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Abstract In the present research note, we establish a Hankel type integral transform involving the
product of Whittaker function W}, ,,, and hypergeometric function 1 F5. By using the result of Erdelyi
et al. [A. Erdelyi et al., Table of Integral Transfoms, Vol. 1, McGraw-Hill, New York, 1954], we express
this transform into Srivastava triple hypergeometric series F(3) [,y,2]. Some special cases of our main

transform are also indicated.
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1. INTRODUCTION

The theory of integral transforms introduced from time to time by many authors (see
for example, [1-5] etc), play a very crucial role in the area of mathematical physics and
engineering sciences (for example, astrophysics, plasma physics, neutron theory etc). Due
to the great importance of such transforms, in this short note, we present a Hankel type
integral transform involving the product of Whittaker function Wi ,,(z) and hypergeo-
metric function 1 F5, which is given in terms of Srivastava triple hypergeometric series
F®lz,y, z].

For purpose the our present research work, we begin by recalling here the following
definitions of some well known functions:
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We have the generalized hypergeometric function represented is defined by (see [(]):

(0p); ] _ g~ W (@), 2
o G = S (1)

n=0

provided p < ¢, 2| < oo; p=¢q+1, |z| <1 and («),, is well known Pochhammer symbol,
a € C (see [0]).

The Whittaker function of second kind Wy, ,,(2) [7, 8] is defined as
#Jrl z 1
Wi u(2) = 2472 exp <f§)\II ufk+§,2u+l;z , (1.2)

where ¥ denotes Humbert’s confluent hypergeometric function of one-variable (see [9]).
Also, we have the Srivastava general triple hypergeometric series F®)[z,y, 2] (see [0,
p. 69]) defined as
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and the Kampé de Fériet’s function F(?) [z, y] (see [2, 10]) defined by
a:be o m

F) | = (@min () () na™y" 1.4

PR Bl D vty ez )

The generalized Bessel function w’ .(2) of the first kind is defined for z € C\{0} and
b,c,v € C with R(v) > —1 by the followmg series (see [, 3]):

(lkk()y+2k

= 57
= KT +k+ )’

(1.5)

where C denotes the set of complex numbers, I'(z) is the familiar Gamma function and
w? .(0) = 0. Tt is well known that

v,c

wy1(2) = Ju(2), (1.6)

wy,—1(2) = L(2), (L.7)

where T,,(z) is the Modified Bessel function of first kind [6].
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2. MAIN TRANSFORM

In this section, we establish the following Hankel type integral transform:

B
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where P = 0—|—V—|—m—|—%, Q = a—|—1/—m—|—%, D = m—k—i—%, EFE =o0c+4+v—k+1,
R(P) >0, R(Q) >0, R(E) >0, R(v) > — (1), R(z+ 2) > 0 and F®[z,y, 2] is the
Srivastava triple hypergeometric series (see Eq.(1.3)).

Proof of Result (2.1):

In order to establish the result (2.1), expanding 1 F5 and w,}j’c in their respective series
and integrating term by term with the help of the result [11, p. 216(16)], we get
o0 7()0(2 S
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where P = o+v+m+3,Q = o+v—-m+1, D =m—-k+3, E =oc+v—Fk+1,
R(P) >0, R(Q) >0, R(E) >0, R(v) > - R(z+2) > 0.

2
Now by making use of the following result of Carlson [12, p. 234(10)]:
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in the above equation and on further expanding 4F3’s in series form and interpreting the
resulting series in the form of F®) we arrive at the required result (2.1).

Remark. If we consider b = ¢ =1 in (2.1), then it reduces to the known result of Khan
and Kashmin [4].

3. SPECIAL CASES

In this section, we derive some potentially useful integral transforms as special cases
our main result. The following special cases of the main transformation (2.1) are given
below:

(1) On setting k = 0 in (2.1) and using the result Wo m(2) = /2K (2/2), we get
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where P = 0+1/+m+%,Q = UJerer%,D’ = m+%,E’ = o+v+1, R(P) >0,

R(Q) >0, R(E) >0, R(v) > —(1;[)), N(z+ 5) > 0 and K,,(2) is the modified Bessel
function (see [9]).

(2) On setting k = 2 4+ 1, m = 1 in (2.1), and using the result Wy
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where P/ = o+v+3,Q = o+v+1, D' =F+Land B = o+v—-%+73,
R(P') > 0, R(Q') > 0, R(E") > 0, R(v) > _(1;b).

(3) On setting z = £ in (2.1), we get
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where P = 0—|—V—|—m+%,Q = 0’—|—V—m—|—%,D = m—k—l—%,E = o+v—Fk+1,
R(P) >0, R(Q) >0, R(E) >0, R(v) > _(142-1;)7 R(z+ L) > 0 and F® is the Kampé de
Fériet’s function defined by (see Eq.(1.4)).

(4) On setting k = m +1/2 in (2.1) and using the result Wy, 11 /2. (2) = 2/ 2e=5  we
get
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where P = o+v+m+ 3, R(P)>0, %(u)>—@,%(2+§)>0.
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4. CONCLUDING REMARKS

In the present article, we have derived a Hankel type integral transform involving
the product of Whittaker function Wi ,,, and the hypergeometric function ; F5, which is
expressed in terms of Srivastava triple hypergeometric series. We have also considered
some special cases of our main transform.

As we know that the hypergeometric function 1 F» have the following relations with the
Lommel and Struve functions

-v+3 u+u+3_—z2
2 ’ 2 "4

3 v+3 —22 3 3\ 2\~ (D)
W [172’2’4] =t <2> : (”U) (5) e

3 v+3 22 3 3\ 2\~ (D)

Therefore, by using the above relations of 1 F5, we can obtained some other integral trans-
form (involving Lommel and Struve functions) as special cases of our main result.
Furthermore, we have the following interesting relation of Hermite polynomials with La-
guerre polynomials

Haoi(z) = (—1)*2KILS? (@2), Hapyr (2) = (—1)F225 RIL) (22),

So, by using the above relation of H, (x) in (3.2), we can obtained a new integral transform
involving Laguerre polynomials.

W [1; £ } =(p—v+1)(p+v+1)z D8, (2);
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