, L-proximity of the sets is introduced on the power set of

a nonempty set. We show that the spatial Simirnov proximity measure can be generalized for L-measure

and it is a Lodato L-proximity relation. L-proximity relation approach can be used to solve a few issues

solution of classification problems and given examples for the problems.
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1. introduction

The concepts of proximity spaces were rediscovered in the early 1950’s by Efremoviĉ [1].
He gave the definition of a proximity space by axiomatically characterizing the proximity
relation “A is near(proximal) B ” for subsets A and B of any set X. Efremoviĉ later used
the idea of proximity neighborhoods to generate proximity spaces. Some researchers have
worked with weaker axioms than those of Efremoviĉ. Several articles were published on
proximity spaces, and reader can find excellent list of publications in [2]. A proximity
measure is a measure of the closeness of a pair of nonempty sets. The measure of degrees
of proximity δ is firstly introduced by Smirnov in 1952 [3].

A nonvoid family R of binary relations on a nonvoid set X is called a relator on X, the
ordered pair (X,R) is called a relator space. Relator spaces are natural generalizations
of ordered sets and uniform spaces [4]. In [5], Peters introduced proximal relator space
(X,Rδ), such that Rδ is a family of proximity relations on X.

The fuzzy sets introduced by Zadeh in 1965 as a generalization of traditional set. A
fuzzy set A in X is characterized by a membership function fA which associates with each
point in X a real number in the interval [0,1] . Also, the concept of fuzzy relation on a
set was defined by Zadeh [6, 7]. Goguen generalized fuzzy sets to L-fuzzy sets in [8]. An
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L-fuzzy set is a set with a function into a partially ordered set (hereafter called a poset).
This poset is denoted by L and called the fuzzy set an L-fuzzy set or an L-set. L- fuzzy
binary relation R is defined on a set X which is a function from X to L [9].

In 1979, Katsaras defined fuzzy proximity spaces and proved some results that hold for
ordinary proximity spaces. He studied the proximity of fuzzy sets [10]. Also some other

articles in this concepts please see [11]. In 2017, Öztürk et al introduced fuzzy proximal
relator spaces and defined fuzzy proximity relation to evaluate the proximity of the sets
[12].

In this paper, we define the L-proximity axioms that need to be satisfied by a L-relation
on proximal relator spaces. Also, L-proximity of the sets is introduced on the power set of
a nonempty set. We show that the spatial Simirnov proximity measure can be generalized
for L-measure and it is a Lodato L-proximity relation. L-proximity relation approach can
be used to solve a few issues solution of classification problems and given examples for
the problems.

2. Preliminaries

Let us take a binary relation δ defined on the power set of a nonempty set X. For all
A,B,C ∈ P (X), the following axioms are considered:

(A0) ∅ /δ A, ∀A ∈X.
(A1) A δ B ⇒ B δ A.
(A2) (A ∪B) δ C⇔ A δ C or B δ C.
(A∗2) (A ∪B) δ C⇔ A δ C or B δ C and A δ (B ∪C) ⇔ A δ B or A δ C.
(A3) A δ B ⇒ A ≠ ∅, B ≠ ∅.
(A4) A ∩B ≠ ∅ ⇒ A δ B.
If it satisfies (A0), (A1) , (A2) , (A3) and (A4), δ is called a basic proximity on X.
(A5) If, for any A,B ⊂X, A /δ B, there exists C,D ⊂X,C ∪D =X such that A /δ C

and B /δ D.
If it satisfies a basic proximity axioms and (A5), δ is called an Efremoviĉ proximity

(EF-proximity) on X.
(A6) {x} δ {y} ⇒ x = y.
If δ satisfies EF-proximity axioms and (A6), δ is called a seperated proximity on X.
(A7) A δ B and {b} δ C ∀b ∈ B ⇒ A δ C.
If δ satisfies (A∗2) , (A3) , (A4) , and (A7), δ is called a Leader proximity (LE-proximity)

on X [13].
If δ satisfies LE-proximity axioms and (A1), δ is called a Lodato proximity (LO-

proximity) on X.
(A∗7) {x} δ B and {b} δ C ∀b ∈ B ⇒ {x} δ C.
If δ satisfies the basic proximity axioms and (A6) and (A∗7), δ is called an S-proximity

on X.
And so, the pair (X,δ) is called a basic proximity (EF-proximity, separated proximity,

Leader proximity, Lodato proximity, S proximity, respectively ) space.
There are some other forms of proximity relations such as Wallman proximity, Čech

proximity, quasi proximity, paraproximity, pseudo-proximity and local proximity [2].
Let X be a set and I the unit interval. A fuzzy set in X is an element of the set of IX

of all functions µ from X into I. A binary relation δ on IX is called a fuzzy proximity if
δ satisfies the following axioms:
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(FP1) µ δ ρ implies ρ δµ,
(FP2) (µ ∨ ρ) δ σ iff µ δσ or ρ δσ
(FP3) µ δ ρ implies δ ≠ 0 and ρ ≠ 0,
(FP4) µ δ̄ ρ implies that there exists a ρ ∈ IX such that µ δ̄ ρ and (1 − σ) δ̄ρ,
(FP5) µ ∧ ρ ≠ 0 implies µ δρ.
The pair (X,δ) is called a fuzzy proximity space [10].

A proximity measure is a measure of the closeness of a pair of nonempty sets. Notice
that a proximity measure is not a distance metric but instead a proximity measure is a
set inclusion measure, i.e., a measure of the degree that one set is included in another
set. Let A,B be a nonempty subsets in a proximity space X. The Smirnov proximity
measure δ(A,B) ∈ {0,1} is defined by

δ (A,B) = { 1, if A is close to B,
0, if A is far from B.

There are two forms of proximity spaces: spatial and descriptive proximity. A set X
endowed with descriptive proximity relation δΦ, that satisfies descriptive extensions of
Efremoviĉ’s axioms.

The set Φ contains probe functions ϕ ∶ X → R that represent features of non abstract
points which have a location and features that can be measured [14]. (ϕ (x) is a feature
value of x in X). The description of x is defined by a feature vector Φ (a). Q(A)
denotes the set of descriptions of points in A ⊂X;Q(A) = {Φ (a) ∶ a ∈ A}. The descriptive
intersection AΦ∩B is the set of all points with descriptions in both Q(A),Q(B). The
closure of A (denoted by clA) is the set of all points near A. A is descriptively near B
(denoted by A δΦB), provided clA ∩

Φ
clB ≠ ∅. The pair (X,δΦ) is called a descriptive

proximity space [5].

Definition 2.1. Let X be a nonempty set. A Lodato proximity δ is a relation on P(X)
which satisfies the following axioms for all subsets A,B,C of X:

(dP0): ∅ /δΦ A,∀A ⊂X.
(dP1): A δΦ B⇔ B δΦ A.
(dP2): A ∩

Φ
B ≠ ∅ ⇒ A δΦ B.

(dP3): A δΦ (B ∪C) ⇔ A δΦ B or A δΦ C.
(dP4): A δΦ B and {b} δΦ C for each b ∈ B ⇒ A δΦ C.

Let Rδ be family of proximity relations on X, then (X,Rδ) is a proximal relator space
[5]. To be clear, we can consider a few proximity relations on relator space such as the
Efremoviĉ proximity δ, the descriptive proximity δΦ, LE-proximity, LO-proximity and so
on.

In general, ARB means that A is proximal to B according to at least one of the
relations in relator R. For example, let (X,R) be a proximal relator space such that
R = {δ, δΦ}. If ARB, A,B ⊆X then AδB or AδΦB.

Peters redefined the Smirnov proximity measure for a relator space [15]. Let ε > 0,

υ (A,B) = ∣A∩B∣
∣X ∣

. δε,ν (A,B) ∈ [0,1] is called spatial Smirnov proximity measure and is

defined by

δε,ν (A,B) = {
∣A∩B∣
∣X ∣

, if ε < υ (A,B) ≤ 1,

0 , if υ (A,B) ≤ ε.
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Furthermore, Peters gave the definition of descriptive part for the extended Smirnov

proximity measure [15]. Let εΦ > 0, υ (A,B) = ∣Φ(A)∩Φ(B)∣
∣Φ(X)∣

. δεΦ,ν (A,B) ∈ [0,1] is called

descriptive Smirnov proximity measure and defined by

δεΦ,ν (A,B) = {
∣Φ(A)∩Φ(B)∣
∣Φ(X)∣

, if εΦ < υ (A,B) ≤ 1,

0 , if υ (A,B) ≤ εΦ.

A partially ordered set is a (L,≤), where L is a nonempty set and ≤ is a partial order on
L. For any subset X of L and x ∈X, x is called a lower bound (upper bound) of X if x ≤ a
(a ≤ x respectively) for all a ∈X. A poset (L,≤) is called a lattice if every nonempty finite
subset of L has greatest lower bound (or infimum) and least upper bound (or supremum)
in L. If (L,≤) is a lattice and, for any a, b ∈ L if we define a ∧ b = infimum{a, b} and
a∨ b = supremum{a, b} then ∧ and ∨ are binary operations on L which are commutative,
associative and idempotent and satisfy the absorption laws a ∧ (a ∨ b) = a = a ∨ (a ∧ b).
Conversely, any algebraic system (L,∧,∨) satisfying the above properties becomes a lattice
in which the partial order is defined by a ≤ b⇔ a = a ∧ b = b.

A lattice (L,∧,∨) is called distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L
(equivalently a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) ∀a, b, c ∈ L). A lattice (L,∧,∨) is called a
bounded lattice it has the smallest element 0 and largest element 1; there are elements
0 and 1 in L, 0 ≤ x ≤ 1 ∀x ∈ L. A partially ordered set in which every subset has
infimum and supremum is called a complete lattice. Two elements a, b of a bounded
lattice (L,∧,∨,0,1) are complements if a∧b = 0, a∨b = 1. A lattice in which each element
has at a least one complement is called a complemented lattice. If each element of a
lattice has precisely one complement, such a lattice is called uniquely complemented.

Let L be a lattice. Then for all a, b, c, d ∈ L,

(1) a ≤ b⇒ a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c,
(2) a ≤ b and c ≤ d⇒ a ∨ c ≤ b ∨ d and a ∧ c ≤ b ∧ d.

That is, ∧ and ∨ operations are binary operations and both are monotone with respect
to the order. Let (L,≤) be partially ordered set. An element a ∈ L is called an atom if it
covers some minimal element of L. A poset L is called atomic if for every element b ∈ L
that is not minimal has an atom a such that a ≤ b [16].

Throughout this paper, we use L for a complete lattice with the smallest element 0L
and the greatest element 1L. Furthermore, we removed the word “fuzzy” in all the phrases
“L-fuzzy....”. Put differently, we write L-relation, L-proximity, L-subset, etc..

An L-binary relation on a set X is a map RL ∶ X ×X → L. The set of all L-binary
relations on X, denoted by R2

L (X), is a poset with ≤ such that RL,SL ∈ R2
L (X) , RL ≤

SL, iff RL (x) ≤ SL (x)∀x ∈X ×X.
Let RL be an L-binary relation on a set X. Then,

(1) RL is called L- reflexive relation iff RL ≠ 0L and RL (x,x) ≥ RL (y, z)∀x, y, z ∈
X.

(2) RL is called L-irreflexive relation iff RL (x,x) = 0L ∀x ∈X.
(3) RL is called L- symmetric relation iff RL (x, y) = RL (y, x) ∀x, y ∈X.
(4) RL is called L-antisymmetric relation iff RL (x, y) = RL (y, x) implies x = y,
RL (x, y) > 0L ∀x, y ∈X.

(5) RL is called L-transitive relation iff RL (x, z) ≥ RL (x, y) ∧ RL (y, z) for all
x, y, z ∈X.
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(6) RL is called L-equivalence relation iff RL is an L-reflexive, L-symmetric and
L-transitive.

(7) RL is called L-partial order iff RL is an L-reflexive, L-antisymmetric and L-
transitive [9].

L-relations are represented in the form of two dimensional tables, i.e, ∣X ∣ = n. A n×n
matrix presents the L-relation RL:

RL =
x1

⋮
xn

x1 ⋯ xn
⎡⎢⎢⎢⎢⎢⎣

RL (x1, x1) ⋯ RL (x1, xn)
⋮ ⋱ ⋮

RL (xn, x1) ⋯ RL (xn, xn)

⎤⎥⎥⎥⎥⎥⎦
.

3. L-Proximal Relator Spaces

Definition 3.1. Let (X,R) be a proximal relator space and L be a lattice,

µRL ∶ P(X) × P(X) Ð→ L
(A,B) z→ µRL (A,B)

be a L-relation and A ,B ⊂X; then

RµL = {((A,B) , µRL (A,B) ) ∣ (A,B) ∈ P(X) × P(X)}

is called a L-proximity relation, provided it satisfies the following axioms:

For all A,B,C ∈ P (X),
NµRL1): µRL (A,∅) = 0L.

NµRL2): µRL (A,B) = µRL (B,A).
NµRL3): µRL (A,B) ≠ 0L implies A RL B.

NµRL4): µRL (A, (B ∪C)) ≠ 0L implies µRL (A,B) ≠ 0L and A RL B or

µRL (A,C) ≠ 0L and A RL C.

The set of all L-proximity relations on P(X) is denoted by PRL (X). PRL (X) is
a poset with ”≤” given by for RµL1

,RµL2
∈ PRL (X), RµL1

≤ RµL2
iff RµL1

(A,B) ≤
RµL2

(A,B) ∀(A,B) ∈ P(X) × P(X). Therefore, µRL(A,B) is called L-proximity mea-
sure. L-proximity relations are also shown in the form of the two dimensional tables such
that ∣P (X)∣ = n and n × n relational matrix:

RµL =
A1

⋮
An

A1 ⋯ An
⎡⎢⎢⎢⎢⎢⎣

µRL (A1,A1) ⋯ µRL (A1,An)
⋮ ⋱ ⋮

µRL (An,A1) ⋯ µRL (An,An)

⎤⎥⎥⎥⎥⎥⎦
L-proximity measure µRL (A,B) is used the meaning of the sets A and B how near(L-

proximal) to each other.
Let take two elements µRL , µSL of the set of all L-proximity relations PRL (X). Since

(A,B) can be equal to (C,D) and from axiom (NµRL1) in 3.1, we would not define such
a complementary L-proximity relations.
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Definition 3.2. Let (X,δ) be a proximity space. (X,δµL) is called spatial L-proximity
space, provided it satisfies the following axioms:
For all A,B,C ⊂X,

NµL1): µδL (A,∅) = 0L.
NµδL 2): µδL (A,B) = µδL (B,A).
NµδL 3): µδL (A,B) ≠ 0L implies AδLB.

NµδL 4): µδL (A, (B ∪C)) ≠ 0L implies µδL (A,B) ≠ 0L andAδLB or µδL (A,C) ≠
0L and AδLC.

If it satisfies spatial L-proximity axioms and the following axiom (NµδL 5), a L-relation
µδL is called a spatial Lodato L-proximity relation.

NµδL5): µδL (A,B) ≠ 0L and µδL (b,C) ≠ 0L for all b ∈ B implies µδL (A,C) ≠ 0L
and AδLC.

Definition 3.3. Let RµL be an L-proximity relation on P(X). Then (X,RµL) is called
a L-proximal relator space.

Example 3.4. (X,R) be relator space, L be lattice and X = {p, r, s} be a set. µRL and
L is defined by

1L

e

dc

0L

Figure 1. The diamond lattice M3

and

µRL ∶ P (X) × P (X) Ð→ L
(A,B) z→ µRL (A,B)

with

µRL (A,B) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a, A ∩B ≠ ∅, A ≠ B
1L, A = B,A,B ≠ ∅
0L, A ∩B = ∅.

P (X) = {∅,X,{p} ,{r} ,{s} ,{p, r} ,{p, s} ,{r, s}} .
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Let take A1 = ∅, A2 = X, A3 = {p}, A4 = {r}, A5 = {s}, A6 = {p, r}, A7 = {p, s},
A8 = {r, s}.

RµL =

A1

A2

A3

A4

A5

A6

A7

A8

A1 A2 A3 A4 A5 A6 A7 A8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0L 0L 0L 0L 0L 0L 0L 0L
0L 1L a a a a a a
0L a 1L 0L 0L a a 0L
0L a 0L 1L 0L a 0L a
0L a 0L 0L 1L 0L a a
0L a a a 0L 1L a a
0L a a 0L a a 1L a
0L a 0L a a a a 1L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easily seen that µRL satisfies the axioms (NµRL 1) − (NµRL 4). Hence (X,RµL) is
a basic L-proximity space.

Example 3.5. Let X = {a, b, c, d, e, f, g, h, i}, L = [0,1] and (X,δ) be proximity space
such that basic proximity δ is defined as

A δ B ∶⇔ A ∩B ≠ ∅.
Let A = {a, b, c, d, g} and B = {d, e, f, g, h, i} be subsets of X. We can show that A δ B

since A ∩B ≠ ∅. The L-proximity relation can be defined

µδL ∶ P(X) × P(X) Ð→ [0,1]
(A,B) z→ µδL (A,B) = ∣A∩B∣

∣A/B∣

it is easily follows that

µδL (A,B) = ∣A∩B∣
∣A/B∣

= 2
3

≊ 0.66,

µδL (B,A) = ∣B∩A∣
∣B/A∣

= 2
4

= 0.5.

Hence,

A is 0.66 L-proximal (near) to B (A δ0.66 B),
B is 0.5 L-proximal (near) to A (B δ0.5 A).

Since µδL is not symmetric, i.e, µδL (A,B) ≠ µδL (B,A), (X,RµL) is not a L-proximity
space.

Example 3.6. Let X = {o, p, r, s, t, v, x, y, z}, L = [0,1] and (X,δ) be proximity space
such that basic proximity δ is defined as

A δ B ∶⇔ A ∩B ≠ ∅.
Let A = {o, p, r, s, t}, B = {s, t, v, x, y}, C = {t, v, x, y, z}, D = {o, p, s, t, v} be subsets of

X.
We can show that A δ B, B δ C, A δ C, A δ D, B δ D and C δ D since A ∩B ≠ ∅,

B ∩C ≠ ∅, A ∩C ≠ ∅, A ∩D ≠ ∅, B ∩D ≠ ∅ and C ∩D ≠ ∅.
The L-proximity relation can be defined

µδL ∶ P(X) × P(X) Ð→ [0,1]
(A,B) z→ µδL (A,B) = ∣A/B∣

∣A∪B∣
.
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It is easily follows that

µδL (A,B) = ∣A/B∣
∣A∪B∣

= 3
8

= 0.375

µδL (B,C) = ∣B/C∣
∣B∪C∣

= 1
6

≊ 0.16

µδL (A,C) = ∣A/C∣
∣A∪C∣

= 4
9

≊ 0.444

µδL (A,D) = ∣A/D∣
∣A∪D∣

= 1
6

≊ 0.166

µδL (B,D) = ∣B/D∣
∣B∪D∣

= 2
7

≊ 0.28

µδL (C,D) = ∣C/D∣
∣C∪D∣

= 3
8

= 0.375

The L-proximity can be presented in this way:

δµL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0.375 0.444 0.166
0.375 1 0.16 0.28
0.444 0.16 1 0.375
0.166 0.28 0.375 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easily seen that µδL satisfies the axioms (NµδL1) − (NµδL4). Hence (X,RµL) is a
basic L-proximity space.

Let δ1L, δ2L, δ3L denote a trio of L-proximity relations and let RµL = {δL1 , δL1 , δL1}.
With the introduction of a family of L-proximity relations on X, we obtain a L-proximal
relator space (X,RµL) (or X(RµL))[5].

For simplicity, it is considered only three L-proximity relations, namely, the Lodato
L-proximity [17–19](denoted by δL), the descriptive Lodato proximity δL [20](denoted by
δLΦ), an extension of the Lodato proximity, and the descriptive Lodato L-proximity [15]
(denoted by µδLΦ

). Then a L-proximal relator RµδLΦ
is defined by

RµδLΦ
= {δL, δLΦ, µδLΦ

} .

Definition 3.7. Let (X,δΦ) be a Lodato proximity space. A L-relation µδL is called a
descriptive Lodato L-proximity relation, provided it satisfies the following axioms:
For all A,B,C ⊂X,

NµδLΦ
1): µδLΦ

(A,∅) = 0L for all A,B ≠ ∅.

NµδLΦ
2): µδLΦ

(A,B) = µδLΦ
(B,A).

NµδLΦ
3): µδLΦ

(A,B) ≠ 0L implies A δLΦ B.

NµδLΦ
4): µδLΦ

(A, (B ∪C)) ≠ 0L implies µδLΦ
(A,B) ≠ 0L and A δLΦ B or

µδLΦ
(A,C) ≠ 0L and A δLΦ C.

NµδLΦ
5): µδLΦ

(A,B) ≠ 0L and µδLΦ
(b,C) ≠ 0L for all b ∈ B implies µδLΦ

(A,C) ≠
0L and A δLΦ C.

Definition 3.8. Let δΦ be a descriptive Lodato L-proximity relation. Then, (X,δµLΦ
)

is called descriptive Lodato L-proximity space.

Spatial Smirnov proximity measure can be generalized to spatial Smirnov proximity
L-measure.

Definition 3.9. Let εL ∈ L and εL > 0L, υ (A,B) = ∣A∩B∣
∣X ∣

. δεL,ν (A,B) ∈ L is called

spatial Smirnov proximity L-measure and defined by

δεL,ν (A,B) = {
∣A∩B∣
∣X ∣

, if εL < υ (A,B) ≤ 1L,

0L , if υ (A,B) ≤ εL.
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Theorem 3.10. Let (X,R,RµL) be a L-proximal relator space. The Smirnov proximity
measure δεL,ν on the Lodato proximity space is a Lodato L-proximity relation.

Proof. We prove that δεL,ν satisfies the axioms:

NµRL .1) δεL,υ (A,∅) = 0L. Since υ (A,∅) ≤ εL ⇒ υ (A,∅) = ∣A∩∅∣
∣X ∣

= 0L
∣X ∣

= 0L.

NµRL .2) We will make evaluations for two situation:

i) Let δεL,υ (A,B) = 0L ⇒ υ (A,B) ≤ εL
⇒ ∣A∩B∣

∣X ∣
≤ εL

⇒ ∣B∩A∣
∣X ∣

≤ εL
⇒ υ (B,A) ≤ εL
⇒ δεL,υ (B,A) = 0L.

Hence, δεL,υ (A,B) = δεL,υ (B,A).

ii) Let δεL,υ (A,B) ≠ 0L ⇒ εL < υ (A,B) ≤ 1L
⇒ εL < υ (B,A) ≤ 1L
⇒ δεL,υ (B,A) ≠ 0L.

Thus, we get δεL,υ (A,B) = δεL,υ (B,A).

NµRL .3)
δεL,υ (A,B) ≠ 0L ⇒

εL < υ (A,B) ≤ 1L ⇒ εL < ∣A∩B∣
∣X ∣

≤ 1L ⇒ A δL B.

NµRL .4)
δεL,υ (A, (B ∪C)) ≠ 0L

⇒ εL < υ (A, (B ∪C)) ≤ 1L
⇒ εL < ∣A∩(B∪C)∣

∣X ∣
≤ 1L

⇒ εL < ∣(A∩B)∪(A∩C)∣
∣X ∣

≤ 1L

⇒ εL < ∣(A∩B)∣
∣X ∣

≤ 1L or εL < ∣(A∩C)∣
∣X ∣

≤ 1L
⇒ δεL,υ (A,B) ≠ 0L and A δL B or

δεL,υ (A,C) ≠ 0L and A δL C.

NµRL .5)
Let δεL,υ (A,B) ≠ 0L and δεL,υ (b,C) ≠ 0L, for all b ∈ B.
Then, εL < υ (A,B) ≤ 1L and εL < υ (b,C) ≤ 1L,
for all b ∈ B,

⇒ εL < ∣A∩B∣
∣X ∣

≤ 1L and εL < ∣{b}∩C∣
∣X ∣

≤ 1L, for all b ∈ B,

⇒ εL < ∣(A∩C)∣
∣X ∣

≤ 1L
⇒ δεL,υ (A,C) ≠ 0L and A δL C .

Hence the Smirnov proximity measure δεL,ν is a Lodato L-proximity relation.
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Definition 3.11. Let (X,RµL) be a L-proximal relator space. The extended Smirnov
proximity measure has a descriptive counterpart. Let εL ∈ L and εL > 0L, υ (A,B) =
∣Φ(A)∩Φ(B)∣
∣Φ(X)∣

. δεLΦ,ν (A,B) ∈ L is called descriptive Smirnov proximity L-measure and

defined by

δεLΦ,ν (A,B) = {
∣Φ(A)∩Φ(B)∣
∣Φ(X)∣

, if εLΦ < υ (A,B) ≤ 1L,

0L , if υ (A,B) ≤ εLΦ.

Theorem 3.12. Let (X,RµL) be a L-proximal relator space. The descriptive Smirnov
proximity measure δεLΦ,ν on the descriptive Lodato proximity space is a descriptive Lodato
L-proximity relation.

Proof. The proof is the similar with the proof of Theorem 3.10.

Definition 3.13. Let (X,RµL) be a L-proximal relator space. Then,

m (RµL) = ⋁
A,B∈P(X)

RµL(A,B)

is called the supremum of L-proximity relation RµL . m (RµL) gives the supremum prox-
imity grade in the family of sets.

Example 3.14. From Example 3.4, m (RµL) = 1L.

Definition 3.15. Let (X,RµL) be a L-proximal relator space. Then we get a relationship
of two sets A,B ∈ P (X) that proximal to each other with a grade larger than or equal to
εL ∈ L, εL ≠ 1L, that is, µRL (A,B) ≥ εL, as εL-proximal.

Definition 3.16. Let (X,RµL) be a L-proximal relator space. Then,

CεL = {A ∈ P (X) ∣µRL (A,B) ≥ εL,B ∈ P (X) , εL ∈ L, εL ≠ 1L}
is called set of εL-proximal sets.

We can easily obtain the set of L-proximal sets which are L-proximal to all non-empty
sets with a grade larger than or equal to εL ∈ L, εL ≠ 1L. Hence, we can classify the
subsets of X using some εL ∈ L, εL ≠ 1L. If we consider empty set B = ∅, then CεL = ∅.

Definition 3.17. Let RµL be an L-proximity relation on P(X).
(1) RµL is called reflexive L- proximity relation if RµL ≠ 0L and RµL (A,A) ≥
RµL (B,C) for all A,B,C ∈ P(X).

The set of all reflexive L-proximity relation on P(X) is denoted by RrµL .
(2) RµL is called irreflexive L-proximity relation if RµL (A,A) = 0L for all A ∈
P(X).

The set of all irreflexive L-proximity relation on P(X) is denoted by RiµL .
(3) RµL is called symmetric L-proximity relation if RµL (A,B) = RµL (B,A)
∀A,B ∈ P(X).

The set of all symmetric L-proximity relation on P(X) is denoted by RsµL .
(4) RµL is called transitive L-proximity relation if RµL (A,C) ≥ RµL (A,B) ∧
RµL (B,C) for all A,B,C ∈ P(X).

The set of all transitive L-proximity relation on P(X) is denoted by RtµL .
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(5) RµL is called equivalence L-proximity relation ifRµL is an reflexive L-proximity,
symmetric L-proximity and transitive L-proximity.

The set of all equivalence L-proximity relation on P(X) is denoted by ReµL .

Example 3.18. Let δµL be a L-proximity relation given as the Example 3.6:

δµL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0.375 0.55 0.1
0.375 1 0.16 0.28
0.55 0.16 1 0.375
0.1 0.28 0.375 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easily that δµL is a reflexive and symmetric L-proximity relation. Since δµL (A,A) ≥
δµL (B,C) for all A,B,C ∈ P(X).

Example 3.19. Let (X,RµL) be a L-proximal relator space.
Then, X = {a, b, c}, L = {0L, α1, α2,1L∣0L < α1 < α2 < 1L} and
µRL = {(({a} ,{a}) ,0L) , (({a} ,{c}) , α1) , (({a, b} ,{a, b}) ,0L) , (({a, b} ,{a, c}) , α2)}.
Then, µRL is an irreflexive and transitive L-proximity relation.

Example 3.20. Let (X,RµL) be a L-proximal relator space. Then, X = {x, y}, L =
{0L, β,1L∣0L < β < 1L} and

µRL ={ (({x} ,{x}) ,1L) , (({x} ,{y}) , β) , ((x,{{x} ,{y}}) ,0L) ,
(({y} ,{x}) ,0L) , (({y} ,{y}) ,1L) , (({y} ,{x, y}) ,0L) ,

(({x, y} ,{x}) ,0L) , (({x, y} ,{y}) ,0L) , (({x, y} ,{x, y}) ,0L) }.

Then, µRL is a reflexive and transitive L-proximity relation.

Let RµL be an L-proximity relation on P(X) and RL be a binary relation on P(X).
(1) RrµL is a sub poset of PRL (X).
(2) RiµL is a sub poset of PRL (X).
(3) RsµL is a sub poset of PRL (X).
(4) RtµL is a sub poset of PRL (X).
(5) ReµL is a sub poset of PRL (X).

Proposition 3.21. Let RµL be a L-proximity relation.

χRL ∶ P(X) × P(X) Ð→ L
(A,B) z→ χRL (A,B)

is defined as

χRL (A,B) = { 1L, if (A,B) ∈ RµL ,
0L, if (A,B) ∉ RµL .

Hence, the followings are true.

(1) RµL is a reflexive relation iff χRL is a reflexive L-proximity relation.
(2) RµL is an irreflexive relation iff χRL is an irreflexive L-proximity relation.
(3) Let RµL is a L-proximity relation iff χRL is a symmetric L-proximity relation.
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(4) RµL is a transitive relation iff χRL is a transitive L-proximity relation.

Proof. (1) (⇒) Let RµL is a reflexive relation. Hence, it satisfies (A,A) ∈ RµL for
each A ∈ P(X). χRL must satisfy the condition χRL (A,A) ≥ χRL (B,C) to be
reflexive L-proximity relation for all A,B,C ∈ P(X).
i) If (A,A) ∈ RµL and (B,C) ∈ RµL ⇒ 1L ≥ 1L.
ii)If (A,A) ∈ RµL and (B,C) ∉ RµL ⇒ 1L ≥ 0L.

In these two situations, χRL is a reflexive L-proximity relation.
(⇐) Let χRL is a reflexive L-proximity relation. χRL satisfy the condition

χRL (A,A) ≥ χRL (B,C) for all A,B,C ∈ P(X). This inequality is possible for
three situations.
i) 1L ≥ 1L ⇒ χRL (A,A) ≥ χRL (B,C) ⇒ (A,A) ∈ RµL∀A ∈ P(X).
ii) 1L ≥ 0L ⇒ χRL (A,A) ≥ χRL (B,C) ⇒ (A,A) ∈ RµL∀A ∈ P(X).
iii) 0L ≥ 0L. This is not true since χRL is a reflexive L-proximity relation and L
is not a empty set.

Other cases can be proved similarly from definitions.

Proposition 3.22. Let RµL be an L-proximity relation on P(X), and L be a complete
lattice. Take any family of L-proximity binary relation RµiL . Then, the followings are
true.

(1) If RµiL is an L-reflexive relation for every i ∈ I, then ⋀i∈IRµiL is a reflexive
L-proximity relation, whenever it is not the L-empty set 0L or whenever L is
unique atomic.

(2) If RµiL is an L-irreflexive relation for every i ∈ I, then ⋀i∈IRµiL is an ir-
reflexive L-proximity relation.

(3) Let RµiL be an L-proximity relation for every i ∈ I, then ⋀i∈IRµiL is a sym-
metric L-proximity relation.

(4) If RµiL is an L-transitive relation for every i ∈ I, then⋀i∈IRµiL is a transitive
L-proximity relation.

(5) If RµiL is an L-equivalence relation for every i ∈ I, then ⋀i∈IRµiL is an equiv-
alence L-proximity relation, whenever it is not the L-empty set 0L or whenever
L is unique atomic.

Proof. (1) Let RµiL be a L-reflexive relation for every i ∈ I and L is not empty
set 0L or L is unique atomic. ∧ operation is binary operation and monotone with
respective to the order.
RµiL be a L-reflexive relation for every i ∈ I. Then, it satisfies the condition

RµiL (A,A) ≥ RµiL (B,C) for each i ∈ I and for all A,B,C ∈ P(X). Since
∧ monotone with respective to the order, it can be written ⋀i∈IRµiL (A,A) ≥
⋀i∈IRµiL (B,C).

Hence, ⋀i∈IRµiL is a reflexive L-proximity relation.
Other cases can be proved similarly.

In the Proposition 3.22 for (1) to be reflexive L-proximity relation, L may not be empty
set as giving the following example:
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Example 3.23. Let (X,RµL) be a L-proximal relator space.
Then, X = {x, y}, L = {0L, β1, β2,1L∣0L < β1, β2 < 1L;β1∣∣β2} and

R1L = {(({x} ,{x}) , β1) , (({y} ,{y}) , β2) , (({x} ,{y}) ,0L) , (({y} ,{x}) ,0L) , (({x, y} ,{x, y}) ,0L)}.
R2L = {(({x} ,{x}) , β2) , (({y} ,{y}) , β1) , (({x} ,{y}) ,0L) , (({y} ,{x}) ,0L) , (({x, y} ,{x, y}) ,0L)}.

Then, R1L andR2L are reflexive L-proximity relations, butR1L∧R2L is not a reflexive
L-proximity relation since it is the the L-empty set 0L.

Proposition 3.24. Let RµL be an L-proximity relation on P(X), and L be a complete
lattice. Take any family of L-proximity binary relation RµiL . Then, the followings are
true.

(1) If RµiL is an L-reflexive relation for every i ∈ I, then ⋁i∈IRµiL is an reflexive
L-proximity relation.

(2) If RµiL is an L-irreflexive relation for every i ∈ I, then ⋁i∈IRµiL is an ir-
reflexive L-proximity relation.

(3) Let RµiL be an L-proximity relation for every i ∈ I, then ⋁i∈IRµiL is an
symmetric L-proximity relation.

Proof. (1) Let RµiL be a L-reflexive relation for every i ∈ I. ∨ operation is binary
operation and monotone with respective to the order. RµiL be a L-reflexive
relation for every i ∈ I. Then, it satisfies the condition RµiL (A,A) ≥ RµiL (B,C)
for each i ∈ I and for all A,B,C ∈ P(X). Since ∨ monotone with respective to
the order, it can be written ⋁i∈IRµiL (A,A) ≥ ⋁i∈IRµiL (B,C).

Hence, ⋁i∈IRµiL is a reflexive L-proximity relation.
Other cases can be proved similarly.

4. Conclusions

As a result of this paper, we established a new approach lattices and we introduced
L-proximal spaces. We defined the L-proximity axioms. Also, we showed that the spatial
Simirnov proximity measure can be generalized for L-measure and it is a Lodato L-
proximity relation. L-proximity relation approach contributes to solve some problems in
application such as classification problems.
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