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introduce L-proximal spaces. In this paper, we define the L-proximity axioms that need to be satisfied
by a L-relation on proximal relator spaces. Also, L-proximity of the sets is introduced on the power set of
a nonempty set. We show that the spatial Simirnov proximity measure can be generalized for L-measure
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1. INTRODUCTION

The concepts of proximity spaces were rediscovered in the early 1950’s by Efremovié [1].
He gave the definition of a proximity space by axiomatically characterizing the proximity
relation “A is near(proximal) B ” for subsets A and B of any set X. Efremovi¢ later used
the idea of proximity neighborhoods to generate proximity spaces. Some researchers have
worked with weaker axioms than those of Efremovi¢. Several articles were published on
proximity spaces, and reader can find excellent list of publications in [2]. A proximity
measure is a measure of the closeness of a pair of nonempty sets. The measure of degrees
of proximity ¢ is firstly introduced by Smirnov in 1952 [3].

A nonvoid family R of binary relations on a nonvoid set X is called a relator on X, the
ordered pair (X,R) is called a relator space. Relator spaces are natural generalizations
of ordered sets and uniform spaces [1]. In [5], Peters introduced proximal relator space
(X,Rs), such that Ry is a family of proximity relations on X.

The fuzzy sets introduced by Zadeh in 1965 as a generalization of traditional set. A
fuzzy set A in X is characterized by a membership function f4 which associates with each
point in X a real number in the interval [0,1] . Also, the concept of fuzzy relation on a
set was defined by Zadeh [0, 7]. Goguen generalized fuzzy sets to L-fuzzy sets in [8]. An
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L-fuzzy set is a set with a function into a partially ordered set (hereafter called a poset).
This poset is denoted by L and called the fuzzy set an L-fuzzy set or an L-set. L- fuzzy
binary relation R is defined on a set X which is a function from X to L [9].

In 1979, Katsaras defined fuzzy proximity spaces and proved some results that hold for
ordinary proximity spaces. He studied the proximity of fuzzy sets [10]. Also some other
articles in this concepts please see [11]. In 2017, Oztiirk et al introduced fuzzy proximal
relator spaces and defined fuzzy proximity relation to evaluate the proximity of the sets
[12].

In this paper, we define the L-proximity axioms that need to be satisfied by a L-relation
on proximal relator spaces. Also, L-proximity of the sets is introduced on the power set of
a nonempty set. We show that the spatial Simirnov proximity measure can be generalized
for L-measure and it is a Lodato L-proximity relation. L-proximity relation approach can
be used to solve a few issues solution of classification problems and given examples for
the problems.

2. PRELIMINARIES

Let us take a binary relation ¢ defined on the power set of a nonempty set X. For all
A,B,C e P (X), the following axioms are considered:

(Ag) @ § A VAeX.

(A1) A B= B A.

(A3) (AuB) §C<=AdCor BdC.

(A3) (AuB) §C=AdCorBéCand A§ (BuC)<= A§Bor AdC.

(A3) A6 B=A+g, B+@.

(A4) AnB+@= A6 B.

If it satisfies (Ag), (A1), (A2),(As) and (Ay), 0 is called a basic proximity on X.

(As) If, for any A,Bc X, A § B, there exists C,Dc X,CuD =X such that A § C
and B § D.

If it satisfies a basic proximity axioms and (As), ¢ is called an Efremovi¢ proximity
(EF-prozimity) on X.

(As) {2} & {y} 2=y,

If § satisfies EF-proximity axioms and (Ag), d is called a seperated proximity on X.

(A7) Ad Band {b} 0 CVbe B= A4 C.

If § satisfies (45), (A43),(A4), and (A7), d is called a Leader prozimity (LE-prozimity)
on X [13].

If § satisfies LE-proximity axioms and (A1), 0 is called a Lodato prozimity (LO-
prozimity) on X.

(A7) {z} 6 Band {b} 6 C Vbe B= {z} § C.

If § satisfies the basic proximity axioms and (Ag) and (A7), § is called an S-prozimity
on X.

And so, the pair (X, ¢) is called a basic proximity (EF-proximity, separated proximity,
Leader proximity, Lodato proximity, S proximity, respectively ) space.

There are some other forms of proximity relations such as Wallman prozimity, Cech
proximity, quasi prorimity, paraproximity, pseudo-prozimity and local prozimity [2].

Let X be a set and I the unit interval. A fuzzy set in X is an element of the set of I
of all functions p from X into I. A binary relation § on IX is called a fuzzy proximity if
0 satisfies the following axioms:
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(FPy) p 6 p implies p dpu,

(FP3) (u vp)o oiff pdo or p do

(FP3) ¢ p implies 6 # 0 and p # 0,

(FPy) p & p implies that there exists a p € I’ such that u § p and (1 -0)dp,
(FPs) puAp+0 implies u dp.

The pair (X, ¢) is called a fuzzy proximity space [10].

A proximity measure is a measure of the closeness of a pair of nonempty sets. Notice
that a proximity measure is not a distance metric but instead a proximity measure is a
set inclusion measure, i.e., a measure of the degree that one set is included in another
set. Let A, B be a nonempty subsets in a proximity space X. The Smirnov prozimity
measure §(A, B) € {0,1} is defined by

1, if Ais close to B,
5(AvB):{(), if A is far from B.

There are two forms of proximity spaces: spatial and descriptive proximity. A set X
endowed with descriptive proximity relation d¢, that satisfies descriptive extensions of
Efremovi¢’s axioms.

The set ¢ contains probe functions ¢ : X — R that represent features of non abstract
points which have a location and features that can be measured [14]. (p () is a feature
value of z in X). The description of z is defined by a feature vector ® (a). Q(A)
denotes the set of descriptions of points in A ¢ X; Q (A) = {® (a) : a € A}. The descriptive
intersection AgenB is the set of all points with descriptions in both Q (A4),Q(B). The
closure of A (denoted by clA) is the set of all points near A. A is descriptively near B
(denoted by A d¢B), provided clA n clB # @. The pair (X,0s) is called a descriptive

proximity space [5].

Definition 2.1. Let X be a nonempty set. A Lodato proximity ¢ is a relation on &(X)
which satisfies the following axioms for all subsets A, B, C of X:

(dPO): & fo A, VAC X.
(dP1): A dg B < B dp A.
(dP2): A 0 B+g= Ads B.

(dP3): Adg (BuC) <= Adp Bor Adg C.
(dP4): A 6g B and {b} ¢ C for eachbe B = A dg C.

Let Rs be family of proximity relations on X, then (X,Rs) is a proximal relator space
[5]. To be clear, we can consider a few proximity relations on relator space such as the
Efremovi¢ proximity §, the descriptive proximity d¢, LFE-proximity, LO-proximity and so
on.

In general, ARB means that A is proximal to B according to at least one of the
relations in relator R. For example, let (X,R) be a proximal relator space such that
R={6,00}. If ARB, A, B c X then AéB or AdsB.

Peters redefined the Smirnov proximity measure for a relator space [15]. Let € > 0,

v(A,B) = |?;J|B‘. d:, (A, B) € [0,1] is called spatial Smirnov proximity measure and is
defined by

|AnB]| .
5o (A, B) - X Jif e<v(A,B) <1,
' 0 ,if v(A,B)<e.
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Furthermore, Peters gave the definition of descriptive part for the extended Smirnov
proximity measure [15]. Let g >0, v (A, B) = %. 0cp v (A, B) €[0,1] is called
descriptive Smirnov proximity measure and defined by

|2(A)nd(B)| :
5en s (A, B) = TIea) Jif e <v(A,B) <1,
’ 0 ,if v (A,B) <eq.

A partially ordered set is a (L, <), where L is a nonempty set and < is a partial order on
L. For any subset X of L and z € X, « is called a lower bound (upper bound) of X if z < a
(a < x respectively) for all a € X. A poset (L, <) is called a lattice if every nonempty finite
subset of L has greatest lower bound (or infimum) and least upper bound (or supremum)
in L. If (L,<) is a lattice and, for any a,b € L if we define a A b = infimum {a,b} and
aVvb = supremum {a,b} then A and v are binary operations on L which are commutative,
associative and idempotent and satisfy the absorption laws a A (avbd) =a =aV (a Ab).
Conversely, any algebraic system (L, A, v) satisfying the above properties becomes a lattice
in which the partial order is defined by a <b<=a=aAb=5b.

A lattice (L, A, V) is called distributive if a A (bv ) = (aabd) v (anc) for all a,b,ce L
(equivalently a v (bac) = (avb) A(ave) Va,b,c € L). A lattice (L,A,V) is called a
bounded lattice it has the smallest element 0 and largest element 1; there are elements
Oand 1in L, 0 < x <1 Vo € L. A partially ordered set in which every subset has
infimum and supremum is called a complete lattice. Two elements a,b of a bounded
lattice (L, A,Vv,0,1) are complements if anb =0, avb=1. A lattice in which each element
has at a least one complement is called a complemented lattice. If each element of a
lattice has precisely one complement, such a lattice is called uniquely complemented.

Let L be a lattice. Then for all a,b,c,d € L,

(1) acb=avc<bvcandanc<bac,
(2) a<band c<d=avc<bvdand anc<bAad.

That is, A and v operations are binary operations and both are monotone with respect
to the order. Let (L, <) be partially ordered set. An element a € L is called an atom if it
covers some minimal element of L. A poset L is called atomic if for every element b € L
that is not minimal has an atom a such that a < b [16].

Throughout this paper, we use L for a complete lattice with the smallest element 0f,
and the greatest element 1;. Furthermore, we removed the word “fuzzy” in all the phrases
“L-fuzzy....”. Put differently, we write L-relation, L-proximity, L-subset, etc..

An L-binary relation on a set X is a map Ry : X x X - L. The set of all L-binary
relations on X, denoted by R% (X), is a poset with < such that Ry, S e R? (X), Ry <
Sp, it Ry (2) <S8 (x) Ve e X x X.

Let Rp be an L-binary relation on a set X. Then,

(1) Ry is called L- reflexive relation iff Ry, #0p and Ry, (x,2) 2 Ry (y,2) Va,y,z €
X.

(2) Ry is called L-irreflexive relation iff Ry (x,2) =05, Ve X.

(3) Ry is called L- symmetric relation iff Ry, (x,y) =Ry (y,x) Va,ye X.

(4) Ry is called L-antisymmetric relation iff Ry (x,y) = R (y,x) implies = = y,
R (x,y)>0p Vo,ye X.

(5) Ry is called L-transitive relation iff Ry, (x,2) > Ry (x,y) A Rr (y,2) for all
z,y,z€X.
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(6) Ry is called L-equivalence relation iff Ry, is an L-reflexive, L-symmetric and
L-transitive.

(7) Ry is called L-partial order iff Ry, is an L-reflexive, L-antisymmetric and L-
transitive [9].

L-relations are represented in the form of two dimensional tables, i.e, |X|=n. A nxn
matrix presents the L-relation Rp:

T e T,

z1 | Ro(z,z1) - Ri(zi,zn)
Ri= : : :

T 7QfL (377“371) RL (x’ruxn)

3. L-PROXIMAL RELATOR SPACES
Definition 3.1. Let (X, R) be a proximal relator space and L be a lattice,

pr;: PX)xP(X) —L
(AvB) > UR, (AvB)

be a L-relation and A ,B c X; then
RHL = {((AaB)mU/RL (A7B) )| (A7B) EP(X) XP(X)}

is called a L-proximity relation, provided it satisfies the following axioms:

For all A,B,C ¢ P(X),

Nur, 1) pr, (A,2) =0r.

NM’RL2): KRy (A,B) = KRy (B,A).

Nux,3): ur, (A, B) # 0 implies A Ry, B.

Nug, 4): pr,, (A, (BuC)) # 0y, implies ugr, (4,B) # 0 and A R B or
UR, (A,C) + 07 and A Rr C.

The set of all L-proximity relations on P(X) is denoted by Pg, (X). Pr, (X) is
a poset with ”<” given by for R, ,Ru,, € Pr, (X), R.,, <Ry, iff R, (A, B) <
Ryup, (A, B) ¥V (A, B) e P(X) x P(X). Therefore, i, (A, B) is called L-proximity mea-
sure. L-proximity relations are also shown in the form of the two dimensional tables such
that [P (X)| = n and n x n relational matrix:

A An
Al MR (AlaAl) MR (AlvAn)
Ry, = : :
An MR (AnaAl) MRy (AnaAn)

L-proximity measure pr, (A, B) is used the meaning of the sets A and B how near(L-
proximal) to each other.

Let take two elements pug ., ps, of the set of all L-proximity relations Pg, (X). Since
(A, B) can be equal to (C, D) and from axiom (N, 1) in 3.1, we would not define such
a complementary L-proximity relations.
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Definition 3.2. Let (X,0) be a proximity space. (X,d,,) is called spatial L-proximity
space, provided it satisfies the following axioms:
For all A,B,C c X,
N 1) s, (A,) = 0y
NIMSL 2): sy, (AaB) = sy, (BaA)
Nyus, 3): psy, (A, B) #0p, implies AdzB.
Nyus, 4): ps,, (A, (BuC)) # 0 implies ps, (A, B) # 0r and A B or ps, (A,C) #
OL and A(SLC
If it satisfies spatial L-proximity axioms and the following axiom (N, 5y 5), a L-relation
ws, is called a spatial Lodato L-proximity relation.
Nys, 5): psy, (A, B) #0r and ps,, (b,C) # 0y, for all b € B implies us, (A4,C) # 0,
and AérC.

Definition 3.3. Let R, be an L-proximity relation on P(X). Then (X, R, ) is called
a L-proximal relator space.

Example 3.4. (X,R) be relator space, L be lattice and X = {p,r, s} be a set. ug, and
L is defined by

Or,
FIGURE 1. The diamond lattice M3

and

pr;, P(X)xP(X) — L
(AaB) — MRL(AaB)

with

a, AnB#g, A+B
UR (A,B)Z l,, A=B,A,B+J
0,, AnB=g@.

P(X) =12, X, {p} . {r} {s} . {p,r} {p,s}, {r s}}.
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Let take A1 = @, As = X, As = {p}, Ay = {r}, A5 = {s}, A¢ = {p,r}, A7 = {p, s},
A8 = {7",8}.

Ay Ay Az Ay As As A7 Ag

Al [ 0, O, O Or O O Op O
A 1 0 1, a a a a a a
Ag OL a 1L OL OL a a OL
R _ A4 OL a OL ]-L OL a OL a
pL = A5 OL a OL OL 1L OL a a
As |1 0 a a a 0, 1p, a a
A | 0 a a Op a a 1 a
Ag | 0 a 0 a a a a 1 |

It is easily seen that ug, satisfies the axioms (N, 1) - (N,
a basic L-proximity space.

4). Hence (X, R,,) is

RL

Example 3.5. Let X = {a,b,c,d,e, f,g,h,i}, L = [0,1] and (X,§) be proximity space
such that basic proximity ¢ is defined as

ASB:= AnB=+g2.

Let A={a,b,c,d,g} and B ={d,e, f,g,h,i} be subsets of X. We can show that A § B
since An B # @. The L-proximity relation can be defined
ps, o P(X)xP(X) —[0,1]

AnB
(A’B) — /’L(SL (A7B) = ||Ar\jB||

it is easily follows that

AnB

ns, (A, B) =:‘AQB‘: =2 ~0.66,
BnA 2

ns, (B,A) =B =2 -5,

Hence,

A is 0.66 L-proximal (near) to B (A dp.66 B),
B is 0.5 L-proximal (near) to A (B dp.5 A).

Since ps, is not symmetric, i.e, us, (A4, B) # ps, (B, A), (X, R,,) is not a L-proximity
space.

Example 3.6. Let X = {o,p,7,s,t,0,2,y,2}, L = [0,1] and (X,d) be proximity space
such that basic proximity ¢ is defined as

ASB:= AnB=+g2.

Let A ={o,p,r,s,t}, B={s,t,v,z,y}, C ={t,v,2,y,2}, D ={o,p,s,t,v} be subsets of
X.

We can show that Ad B, B§C, A6 C, A D, B5 D and C § D since AnB # @,
BnC+@, AnC+3, AnD+@, BnD+@and CnD +@.

The L-proximity relation can be defined

psy  P(X)xP(X) —[0,1]

(A, B) — pis, (A, B) = 402
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It is easily follows that

ps, (A, B) = ‘\ggg\’ 220375
us, (B,C) = {lggg‘ 1 %016
po, (A,C) = 19 =5 =0.444
ps, (A,D) = 5¥5 =% =0.166
ps, (B, D) = }Iggg‘ =2 %028
po, (C,D) = 1G5 =3 =037

The L-proximity can be presented in this way:

1 0.375 0.444 0.166
5 = 0375 1 0.16 0.28
HE T 0444 016 1 0.375

0.166 0.28 0375 1

It is easily seen that s, satisfies the axioms (N, 1) - (N, 4). Hence (X, R, ) is a
basic L-proximity space.

Let 617,027,037 denote a trio of L-proximity relations and let R,, = {dr,,05,,0z, }-
With the introduction of a family of L-proximity relations on X, we obtain a L-proximal
relator space (X,R,,) (or X(R,,))[]

For simplicity, it is considered only three L-proximity relations, namely, the Lodato
L-proximity [17-19](denoted by dr,), the descriptive Lodato proximity d;, [20](denoted by
dr3), an extension of the Lodato proximity, and the descriptive Lodato L-proximity [15]
(denoted by ps,4). Then a L-prozimal relator R,  is defined by

R,J/(sL@ = {6[/’6[/@7/’451@} .

Definition 3.7. Let (X,0g) be a Lodato proximity space. A L-relation ps, is called a
descriptive Lodato L-proximity relation, provided it satisfies the following axioms:
For all A,B,C c X,
Nus, o 1)t Hore (A,2) =0p for all A, B+ @.
NM5L4,2): Hére (AvB) = Hsre (B7A)
Nyus, . 3)t Hope (A, B) # 0 implies A 6o B.
Nus, o4t Hore (A, (BuC)) # 0p implies ps,, (A, B) # 0 and A dre B or
Usr o (A,C) +0r and A 6re C.
Nyus, ,5)t Hore (A, B) #0r and ps, 4 (b, C) # 0r for all b € B implies pi5,, (A,C) #
OL and A 5Lq> C.

Definition 3.8. Let 5 be a descriptive Lodato L-proximity relation. Then, (X,0,,,)
is called descriptive Lodato L-proximity space.

Spatial Smirnov proximity measure can be generalized to spatial Smirnov proximity
L-measure.
Definition 3.9. Let ef € L and ¢ > 0, v(A,B) = |’T;]‘3|. de, v (A, B) € L is called
spatial Smirnov proximity L-measure and defined by
|A0B] Jif ep<v(A,B) <1y,

5., (AB)=] I
L ( ) {OL ,if v(A,B)<ep.
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Theorem 3.10. Let (X,R,R,,) be a L-prozimal relator space. The Smirnov proximity

measure O, ,, on the Lodato proximity space is a Lodato L-prozimity relation.

Proof. We prove that ., , satisfies the axioms:

Ny, 1) 02,0 (4,2) = 01 Since v(4,8) <2y, = v(4,2) = 522 = b =0,

N

ur, -2) We will make evaluations for two situation:

1) Let 65L,'U (A,B) =0, = ’U(A,B) <er

x| SEL
= v (B,A) <er
= 6., 0 (B, A) = 0p.

Hence, 6., » (A, B) = 0., » (B, A).

ll) Let 55L,U(A;B)¢OL :>8L<’U(A,B)S1L
=eL<v(B,A)<1,
= 65L7U (B,A) * OL.

Thus, we get ¢, o (A, B) = 0¢, . (B, A).

NMRL'?))
55L7'U (A,B) * OL =
€L<U(A,B)S].L3€L< |A0B] <1l;, = A B.

x|
NMRL.4)
0c, 0 (A, (Bu(C)) 0y,
=e<v(A,(BuC))<1y
35L<WS1L
35L<wﬁh
=er < % <lporep< KA;(C)l <1p
= 0., v (A,B)#0; and A 61, B or
8e, 0 (A, C) #0L and A 6, C.
N“RL.S)

Let 6., » (A, B) #0g and 4., ,, (b,C) #0g, for all be B.
Then, e, <v(A,B) <1y and e, <v (b,C) < 1p,

for all be B,
= e < |‘?;]|3| <1p and e < Hb‘?lcl <1y, for all be B,
= e < 7‘(‘?;}?” <1

=0., ., (A,C) %0, and A 6, C .

Hence the Smirnov proximity measure d., , is a Lodato L-proximity relation.
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Definition 3.11. Let (X,R,,) be a L-proximal relator space. The extended Smirnov

proximity measure has a descriptive counterpart. Let e, € L and e > 0, v(A,B) =

[2(A)n®(B)|
[®(X)]

defined by

Ocrow (A, B) € L is called descriptive Smirnov proximity L-measure and

@@
Seraw (A, B) = B o er®<u(4,B) <1y,
' U3 Jif v(A,B)<ere.

Theorem 3.12. Let (X,R,,) be a L-prozimal relator space. The descriptive Smirnov
proximity measure Oz, , on the descriptive Lodato prozimity space is a descriptive Lodato
L-proximity relation.

Proof. The proof is the similar with the proof of Theorem 3.10. [

Definition 3.13. Let (X,R,,) be a L-proximal relator space. Then,

m(R#L) = \/ RHL (AaB)
A,BeP(X)
is called the supremum of L-proximity relation R,,. m (R, ) gives the supremum prox-
imity grade in the family of sets.

Example 3.14. From Example 3.4, m (R,,) =1r.

Definition 3.15. Let (X,R,, ) be a L-proximal relator space. Then we get a relationship
of two sets A, B € P (X) that proximal to each other with a grade larger than or equal to
er € Lyep, #+ 1, that is, ur, (A, B) > €1, as ep-proximal.

Definition 3.16. Let (X,R,,) be a L-proximal relator space. Then,
Cep ={AeP(X)|ur, (A,B) 26, BeP(X),e e Ler #11}

is called set of ep-proximal sets.

We can easily obtain the set of L-proximal sets which are L-proximal to all non-empty
sets with a grade larger than or equal to € € L,er # 1;. Hence, we can classify the
subsets of X using some €, € L,er, # 1. If we consider empty set B = &, then C,, = @.

Definition 3.17. Let R, be an L-proximity relation on P(X).
(1) R, is called reflexive L- prozimity relation if R,, # 0r and R,, (A, A) >
Ry, (B,C) for all A, B,C e P(X).
The set of all reflexive L-proximity relation on P(X) is denoted by R, .
(2) Ry, is called irreflexive L-proxzimity relation if R,, (A,A) = 0 for all A €
P(X).
The set of all irreflexive L-proximity relation on P(X) is denoted by RL L
(3) Ry, is called symmetric L-proximity relation if R,, (A,B) = Ry, (B,A)
VA,BeP(X).
The set of all symmetric L-proximity relation on P(X) is denoted by Ry, -
(4) R, is called transitive L-proxzimity relation if R,, (A,C) > R, (A,B) A
Ry, (B,C) for all A,B,C e P(X).
The set of all transitive L-proximity relation on P(X) is denoted by RZ L
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(5) Ry, is called equivalence L-proximity relation if R, is an reflexive L-proximity,
symmetric L-proximity and transitive L-proximity.
The set of all equivalence L-proximity relation on P(X) is denoted by R, .

Example 3.18. Let §,, be a L-proximity relation given as the Example 3.6:

1 0.375 0.55 0.1
5 = 0.375 1 0.16 0.28
e =055 016 1 0.375

0.1 0.28 0.375 1

It is easily that d,,, is a reflexive and symmetric L-proximity relation. Since ¢,,, (A4, A) >
du, (B,C) for all A,B,C e P(X).

Example 3.19. Let (X,R,,) be a L-proximal relator space.
Then, X = {a,b,c}, L ={0p,a1,02,11|0 <a; <as <1y} and

HRp = {(({a} ) {a})’OL) ) (({a} ’ {C}) ,041) ) (({a’vb} ) {aa b})7OL) ) (({aa b} ) {aac})’O‘?)}'

Then, pr, is an irreflexive and transitive L-proximity relation.

Example 3.20. Let (X,R,,) be a L-proximal relator space. Then, X = {z,y}, L =
{OLa67 1L|OL < ﬂ < 1[,} and

pre ={ (({z} A2} 1) (L2} (), B) (@ {{}  {p})) ,00)
({3 {eh)00) . (wd ) s 10) 5 ()} {w}) ,0n)
({29}, {21),00), ({9} {w}) . 0n) ({9}, {2, 9}) ,00) }-

Then, pr, is a reflexive and transitive L-proximity relation.

Let R,, be an L-proximity relation on P(X) and R be a binary relation on P(X).
(1) R7, is a sub poset of Pr, (X).

R?,is a sub poset of Pr, (X).

R? is a sub poset of Pg, (X).

R! is a sub poset of Pr, (X).

R¢ is a sub poset of Pr, (X).

Proposition 3.21. Let R,, be a L-proximity relation.

Xr,: P(X)xP(X) — L
(A’B) — XRr (AvB)

is defined as

_ lLa Zf (A7B)ER L’
XRL(A’B)_{OL if (A7B)¢RZL'

Hence, the followings are true.

(1) Ry, is a reflexive relation iff xr, is a reflexive L-prozimity relation.
2) R, s an irreflexive relation iff xr, ts an irreflexive L-proximity relation.
93 L
3) LetR,, is a L-prozimity relation iff xr, is a symmetric L-proximity relation.
(7 Y XRy Y Y
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(4) Ry, is a transitive relation iff xXr, is a transitive L-prozimity relation.

Proof. (1) (=) Let R, is a reflexive relation. Hence, it satisfies (4, A) € R, for
each A € P(X). xg, must satisfy the condition xg, (A4, A) > xgr, (B,C) to be
reflexive L-proximity relation for all A, B,C € P(X).

i) If (A,A)eR,, and (B,C)eR,, = 121,
i)If (A,A)eR,, and (B,C)¢R,, = 1. >0r.

In these two situations, x g, is a reflexive L-proximity relation.

(«<=) Let xg, is a reflexive L-proximity relation. xg, satisfy the condition
Xr;, (A, A) > xg, (B,C) for all A,B,C ¢ P(X). This inequality is possible for
three situations.
i) 121 = xr, (A,A) 2 xR, (B,C) = (A,A) e R, VA P(X).
ii) 1, >0 = xr, (4,4) > xR, (B,C) = (A,A) e R, VAeP(X).
iii) 0z, > 0r. This is not true since xg, is a reflexive L-proximity relation and L
is not a empty set.

Other cases can be proved similarly from definitions. [

Proposition 3.22. Let R,, be an L-prozimity relation on P(X), and L be a complete
lattice. Take any family of L-proximity binary relation R,,, . Then, the followings are
true.

(1) If R,,, is an L-reflexive relation for every i€ I, then N\, R,,, is a reflexive
L-proximity relation, whenever it is not the L-empty set 0p, or whenever L is
unique atomic.

(2) If R,.,, is an L-irreflexive relation for every i € I, then N\, Ry, is an ir-
reflexive L-proximity relation.

(3) Let R,,, be an L-proximity relation for every i€ I, then /\id R, 5 a sym-
metric L-prozimity relation.

(4) If R,,, is an L-transitive relation for everyi e I, then /\, ;R
L-proximity relation.

(5) If Ry,, is an L-equivalence relation for everyie I, then /\ie[ Ry;, is an equiv-
alence L-prorimity relation, whenever it is not the L-empty set 0 or whenever
L is unique atomic.

niy, US G transitive

Proof. (1) Let R,,, be a L-reflexive relation for every i € I and L is not empty
set 0z, or L is unique atomic. A operation is binary operation and monotone with
respective to the order.

Ry, be a L-reflexive relation for every ¢ € I. Then, it satisfies the condition
Ry, (A,A) > Ry, (B,C) for each i € I and for all A,B,C € P(X). Since
A monotone with respective to the order, it can be written /\; ; R, (4,4) >
/\ie[ RML (Ba C)
Hence, /\1 o7 Ry, , is a reflexive L-proximity relation.
Other cases can be proved similarly. [

In the Proposition 3.22 for (1) to be reflexive L-proximity relation, L may not be empty
set as giving the following example:
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Example 3.23. Let (X,R,,) be a L-proximal relator space.

Thena X = {1’7y}, L= {OLaﬂhEQa ]-L|0L < ﬂlaﬂQ < ]-L;ﬁlH@?} and
Rar = {(({=},{=}),B1), (({y} . {v}),B2), (({=},{y}),00), (({y}.{=}),00), (({= 9} {=,9}),00)}
Ror = {(({z},{z}),B2), ((y} . {v}), B1), (({=} . {y}),0L), (v} . {=}),00) , (({=,y}  {z,9}),00)}
Then, R1;, and Roj, are reflexive L-proximity relations, but Rq »ARo, is not a reflexive

L-proximity relation since it is the the L-empty set Of.

Proposition 3.24. Let R,, be an L-prozimity relation on P(X), and L be a complete
lattice. Take any family of L-proximity binary relation R,,, . Then, the followings are
true.
(1) If R,,, is an L-reflexive relation for every i€ I, then \/ie[ Ry, is an reflezive
L-proximity relation.
(2) If Ry, , is an L-irreflezive relation for every i € I, then \/
reflexive L-proximity relation.
(3) Let R,,, be an L-prozimity relation for every i € I, then \/, ;R,,, is an
symmetric L-proximity relation.

el Ry, 18 an ir-

Proof. (1) Let R,,, be a L-reflexive relation for every i € I. v operation is binary
operation and monotone with respective to the order. R, be a L-reflexive
relation for every i € I. Then, it satisfies the condition R,,, (4,4) >R,,, (B,C)
for each i € I and for all A, B,C € P(X). Since v monotone with respective to
the order, it can be written \/,.; Ry, (4,4) > \/.,.; Ry, (B,C).

Hence, \/,.; Ry, , is a reflexive L-proximity relation.
Other cases can be proved similarly. [

4. CONCLUSIONS

As a result of this paper, we established a new approach lattices and we introduced
L-proximal spaces. We defined the L-proximity axioms. Also, we showed that the spatial
Simirnov proximity measure can be generalized for L-measure and it is a Lodato L-
proximity relation. L-proximity relation approach contributes to solve some problems in
application such as classification problems.
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