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1. Introduction

Fuzzy set theory introduced by Russian mathematician L. A Zadeh [1] in 1965 plays an
important role in solving real world problems, by making the description of vagueness and
imprecision clear and more precise. Later in 1967, his student J. A Goguen [2] extended
this idea by replacing the unit interval [0, 1] with a completely distributive lattice L to
form L-fuzzy set theory.

In the late 1960s Nadler [3] established a multi-valued entension of Banach Contraction
Principle [4]. Later in 1981, Heilpern [5] presented a fuzzy extension of Banach contraction
principle [4] and Nadler’s [3] fixed point theorems by introducing the concept of fuzzy con-
traction mappings and established a fixed point theorem for fuzzy contraction mappings in
a complete metric linear spaces. Afterwards, several authors [6–14] among others studied
and generalized the result in [5]. In 1975, Dass and Gupta [15] established an extension
of the Banach Contraction Principle [4] satisfying a rational expression and derived some
related results. Later, Fisher [16] presented a common fixed point result for single valued
mappings satisfying rational expressions in complete metric spaces. Subsequently, many
researchers ([17–22] and references therein) proposed different generalizations.
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On the other hand, Rashid et al. [23, 24] introduced the notions of d∞L -metric and
Hausdorff distances for L-fuzzy sets, they presented some fixed point results for L-fuzzy
set valued mappings and some coincidence theorems concerning a crisp mapping and a
sequence of L-fuzzy mappings.

Recently, Azam [25] studied and deduced some common fuzzy fixed point results satis-
fying a rational inequality in a complete metric space. Following suit, in this manuscript
we establish the existence of common L-fuzzy fixed point results for L-fuzzy mappings sat-
isfying a rational expression via a Hausdorff metric on L-fuzzy sets. Our results improve
and extend results in [25]. Some examples and applications are also given to support the
validity of our results.

2. Preliminaries

In this section, some basic definitions and preliminary results which will used through-
out this paper are recalled.

Let (X, d) be a metric space. We denote and define.

C(X) = {A : A is nonempty and compact subsets of X}

CB(X) = {A : A is nonempty closed and bounded subsets of X}.
Let A,B ∈ CB(X) and define

d(x,A) = inf
y∈A

d(x, y)

d(A,B) = inf
x∈A,y∈B

d(x, y).

The Hausdorff distance H on CB(X) induced by d defined as:

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
.

Definition 2.1. (Zadeh [1]). A fuzzy set in X is a function with domain X and values
in [0, 1]. i.e A is a fuzzy set if A : X −→ [0, 1].

Let F(X) denotes the collection of all fuzzy subsets of X. If A is a fuzzy set and
x ∈ X, then A(x) is called the grade of membership of x in A. The α-level set of A is
denoted by [A]α and is defined as below:

[A]α = {x ∈ X : A(x) ≥ α}, for α ∈ (0, 1],
[A]0 = closure of the set {x ∈ X : A(x) > 0}.

Definition 2.2. (Abdullahi and Azam [6]). A partially ordered set (L,�L) is called

(i) a lattice; if a ∨ b ∈ L, a ∧ b ∈ L for any a, b ∈ L,
(ii) a complete lattice; if

∨
A ∈ L,

∧
A ∈ L for any A ⊆ L,

(iii) a distributive lattice; if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L,

(iv) a complete distributive lattice; if a ∨ (
∧
bi) =

∧
i(a ∧ bi),

a ∧ (
∨
i

bi) =
∨
i

(a ∧ bi) for any a, bi ∈ L,

(v) a bounded lattice; if it is a lattice and additionally has a top element 1L and
a bottom element 0L, which satisfy 0L �L x �L 1L for every x ∈ L.
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Definition 2.3. (Abdullahi and Azam [6]). An L-fuzzy set A on a nonempty set X is a
function A : X −→ L, where L is bounded complete distributive lattice with 1L and 0L.

Definition 2.4. (Goguen [2]).

Let L be a lattice, the top and bottom elements of L are 1L and 0L respectively, and
if a, b ∈ L, a ∨ b = 1L and a ∧ b = 0L then b is a unique complement of a denoted by á.

Remark 2.5. If L = [0, 1], then the L-fuzzy set reduces to fuzzy set (in the original sense
of Zadeh [1]), which shows that L-fuzzy set is larger.

Let FL(X) denotes the class of all L-fuzzy subsets of X. The αL-level set of an L-fuzzy
set A is denoted by AαL and define as below:
AαL = {x ∈ X : αL �L A(x)} for αL ∈ L\{0L},
A0L = closure of the set {x ∈ X : 0L �L A(x)}.

Definition 2.6. An L-fuzzy set A in a metric linear space V is said to be an approximate
quantity if and only if AαL is compact and convex in V for each αL ∈ L and supA(x) = 1.

We suppose that T̂ is the mapping induced by an L-fuzzy mapping T . That is, for
x, y, t ∈ X

T̂ (x)(t) = {y : T (x)(y) = max
t
T (x)(t)}.

Now, we define some sub-collections of FL(X) and FL(V ).

WL(V ) = {A ∈ FL(V ) : A is an approximate quantity in V }

K(X) = {A ∈ FL(X) : Â ∈ C(X)}

DL(X) = {A ∈ FL(X) : AαL ∈ C(X), for each αL ∈ L}

EL(X) = {A ∈ FL(X) : AαL ∈ CB(X), for each αL ∈ L}

DL(X) = {A ∈ FL(X) : AαL ∈ C(X), for some αL ∈ L}

EL(X) = {A ∈ FL(X) : AαL ∈ CB(X), for some αL ∈ L}.
For A,B ∈ FL(X), A ⊂ B ⇐⇒ A(x) �L B(x) for all x ∈ X. If there exists αL ∈

L\{0L} such that AαL , BαL ∈ CB(X). Then, we define

pαL(x,A) = inf
y∈AαL

d(x, y)

pαL(A,B) = inf
x∈AαL ,y∈BαL

d(x, y)

DαL(A,B) = H(AαL , BαL).

If AαL , BαL ∈ CB(X) for each αL ∈ L\{0L}. Then, we define

p(A,B) = sup
αL

pαL(A,B)

d∞L (A,B) = sup
αL

DαL(A,B).

Note that, d∞L is a metric on FL(X) and the completeness of (X, d) implies that
(C(X), H) and (FL(X), d∞L ) are complete.
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Definition 2.7. (Rashid et al. [23]). Let X be an arbitrary set, Y be a metric space.
A mapping T is called L-fuzzy mapping, if T is a mapping from X to FL(Y )(i.e class
of L-fuzzy subsets of Y ). An L-fuzzy mapping T is an L-fuzzy subset on X × Y with
membership function T (x)(y). The function T (x)(y) is the grade of membership of y in
T (x).

For convenience, we denote the αL-level sets of T (x) by [Tx]αL instead of [T (x)]αL .

Definition 2.8. Let (X, d) be a metric space and T : X −→ FL(X). A point z ∈ X
is said to be an L-fuzzy fixed point of T if z ∈ [Tz]αL , for some αL ∈ L\{0L} (see
[23, 24]). The point z is known as a fixed point of T if T (z)(z) ≥ T (z)(x) for all x ∈ X
(see [7]). Moreover, we say z is an Heilpern fixed point of T if {z} ⊂ Tz (see [5]). If
z ∈ [Sz]αL ∩ [Tz]αL , then z ∈ X is a common L-fuzzy fixed point of S and T .

Remark 2.9. If αL = 1L, then it is called a fixed point of the L-fuzzy mapping T .

Lemma 2.10. (Nadler [3]). Let (X, d) be a metric space and A,B ∈ CB(X). If a ∈ A
then d(a,B) ≤ H(A,B).

Lemma 2.11. (Nadler [3]). Let (X, d) be a metric space and A,B ∈ CB(X) and ψ > 0.
Then, for any a ∈ A there exists b ∈ B such that d(a, b) ≤ H(A,B) + ψ.

In the following, we give an L-fuzzy versions of lemmas due to Abu-Donia [7] and Arora
and Sharma [8] respectively.

Lemma 2.12. Let (X, d) be a metric space, z ∈ X and T : X −→ FL(X) be an L-fuzzy

mapping such that T̂ x ∈ C(X) for all x ∈ X. Then z ∈ T̂ (z)⇐⇒ T (z)(z) ≥ T (z)(x) for
all x ∈ X.

Lemma 2.13. Let (V, d) be a complete metric linear space, x0 ∈ V and T : V −→WL(V )
be an L-fuzzy mapping. Then there exists x1 ∈ X such that {x1} ⊂ T (x0).

3. Main Results

In the following, the existence of a common L-fuzzy fixed point result satisfying a
rational type inequality is presented.

3.1. L-Fuzzy Fixed Points of L-Fuzzy Mappings

Theorem 3.1. Let (X, d) be a complete metric space, S, T : X −→ FL(X) be L-fuzzy
mappings and for x ∈ X, there exists αLS(x), αLT (x) ∈ L\{0L} such that [Sx]αLS(x)

,

[Tx]αLT (x)
∈ CB(X). If for all x, y ∈ X

H([Sx]αLS(x)
, [Ty]αLT (y)

) ≤ λ1d(x, y) + λ2d(x, [Sx]αLS(x)
)

+ λ3d(y, [Ty]αLT (y)
) +

λ4d(x, [Sx]αLS(x)
)d(y, [Ty]αLT (y)

)

1 + d(x, y)
,

(3.1)and

λ3 +
λ4d(x, [Sx]αLS(x)

)

1 + d(x, y)
< 1, λ2 +

λ4d(y, [Ty]αLT (y)
)

1 + d(x, y)
< 1, (3.2)
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where λ1, λ2, λ3 and λ4 are non-negative real numbers with λ1 + λ2 + λ3 + λ4 < 1. Then,
there exists x∗ ∈ X such that x∗ ∈ [Sx∗]αLS(x∗)

∩ [Tx∗]αLT (x∗)
.

Proof. We will consider the following 3 possible cases:

(i) λ1 + λ2 = 0;
(ii) λ1 + λ3 = 0;
(iii) λ1 + λ2 6= 0, λ1 + λ3 6= 0.

Case i: For x ∈ X, there exists αLS(x) ∈ L\{0L} such that [Sx]αLS(x)
is nonempty,

closed and bounded subset of X. Let y ∈ [Sx]αLS(x)
. Then from Lemma 2.10, we have

d(y, [Ty]αLT (y)
) ≤ H([Sx]αLS(x)

, [Tx]αLT (x)
) (3.3)

(3.1) and (3.3) implies

d(y, [Ty]αLT (y)
) ≤ λ1d(x, y) + λ2d(x, [Sx]αLS(x)

) + λ3d(y, [Ty]αLT (y)
)

+
λ4d(x, [Sx]αLS(x)

)d(y, [Ty]αLT (y)
)

1 + d(x, y)
.

Since λ1 + λ2 = 0, we get(
1− λ3 −

λ4d(x, [Sx]αLS(x)
)

1 + d(x, y)

)
d(y, [Ty]αLT (y)

) ≤ 0.

By (3.2), we have

d(y, [Ty]αLT (y)
) ≤ 0.

Thus, y ∈ [Ty]αLT (y)
. Applying (3.1) again, yields

(1− λ2)d(y, [Sy]αLS(y)
) ≤ 0.

which implies y ∈ [Sy]αLS(y)
. Hence, y ∈ [Sy]αLS(y)

∩ [Ty]αLT (y)
.

Case ii: For x ∈ X, let y ∈ [Sx]αLS(x)
. Then, similar to case i, there exists αLT (y) ∈

L\{0L} such that [Ty]αLT (y)
is nonempty, closed and bounded subset of X. Let z ∈

[Ty]αLT (y)
. Then from Lemma 2.10, (3.1) and (3.3), we have

d(z, [Sz]αLS(z
) ≤ H([Ty]αLT (y)

, [Sz]αLS(z)
)

≤ λ1d(z, y) + λ2d(z, [Sz]αLS(z)
) + λ3d(y, [Ty]αLT (y)

)

+
λ4d(z, [Sz]αLS(z)

)d(y, [Ty]αLT (y)
)

1 + d(z, y)
.

Using λ1 + λ3 = 0, we have(
1− λ2 −

λ4d(y, [Ty]αLT (y)
)

1 + d(z, y)

)
d(z, [Sz]αLS(z)

) ≤ 0.

Therefore z ∈ [Sz]αLS(z)
. Using (3.1) again, will yield

(1− λ3)d(z, [Tz]αLT (z)
) ≤ 0.

Thus, implying z ∈ [Tz]αLT (z)
. Hence, z ∈ [Sz]αLS(z)

∩ [Tz]αLT (z)
.
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Case iii: Let

q = max

{(
λ1 + λ3

1− λ2 − λ4

)
,

(
λ1 + λ2

1− λ3 − λ4

)}
.

Then, since λ1 + λ2 6= 0, λ1 + λ3 6= 0 and λ1 + λ2 + λ3 + λ4 < 1, it implies that q < 1 and
non-zero. Choose x0 ∈ X, then there exists αLS(x0) ∈ L\{0L} such that [Sx0]αLS(x0)

is

nonempty, closed and bounded subset of X. Take x1 ∈ [Sx0]αLS(x0)
. It follows that there

exists αLT (x1) ∈ L\{0L} such that [Tx1]αLT (x1)
is nonempty, closed and bounded subset

of X. Then by Lemma 2.11, there exists x2 ∈ [Tx1]αLT (x1)
such that

d(x1, x2) ≤ H([Sx0]αLS(x0)
, [Tx1]αLT (x1)

) + q(1− λ3 − λ4). (3.4)

Similarly, one can get αLS(x2) ∈ L\{0L} and x3 ∈ [Sx2]αLS(x2)
such that

d(x2, x3) ≤ H([Sx2]αLS(x2)
, [Tx1]αLT (x1)

) + q2(1− λ2 − λ4). (3.5)

Continuing in this fashion, we can construct a sequence {xn} in X such that, for each
n = 0, 1, 2, . . . we have

d(x2n+1, x2n+2) ≤ H([Sx2n]αLS(x2n)
, [Tx2n+1]αLT (x2n+1)

)

+ q2n+1(1− λ3 − λ4),

and

d(x2n+2, x2n+3) ≤ H([Sx2n+2]αLS(x2n+2)
, [Tx2n+1]αLT (x2n+1)

)

+ q2n+2(1− λ2 − λ4),

where

x2n+1 ∈ [Sx2n]αLS(x2n)
and x2n+2 ∈ [Tx2n+1]αLT (x2n+1)

.

By (3.1) and (3.4), we have

d(x1, x2) ≤ λ1d(x0, x1) + λ2d(x0, [Sx0]αLS(x0)
) + λ3d(x1, [Tx1]αLT (x1)

)

+
λ4d(x0, [Sx0]αLS(x0)

)d(x1, [Tx1]αLT (x1)
)

1 + d(x0, x1)
+ q(1− λ3 − λ4).

Which implies

d(x1, x2) ≤
(

λ1 + λ2
1− λ3 − λ4

)
d(x0, x1) + q.

Similarly by (3.1) and (3.5), we have

d(x2, x3) ≤ λ1d(x2, x1) + λ2d(x2, [Sx2]αLS(x2)
) + λ3d(x1, [Tx1]αLT (x1)

)

+
λ4d(x2, [Sx2]αLS(x2)

)d(x1, [Tx1]αLT (x1)
)

1 + d(x2, x1)
+ q2(1− λ2 − λ4).

Thus

d(x2, x3) ≤
(

λ1 + λ3
1− λ2 − λ4

)
d(x1, x2) + q2

≤ qd(x1, x2) + q.
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Which further implies

d(xn, xn+1) ≤ qd(xn−1, xn) + qn

≤ q2d(xn−2, xn−1)) + 2qn

≤ q3d(xn−3, xn−2) + 3qn

...

≤ qnd(x0, x1) + nqn.

Consequently, for each n = 0, 1, 2, . . . we obtain

d(xn, xn+1) ≤ qnd(x0, x1) + nqn.

Next, we show that {xn} is a Cauchy in X. Let m > n > 0. By triangular inequality, we
have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

(qkd(x0, x1) + kqk)

≤ qm

1− q
d(x0, x1) + Sn−1 − Sm−1, where Sn =

n∑
k=1

kqk.

Since q < 1, by Cauchy’s root test it implies that
∑
nqn is convergent. Hence, it follows

that {xn} is Cauchy sequence, and since X is complete there exists x∗ ∈ X such that
xn → x∗ as n→∞.
Now, consider

d(x∗, [Sx∗]αLS(x∗)
) ≤ d(x∗, x2n) + d(x2n, [Sx

∗]αLS(x∗)
)

≤ d(x∗, x2n) +H([Sx2n−1]αLS(xn−1)
, [Sx∗]αLS(x∗)

)

≤
[
1− λ2 − λ4

(
d(x2n−1, x2n)

1 + d(x∗, x2n−1)

)]−1
(
d(x∗, x2n) + λ1d(x∗, x2n−1) + λ3d(x2n−1, x2n)

)
.

Letting n→∞ in the above inequality, we have

d(x∗, [Sx∗]αLS(x∗)
) ≤ 0.

Thus, x∗ ∈ [Sx∗]αLS(x∗)
. Similarly one can show that x∗ ∈ [Tx∗]αLT (x∗)

by using

d(x∗, [Tx∗]αLT (x∗)
) ≤ d(x∗, x2n+1) + d(x2n+1, [Tx

∗]αLT (x∗)
).

Hence,

x∗ ∈ [Sx∗]αLS(x∗)
∩ [Tx∗]αLT (x∗)

.

Next, an example is given to help validate our result.
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Example 3.2. Let X = [0, 1] and L = {σ, β, γ, δ} where σ �L β �L δ, and σ �L γ �L δ,
such that β and γ are not comparable. Then, (X, d) is a complete metric space with the
usual metric d and (L,�L) is a complete distributive lattice. Let S, T : X −→ FL(X) be
L-fuzzy mappings such that Sx, Tx ∈ FL(X) and be define as:

S(x)(t) =


γ, if 0 ≤ t ≤ x

30 ;
β, if x

30 < t ≤ x
25 ;

δ, if x
25 < t < x

20 ;
σ, if x

20 ≤ t ≤ 1.

and

T (x)(t) =


δ, if 0 ≤ t < x

15 ;
γ, if x

15 ≤ t ≤
x
10 ;

σ, if x
10 < t ≤ x

5 ;
β, if x

5 < t ≤ 1.

Observe that,

Ŝx = [Sx]δ =

(
x

25
,
x

20

)
, T̂ x = [Tx]δ =

[
0,
x

15

)
.

Hence, Sx, Tx /∈ K(X). But, for x ∈ X if αLS(x) = αLT (x) = γ ∈ L\{0L}.

[Sx]γ =

[
0,
x

30

]
, [Tx]γ =

[
0,
x

10

]
.

Thus, Sx, Tx ∈ DL(X) ⊆ EL(X). Furthermore,

λ3 +
λ4d(x, [Sx]αLS(x)

)

1 + d(x, y)
≤ 1

15
+

1

20

( |x− x
30 ||y −

y
10 |

1 + |x− y|

)
< 1.

Similarly,

λ2 +
λ4d(y, [Ty]αLT (y)

)

1 + d(z, y)
< 1.

So, whenever x = y we have

H([Sx]αLS(x)
, [Ty]αLT (y)

) = 0,

but whenever x 6= y, we have

H([Sx]αLS(x)
, [Ty]αLT (y)

) ≤ 1

5
|x− y|+ 1

10
|x− x

30
|+ 1

15
|y − y

10
|

+
1

20

( |x− x
30 ||y −

y
10 |

1 + |x− y|

)
.

Since [Sx]αLS(x)
, [Tx]αLT (x)

6∈ C(X) for each αL ∈ L and X is not linear, one can not

apply many known results of the literature (see; [7–10]) even if λ4 = 0. But, S and T
satisfy all the hypothesis of Theorem 3.1 for λ1 = 1

5 , λ2 = 1
10 , λ3 = 1

15 and λ4 = 1
20 .

Hence, a common L-fuzzy fixed point for S and T exists.

Below, we obtain some common fixed points results for L-fuzzy mappings and multi-
valued mappings as an application of the above L-fuzzy fixed point result (see [3, 12, 13]).
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Theorem 3.3. Let (X, d) be a complete metric space and S, T : X −→ FL(X) be L-fuzzy

mappings such that Ŝx, T̂ x ∈ CB(X). If for all x, y ∈ X

H(Ŝx, T̂ y) ≤ λ1d(x, y) + λ2d(x, Ŝx) + λ3d(y, T̂ y) +
λ4d(x, Ŝx)d(y, T̂ y)

1 + d(x, y)
,

and

λ3 +
λ4d(x, Ŝx)

1 + d(x, y)
< 1, λ2 +

λ4d(y, T̂ y)

1 + d(x, y)
< 1,

where λ1, λ2, λ3 and λ4 are non-negative real numbers with λ1 + λ2 + λ3 + λ4 < 1. Then,
there exists z ∈ X such that S(z)(z) ≥ S(z)(x) and T (z)(z) ≥ T (z)(x) for all x ∈ X.

Proof. For x, t ∈ X. Let

max
t
S(x)(t) = λ and max

t
T (x)(t) = κ.

Then for every x, y ∈ X, we have

Ŝx = [Sx]µ and T̂ x = [Tx]κ.

Thus

H(Ŝx, T̂ y) = H([Sx]µ, [Tx]κ)

≤ λ1d(x, y) + λ2d(x, [Sx]µ) + λ3d(y, [Ty]κ)

+
λ4d(x, [Sx]µ)d(y, [Ty]κ)

1 + d(x, y)
.

Then, from Theorem 3.1 we obtain z ∈ X such that

z ∈ [Sz]µ ∩ [Tz]κ = Ŝz ∩ T̂ z.

Therefore, using Lemma 2.12 we have

S(z)(z) ≥ S(z)(x),

and

T (z)(z) ≥ T (z)(x),

for all x ∈ X as required.

Theorem 3.4. Let (X, d) be a complete metric space and K,L : X −→ CB(X) be
multi-valued mappings. If for all x, y ∈ X

H(Kx,Ly) ≤ λ1d(x, y) + λ2d(x,Kx) + λ3d(y, Ly) +
λ4d(x,Kx)d(y, Ly)

1 + d(x, y)
,

and

λ3 +
λ4d(x,Kx)

1 + d(x, y)
< 1, λ2 +

λ4d(y, Ly)

1 + d(x, y)
< 1,

where λ1, λ2, λ3 and λ4 are non-negative real numbers with λ1 + λ2 + λ3 + λ4 < 1. Then,
there exists x∗ ∈ X such that x∗ ∈ Kx∗ ∩ Lx∗.
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Proof. Take a pair (arbitrary) of mappings A,B : X −→ L\{0L} and let S, T : X −→
FL(X) be L-fuzzy mappings defined as follows:

S(x)(t) =

{
Ax, if t ∈ Kx;
0L, if t 6∈ Kx.

and

T (x)(t) =

{
Bx, if t ∈ Lx;
0L, if t 6∈ Lx.

For each x ∈ X.

[Sx]αLS(x)
= {t ∈ X : αLS(x) �L S(x)(t)} = Kx.

Similarly

[Tx]αLT (x)
= Lx.

Now, from Theorem 3.1 we obtain x∗ ∈ X such that

x∗ ∈ [Sx∗]αLS(x∗)
∩ [Tx∗]αLT (x∗)

= Kx∗ ∩ Lx∗,

completing the proof.

Moreover, as an application of Theorem 3.1, we establish the existence of a common
fixed point for L-fuzzy mappings under a rational contractive condition on a metric space
with the d∞L -metric for L-fuzzy sets.

Theorem 3.5. Let (X, d) be a complete metric space and S, T : X −→ EL(X). If for all
x, y ∈ X

d∞L (Sx, Ty) ≤ λ1d(x, y) + λ2p(x, Sx) + λ3p(y, Ty) +
λ4p(x, Sx)p(y, Ty)

1 + d(x, y)
.

and

λ3 +
λ4p(x, Sx)

1 + d(x, y)
< 1, λ2 +

λ4p(y, Ty)

1 + d(x, y)
< 1.

where λ1, λ2, λ3 and λ4 are non-negative real numbers with λ1 + λ2 + λ3 + λ4 < 1. Then,
there exists z ∈ X such that {z} ⊂ Sz and {z} ⊂ Tz.

Proof. Choose x ∈ X. By hypothesis [Sx]αL , [Tx]αL ∈ CB(X) for all αL ∈ L. So, for
every x, y ∈ X, we have

DαL(Sx, Ty) ≤ d∞L (Sx, Ty)

≤ λ1d(x, y) + λ2p(x, Sx) + λ3p(y, Ty) +
λ4p(x, Sx)p(y, Ty)

1 + d(x, y)
.

But

p(x, Sx) ≤ d(x, [Sx]αL).

Which implies

H([Sx]αL , [Ty]αL) ≤ λ1d(x, y) + λ2d(x, [Sx]αL) + λ3d(y, [Ty]αL)

+
λ4d(x, [Sx]αL)d(y, [Ty]αL)

1 + d(x, y)
.
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Therefore, Theorem 3.1 implies the existence of z ∈ X such that

{z} ⊂ Sz and {z} ⊂ Tz.

Theorem 3.6. Let (V, d) be a complete metric linear space and S, T : V −→ WL(V ). If
for all x, y ∈ V

d∞L (Sx, Ty) ≤ λ1d(x, y) + λ2p(x, Sx) + λ3p(y, Ty) +
λ4p(x, Sx)p(y, Ty)

1 + d(x, y)
.

and

λ3 +
λ4p(x, Sx)

1 + d(x, y)
< 1, λ2 +

λ4p(y, Ty)

1 + d(x, y)
< 1.

where λ1, λ2, λ3 and λ4 are non-negative real numbers with λ1 + λ2 + λ3 + λ4 < 1. Then,
there exists z ∈ V such that {z} ⊂ Sz and {z} ⊂ Tz.

Proof. Choose z0 ∈ V . By applying Lemma 2.13 there exists z1 ∈ V such that {z1} ⊂ Sz0.
Which implies that pαL(z1, Sz0) = 0⇐⇒ z1 ∈ [Sz0]αL , for all αL ∈ L. Similarly, one can
find z2 ∈ V so that z2 ∈ [Tz0]αL .
Thus, for each z ∈ V , [Sz]αL , [Tz]αL ∈ C(X). To complete the proof, one can employ a
similar approach to the proof of Theorem 3.5 above.

Corollary 3.7. Let (V, d) be a complete metric linear space and T : V −→WL(V ) be an
L-fuzzy mapping such that for all x, y ∈ V

d∞L (Tx, Ty) ≤ βd(x, y),

where 0 ≤ β < 1. Then, there exists z ∈ V such that {z} ⊂ Tz.

Remark 3.8.

(i) If we consider L = [0, 1] in Theorems 3.1 3.3, 3.4, 3.5, 3.6 and Corollary 3.7
above, we get Theorems 2.1, 3.1, 3.2, 4.1, 4.2 and Corollary 4.3 of [25] respectively;

(ii) If L = [0, 1] in Corollary 3.7, then the result reduces to Theorem 3.1 of [5];
(iii) If αL = 1L in Theorems 3.1, 3.3, 3.4, 3.5 and 3.6, then by Remark 2.9 the
L-fuzzy mappings S and T have a common fixed point;

(iv) If αL = 1L in Corollary 3.7, then by Remark 2.9 the L-fuzzy mapping T has a
fixed point.
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