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1. Introduction

Let H be a real Hilbert space and K a nonempty, closed and convex subset of H. We
shall denote the family of all nonempty closed and bounded subsets of K by CB(K),
the family of all nonempty subsets of K by 2K . A mapping T : K → K is said to be
nonexpansive if

||Tx− Ty|| ≤ ||x− y|| ∀ x, y ∈ K. (1.1)

A point x ∈ K is called a fixed point of T if Tx = x. The set of fixed points of T is
denoted by F (T ) and a Fixed Point Problem (FPP) for T is to find x ∈ F (T ). It is a
common knowledge that if T is nonexpansive and F (T ) 6= ∅ then F (T ) is a closed and
convex subset of K. Let T : K → 2K be a multivalued map, then x ∈ D(T ) is a fixed
point of T if x ∈ F (T ). If T is multivalued then the set Fs(T ) = {x ∈ D(T ) : Tx = {x}}
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is called the strict fixed point set of T . Let H be a Hilbert space. A subset K of H is
called proximal, if for each x ∈ H there exists k ∈ K such that

||x− k|| = inf{||x− y|| : y ∈ K} = d(x,K), (1.2)

and the family of all proximal subsets of H will be denoted by P (H). It is known that
every closed convex subset of a Hilbert space is proximal. Let H(., .) denote the Hausdorff
metric induced by the metric d on H, that is for A,B ∈ CB(H),

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

(b, A)
}
. (1.3)

Let H be a Hilbert space and T : D(T ) ⊆ H → 2H be a multivalued mapping. T is said
to be L−Lipschzian (see [1, 2]) if there exists L ≥ 0 such that for all x, y ∈ D(T )

H(Tx, Ty) ≤ L||x− y||. (1.4)

In (1.4), if L ∈ [0, 1), T is a contraction while T is nonexpansive if L = 1. T is called
quasi-nonexpansive if F (T ) = {x ∈ D(T ) : x ∈ Tx} 6= ∅ and for p ∈ F (T ),

H(Tx, Tp) ≤ ||x− p||. (1.5)

T is said to be κ-strictly pseudocontractive-type in the sense of Isiogugu [3], if there exists
κ ∈ [0, 1) such that, given any pair x, y ∈ D(T ) and u ∈ Tx, there exists v ∈ Ty satisfying
||u− v|| ≤ H(Tx, Ty) and

H2(Tx, Ty) ≤ ||x− y||2 + κ||x− u− (y − v)||2. (1.6)

T : D(T ) ⊆ H → CB(H) is said to be κ-strictly pseudocontractive in the sense of
Chidume et al. [4], if there exists κ ∈ [0, 1) such that for all x, y ∈ D(T )

H2(Tx, Ty) ≤ ||x− y||2 + κ||x− u− (y − v)||2, ∀u ∈ Tx, v ∈ Ty. (1.7)

It has been observed (see Isiogugu [5]) that every κ-strictly pseudocontractive mapping
T : D(T ) ⊆ H → P (H) is κ-strictly pseudocontractive-type.
The study of fixed points for multivalued contractions and nonexpansive mappings (see
[6]) was initiated by Nadler [7] and Markin [8] respectively, and by now there exists an
extensive literature on multivalued fixed point theory which has applications in convex
optimization, differential inclusions, fractals, discontinuous differential equations, opti-
mal control, computing homology of maps, computer-assisted proofs in dynamics, digital
imaging and economics (e.g., [9–13] and references cited therein). There are many clas-
sical and well developed areas of applications, where a multivalued map is used as a
generalization of a single valued map.

Let f : H → H be a single valued nonlinear mapping and let M : H → 2H be a set valued
mapping. The variational inclusion problem is to find x ∈ H such that

0 ∈ f(x) +M(x), (1.8)

where 0 is the zero vector in H. The set of solutions to the variational inclusion problem
(1.8) is denoted by I(f,M). For further studies on variational inclusion problem see for
example [14–20] and some of the references therein.
A mapping T : H → H is said to be
(i) monotone, if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;
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(ii) α-strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α||x− y||2, ∀x, y ∈ H;

(iii) β-inverse strongly monotone(β-ism), if there exists a constant β > 0 such that

〈Tx− Ty, x− y〉 ≥ β||Tx− Ty||2, ∀x, y ∈ H;

(iv) firmly nonexpansive, if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||2, ∀x, y ∈ H,
see [21]. A set valued mapping M : H → 2H is called monotone if for all x, y ∈ H with
u ∈M(x) and v ∈M(y) then

〈x− y, u− v〉 ≥ 0.

A monotone mapping M is said to be maximal if the graph of M denoted by G(M) is not
properly contained in the graph of any other monotone mapping. The graph of a multi
valued mapping M is the set,

G(M) = {(x, y) : y ∈M(x)}.
It is well known that M is maximal if and only if for (x, u) ∈ H ×H, 〈x− y, u− v〉 ≥ 0
for all (y, v) ∈ G(M) implies u ∈ M(x). The resolvent operator JMλ associated with M
and λ is the mapping JMλ : H → H defined by

JMλ (x) = (I + λM)−1x, x ∈ H,λ > 0. (1.9)

It is known that the resolvent operator JMλ (x) is single valued, nonexpansive and 1-
inverse strongly monotone (for example see [22]) and the solution of (1.8) is a fixed point
JMλ (x)(I−λf) ∀λ > 0 (see for example [23]). If f is α-inverse strongly monotone mapping
with 0 < λ < 2α, then one can easily see that JMλ (x)(I−λf) is nonexpansive and I(f,M)
is closed and convex.

Let H1 and H2 be real Hilbert spaces. Let f1 : H1 → H1, f2 : H2 → H2 be inverse strongly
monotone mappings and B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mappings.
Let A : H1 → H2 be a bounded linear mapping. The Split Monotone Variational Inclusion
Problem (SMVIP) is to find x∗ ∈ H1 such that

0 ∈ f1(x∗) +B1(x∗) (1.10)

and

y∗ = Ax∗ ∈ H2 such that, 0 ∈ f2(y∗) +B2(y∗). (1.11)

We shall denote by Ω the solution set of (1.10)–(1.11). That is,

Ω = {x∗ ∈ H1 : 0 ∈ f1(x∗) +B1(x∗) and y∗ = Ax∗ ∈ H2 such that 0 ∈ f2(y∗) +B2(y∗)}.
If we consider (1.10) and (1.11) seprately, we have that (1.10) is a variational inclusion
problem with its solution set I(f1, B1) and (1.11) is a variational inclusion problem with
solution set I(f2, B2).

Moudafi [24] introduced SMVIP (1.10)–(1.11) and proposed an iterative method for solv-
ing it. In Moudafi [24], it was noted that the SMVIP generalises the Split Fixed Point
Problem (SFPP), Split Variational Inequality Problem (SVIP), Split Zero Problem (SZP)
and Split Fasibility Problem (SFP) (see [24–31]), which have been studied extensively
by many authors and applied to solving many real life problems such as in modelling
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intensity-modulated radiation therapy treatment planning, modelling of inverse problems
arising from phase retrieval, and in sensor networks in computerised tomography and
data compression [32, 33].

Suppose in SMVIP (1.10)–(1.11), f1 ≡ 0 and f2 ≡ 0, we obtain the following Split
Variational Inclusion Problem (SVIP): Find x∗ ∈ H1 such that

0 ∈ B1(x∗) (1.12)

and

y∗ = Ax∗ ∈ H2 such that, 0 ∈ B2(y∗). (1.13)

Byrne et al. [34] using the following iterative scheme: for a given x0 ∈ H1, the sequence
{xn} generated iteratively by;

xn+1 = JB1

λ (xn + γA∗(JB2

λ − I)Axn), λ > 0,

obtained a weak and strong convergence theorem solving SVIP (1.12)–(1.13). Inspired
by the work of Byrne et al., Kazmi and Rizvi [35] proposed the following algorithm for
approximating a solution of SVIP (1.12)–(1.13) which is a fixed point of a nonexpansive
mapping S: for a given x0 ∈ H1 let the sequences {un} and {xn} be generated by{

un = JB1

λ (xn + γA∗(JB2

λ − I)Axn),
xn+1 = αnf(xn) + (1− αn)Sun, n ≥ 0,

(1.14)

and proved that both {un} and {xn} converge strongly to z ∈ F (S) ∩ Γ, where Γ is the
solution set of SVIP (1.12)–(1.13). For more on variational inclusion problem see [36, 37].

Recently, Shehu and Ogbuisi [38] motivated by the works of Moudafi [24] and Kazmi and
Rizvi [35] propose an iterative scheme for approximating a common solution of a fixed
point problem and the SMVIP (1.10)–(1.11) without f1 and f2 being necessarily zero and
obtained a strong convergence result.
In this paper, we introduce an iterative scheme and obtain a strong convergence result
for approximating a solution of the SMVIP (1.10)–(1.11) ( f1 and f2 not necessarily zero)
which is also a common solution of two multivalued strictly pseudocontractive mappings
in the sense of Isiogugu [3].

2. Preliminaries

In the sequel, we will need the following important definition and lemmas to establish
our main results.

Definition 2.1. Let T : H → 2H be a multivalued mapping; for each x ∈ H,PTx is
defined by

PT (x) = {y ∈ Tx : ||x− y|| = d(x, Tx)}. (2.1)

Lemma 2.2 ([5]). Let K be a nonempty subset of a real Hilbert space H and let T : K →
P (K) be a κ-strictly pseudocontractive-type mapping such that Fs(T ) is nonempty. Then
Fs(T ) is closed and convex.
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Lemma 2.3 ([39, 40]). Let H be a Hilbert space and T : H → H a nonexpansive mapping,
then for all x, y ∈ H,

〈(x− Tx)− (y − Ty), T y − Tx〉 ≤ 1

2
||(Tx− x)− (Ty − y)||2, (2.2)

and consequently if y ∈ F (T ) then

〈x− Tx, Ty − Tx〉 ≤ 1

2
||Tx− x||2. (2.3)

Lemma 2.4 ([41]). Let H be a real Hilbert space. Then the following result holds

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉,∀ x, y ∈ H.

Lemma 2.5 ([41]). Let H be a Hilbert space, then ∀x, y ∈ H and α ∈ (0, 1), we have

||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2.

Lemma 2.6. (Demiclosedness principle) Let K be a nonempty, closed and convex subset
of a real Hilbert space H and T : K → K a nonexpansive mapping. Then I − T is
demiclosed at 0, i.e., if xn ⇀ x ∈ K and xn − Txn → 0, then x = Tx.

Lemma 2.7 ([42]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
(i)Σ∞n=0γn =∞,
(ii)lim supn→∞ δn ≤ 0, or Σ∞n=0||δnγn|| <∞,
Then limn→∞ an = 0.

Lemma 2.8 ([23]). Let M : H → 2H be a maximally monotone mapping and f : H → H
be a Lipschitz continuous mapping. Then the mapping G = M +f : H → 2H is a maximal
monotone mapping.

A mapping T : H → H is said to be averaged if and only if it can be written as the
average of the identity mapping and a nonexpansive mapping, i.e.,

T := (1− β)I + βS

where β ∈ (0, 1) and S : H → H is a nonexpansive mapping and I is the identity
mapping on H. Every averaged mapping is nonexpansive and every firmly nonexpansive
mapping is averaged. Thus since the resolvent of maximal monotone operators are firmly
nonexpansive, they are averaged and therefore nonexpansive. For details, see [24, 43].

3. Main Results

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let f1 : H1 → H1 be µ-inverse strongly monotone mapping and f2 : H2 →
H2 be ν-inverse strongly monotone mapping. Let B1 : H1 → 2H1 and B2 : H2 → 2H2

be multi-valued maximal monotone mappings. Let Ω be a solution set of (1.10)–(1.11).
Let S, T : H1 → P (H1) be two strictly pseudocontractive-type mappings with contractive



508 Thai J. Math. Vol. 19 (2021) /F. U. Ogbuisi and O. T. Mewomo

coefficients κ1 and κ2 such that Fs(S)∩Fs(T )∩Ω 6= ∅. Let {xn} be the sequence generated
for x0 ∈ H1 by

wn = (1− αn)xn
yn = JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)
xn+1 = βnyn + (1− βn)[ρnvn + (1− ρn)un], ∀n ≥ 0

(3.1)

where vn ∈ Tyn and un ∈ Syn, 0 < λ < 2µ, 2ν and γ ∈ (0, 1
L ), L is the spectral radius of

the operator AA∗ and A∗ is the adjoint of A. Suppose {αn}∞n=1, {ρn}∞n=1 and {βn}∞n=1

are real sequences in (0, 1) satisfying the following conditions

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞,

(ii) βn ≥ max{κ1, κ2} ∀n ≥ 0,

(iii) lim infn→∞(1− βn)(1− ρn)(βn − κ1) > 0,

(iv) lim infn→∞(1− βn)(βn − κ2)ρn > 0.

Then {xn}∞n=1 converges strongly to p ∈ Fs(S) ∩ Fs(T ) ∩ Ω.

Proof. Let p ∈ Fs(S) ∩ Fs(T ) ∩ Ω and let zn = ρnvn + (1− ρn)un, then

||xn+1 − p||2 = ||[βnyn + (1− βn)[ρnvn + (1− βn)un]]− p||2

= ||[βnyn + (1− βn)zn]− p||2

= βn||yn − p||2 + (1− βn)||zn − p||2 − βn(1− βn)||yn − zn||2, (3.2)

and

||zn − p||2 = ||ρnvn + (1− ρn)un − p||2

= ρn||vn − p||2 + (1− βn)||un − p||2

−ρn(1− ρn)||vn − un||2. (3.3)

From (3.16) and (3.3), we have

||xn+1 − p||2 = βn||yn−p||2+(1−βn)ρn||vn−p||2+(1−βn)(1−ρn)||un−p||2

−(1− βn)ρn(1− ρn)||vn − un||2 − βn(1− βn)||yn − zn||2

≤ βn||yn−p||2+(1−βn)ρnH
2(Tyn, Tp)+(1−βn)(1−ρn)H2(Syn, Sp)

−(1− βn)ρn(1− βn)||vn − un||2 − βn(1− βn)||yn − zn||2

≤ βn||yn − p||2 + (1− βn)ρn[||yn − p||2 + κ2||yn − vn||2]

+(1− βn)(1− ρn)[||yn − p||2 + κ1||yn − un||2]

−(1− βn)ρn(1− βn)||vn − un||2 − βn(1− βn)||yn − zn||2. (3.4)

Again

||yn − zn||2 = ||yn − [ρnvn + (1− ρn)un]||2

= ρn||yn − vn||2 + (1− ρn)||yn − un||2 − ρn(1− ρn)||vn − un||2. (3.5)
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Inserting (3.5) into (3.4), we obtain

||xn+1 − p||2 ≤ [βn + (1− βn)ρn + (1− βn)(1− ρn)||yn − p||2

+[(1− βn)ρnκ2 − βn(1− βn)ρn]||yn − vn||2

+[(1− βn)(1− ρnκ1 − βn(1− βn)(1− ρn)]||yn − vn||2

+[(1− βn)(1− ρn)ρnβn − (1− βn)(1− ρn)ρn||vn − un||2

= ||yn − p||2 − ρn(1− βn)(βn − κ2)||yn − vn||2

−(1− βn)(1− ρn)(βn − κ1)||yn − un||2

−(1− βn)2(1− ρn)ρn||vn − un||2

≤ ||yn − p||2. (3.6)

But

||yn − p||2 = ||JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)− p||2

≤ ||wn + γA∗(JB2

λ (I − λf2)− I)Awn − p||2

= ||wn − p||2 + γ2||A∗(JB2

λ (I − λf2)− I)Awn||2

+2γ〈wn − p,A∗(JB2

λ (I − λf2)− I)Awn〉, (3.7)

and

γ2||A∗(JB2

λ (I−λf2)−I)Awn||2 = γ2〈(JB2

λ (I−λf2)−I)Awn, AA
∗(JB2

λ (I−λf2)−I)Awn〉
≤ Lγ2〈(JB2

λ (I−λf2)−I)Awn, (J
B2

λ (I−λf2)−I)Awn〉
= Lγ2||(JB2

λ (I − λf2)− I)Awn||2. (3.8)

Let Υn = 2γ〈wn − p,A∗(JB2

λ (I − λf2)− I)Awn〉 then from (2.3), we have

Υn = 2γ〈wn − p,A∗(JB2

λ (I − λf2)− I)Awn〉
= 2γ〈A(wn − p) + (JB2

λ (I − λf2)− I)Awn, (J
B2

λ (I − λf2)− I)Awn〉
+2γ〈−(JB2

λ (I − λf2)− I)Awn, (J
B2

λ (I − λf2)− I)Awn〉
= 2γ[〈JB2

λ (I−λf2)Awn−Ap, JB2

λ (I−λf2)−I)Awn〉
−||JB2

λ (I−λf2)−I)Awn||2] (3.9)

≤ 2γ
[1

2
||JB2

λ (I − λf2)− I)Awn||2 − ||JB2

λ (I − λf2)− I)Awn||2
]

= −γ||JB2

λ (I − λf2)− I)Awn||2.

From (3.7), (3.8) and (3.9), we have

||yn − p||2 ≤ ||wn−p||2+Lγ2||JB2

λ (I−λf2)−I)Awn||2−γ||JB2

λ (I−λf2)−I)Awn||2

= ||wn − p||2+γ(Lγ − 1)||JB2

λ (I − λf2)− I)Awn||2 (3.10)

≤ ||wn − p||2.
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By (3.6) and (3.10)

||xn+1 − p|| ≤ ||wn − p||
= ||(1− αn)xn − p||
= ||(1− αn)(xn − p)− αnp||
≤ (1− αn)||xn − p||+ αn||p||
≤ max{||xn − p||, ||p||}
...

≤ max{||x0 − p||, ||p||}.

Therefore {xn} is bounded and consequently {yn},{Syn} and {wn} are bounded.
We divide into two cases to establish the strong convergence of {xn} to p.

Case 1. Assume that {||xn−p||} is a monotonically decreasing sequence. Then {||xn−p||}
is convergent and clearly

lim
n→∞

||xn − p|| = lim
n→∞

||xn+1 − p||.

Now,

||xn+1 − p||2 ≤ ||yn−p||2−ρn(1−βn)(βn−κ2)||yn−vn||2

−(1−βn)(1−ρn)(βn−κ1)||yn−un||2− (1−βn)2(1−ρn)ρn||vn−un||2

≤ ||wn−p||2−ρn(1−βn)(βn−κ2)||yn−vn||2

−(1−βn)(1−ρn)(βn−κ1)||yn−un||2− (1−βn)2(1−ρn)ρn||vn−un||2

≤ ||(1−αn)xn−p||2−ρn(1−βn)(βn−κ2)||yn−vn||2

−(1−βn)(1−ρn)(βn−κ1)||yn−un||2−(1−βn)2(1−ρn)ρn||vn−un||2

≤ ||xn−p||2+α2
n||xn||2−2αn〈xn−p, xn〉−ρn(1−βn)(βn−κ2)||yn−vn||2

−(1−βn)(1−ρn)(βn−κ1)||yn−un||2

−(1−βn)2(1−ρn)ρn||vn−un||2. (3.11)

Let

Dn = ρn(1− βn)(βn − κ2)||yn − vn||2

+(1− βn)(1− ρn)(βn − κ1)||yn − un||2.

Thus, from (3.11) we have

Dn ≤ ||xn − p||2 − ||xn+1 − p||2 + α2
n||xn||2 − 2αn〈xn − p, xn〉 → 0, (3.12)

as n→∞. Thus, by conditions (iii) and (iv) and (3.12), we have

||yn − vn|| → 0, as n→∞, (3.13)

and

||yn − un|| → 0, as n→∞. (3.14)

From (3.1), we have

||wn − xn|| = αn||xn|| → 0 as n→∞. (3.15)
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Again from (3.6)

||xn+1 − p||2 ≤ ||yn − p||2

= ||JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)− p||2

≤ ||wn − p||2 + γ(Lγ − 1)||(JB2

λ (I − λf2)− I)Awn||2

≤ (1− αn)2||xn − p||2 + α2
n||p||2 − 2αn(1− αn)〈xn − p, p〉

+γ(Lγ − 1)||(JB2

λ (I − λf2)− I)Awn||2. (3.16)

Therefore,

γ(1− Lγ)||(JB2

λ (I − λf2)− I)Awn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + α2
n||p||2

−2αn(1− αn)〈xn − p, p〉 → 0, (3.17)

as n→∞. Hence,

||(JB2

λ (I − λf2)− I)Awn|| → 0 as n→∞. (3.18)

From (3.10), we have

||yn − p||2 = ||JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)− p||2

≤ 〈yn − p, wn + γA∗(JB2

λ (I − λf2)− I)Awn − p〉

=
1

2
[||yn − p||2 + ||wn + γA∗(JB2

λ (I − λf2)− I)Awn − p||2

−||yn − p− (wn + γA∗(JB2

λ (I − λf2)− I)Awn − p)||2]

≤ 1

2
[||yn − p||2 + ||wn − p||2 + γ(Lγ − I)||(JB2

λ (I − λf2)− I)Awn||2

−||yn − wn − γA∗(JB2

λ (I − λf2)− I)Awn − p)||2]

≤ 1

2
[||yn−p||2+||wn−p||2−(||yn−wn||2+γ2||A∗(JB2

λ (I−λf2)−I)Awn||2

−2γ〈yn − wn, A∗(JB2

λ (I − λf2)− I)Awn〉)]

≤ 1

2
[||yn − p||2 + ||wn − p||2 − ||yn − wn||2

+2γ||A(yn − wn)||||(JB2

λ (I − λf2)− I)Awn||]. (3.19)

That is,

||yn − p||2 ≤ ||wn − p||2 − ||yn − wn||2

+2γ||A(yn − wn)||||(JB2

λ (I − λf2)− I)Awn||. (3.20)

It then follows from (3.6) and (3.20) that

||xn+1 − p||2 ≤ ||wn − p||2 − ||yn − wn||2

+2γ||A(yn − wn)||||(JB2

λ (I − λf2)− I)Awn||, (3.21)

which implies that

||yn − wn||2 ≤ ||wn−p||2−||xn+1−p||2+2γ||A(yn−wn)||||(JB2

λ (I−λf2)−I)Awn||
= ||(1−αn)xn−p||2−||xn+1−p||2+2γ||A(yn−wn)||||(JB2

λ (I−λf2)−I)Awn||
≤ ||xn − p||2 − ||xn+1 − p||2 + α2

n||p||2 + 2αn(1− αn)〈xn − p, p〉
+2γ||A(yn − wn)||||(JB2

λ (I − λf2)− I)Awn|| → 0 as n→∞. (3.22)
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Therefore,

||yn − wn|| → 0 as n→∞. (3.23)

From (3.15),

||xn − yn|| ≤ ||xn − wn||+ ||wn − yn|| → 0. (3.24)

Let θn = wn + γA∗(JB2

λ (I − λf2)− I)Awn, then

||θn − wn||2 = Lγ2||(JB2

λ (I − λf2)− I)Awn||2 → 0. (3.25)

Combining (3.23) and (3.25), we have

||yn − θn|| ≤ ||yn − wn||+ ||wn − θn|| → 0. (3.26)

It follows from (3.13) and (3.14) that {yn} converges weakly to a point p ∈ F (S) ∩ F (T )
and so do {xn} and {wn} converge weakly to p.

We now show that p ∈ I(f1, B1). Since f1 is
1

µ
-Lipschitz monotone mapping and the

domain of f1 is H1 then by Lemma 2.8, we conclude that B1 +f1 is maximally monotone.
Let (v, z) ∈ G(B1 + f1), that is z − f1v ∈ B1(v).

Since yn = JB1

λ (I − λf1)θn, we obtain

(I − λf1)θn ∈ (I + λB1)yn.

That is,
1

λ
(θn − λf1θn − yn) ∈ B1(yn).

Using the maximal monotonicity of (B1 + f1), we have

〈v − yn, z − f1v −
1

λ
(θn − λf1θn − yn)〉 ≥ 0.

Therefore,

〈v − yn, z〉 ≥ 〈v − yn, f1v +
1

λ
(θn − λf1θn − yn)〉

= 〈v − yn, f1v − f1yn + f1yn − f1θn +
1

λ
(θn − yn)〉

≥ 0 + 〈v − yn, f1yn − f1θn〉+ 〈v − yn,
1

λ
(θn − yn)〉. (3.27)

By (3.26), we obtain
lim
n→∞

||f1yn − f1θn|| = 0.

Also, since yn ⇀ p, we have

lim
n→∞

〈v − yn, z〉 = 〈v − p, z〉.

Thus from (3.27)
〈v − p, z〉 ≥ 0.

Since B1 + f1 is maximally monotone, we have 0 ∈ (B1 + f1)p which implies that

p ∈ I(f1, B1).

Moreover, since ||wn− yn|| → 0, we have that Awn converges weakly to Ap and by (3.18)

and the fact that JB2

λ (I − λf2) is nonexpansive, then by Lemma 2.6, we have

0 ∈ f2Ap+B2(Ap).



Solving Split Monotone Variational Inclusion Problem ... 513

That is Ap ∈ I(f2, B2). Hence p ∈ Fs(S) ∩ Fs(T ) ∩ Ω.
We now show that {xn} converges strongly to p.

||xn+1 − p||2 ≤ ||yn − p||2

≤ ||wn − p||2

= ||(1− αn)xn − p||2

= ||(1− αn)(xn − p)− αnp||2

= (1− αn)2||xn − p||2 + α2
n||p||2 − 2αn(1− αn)〈xn − p, p〉

≤ (1− αn)||xn − p||2 + αn[αn||p||2 − 2(1− αn)〈xn − p, p〉].
Therefore, by Lemma 2.7, we obtain xn → p, n→∞.

Case 2. Assume that {||xn − p||} is not a monotonically decreasing sequence. Set Γn =
||xn − p||2 and let τ : N → N be a mapping for all n ≥ n0(for some n0 large enough)
defined by

τ(n) := max{k ∈ N : k ≥ n,Γk ≤ Γk+1}.
Clearly τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Γτ(n) ≤
Γτ(n)+1, for n ≥ n0.
It follows from (3.11) that

0 ≤ ||xτ(n)+1 − p||2 − ||xτ(n) − p||2

≤ α2
τ(n)||xτ(n)||

2−2ατ(n)〈xτ(n)−p, xτ(n)〉−ρτ(n)(1−βτ(n))(βτ(n)−κ2)||yτ(n)−vτ(n)||2

−(1− βτ(n))(1− ρτ(n))(βτ(n) − κ1)||yτ(n) − uτ(n)||2

−(1− βτ(n))2(1− ρτ(n))ρτ(n)||vτ(n) − uτ(n)||2.

Let

Dτ(n) = ρτ(n)(1− βτ(n))(βτ(n) − κ2)||yτ(n) − vτ(n)||2

+(1− βτ(n))(1− ρτ(n))(βτ(n) − κ1)||yτ(n) − uτ(n)||2.
Then,

Dτ(n) ≤ α2
τ(n)||xτ(n)||

2 − 2ατ(n)〈xτ(n) − p, xτ(n)〉 → 0, as n→∞.

Thus, by conditions (iii) and (iv) and (3.12), we have

||yτ(n) − vτ(n)|| → 0, as n→∞,
and

||yτ(n) − uτ(n)|| → 0, as n→∞.
By the same argument as in case 1, we conclude that {xτ(n)}, {yτ(n)} and {wτ(n)} converge
weakly to p ∈ Fs(S) ∩ Fs(T ) ∩ Ω. Now for all n ≥ n0,
0 ≤ ||xτ(n)+1 − p||2 − ||xτ(n) − p||2

≤ (1− ατ(n))||xτ(n) − p||2 + α2
τ(n)||p||

2 − 2ατ(n)(1− ατ(n)〈xτ(n) − p, p〉 − ||xτ(n) − p||2

= ατ(n)[ατ(n)||p||2 − 2ατ(n)(1− ατ(n))〈xτ(n) − p, p〉 − ||xτ(n) − p||2].

Therefore,

||xτ(n) − p||2 ≤ ατ(n)||p||2 − 2ατ(n)(1− ατ(n))〈xτ(n) − p, p〉 → 0.
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Thus,

lim
n→∞

||xτ(n) − p||2 = 0.

And hence

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1.

Furthermore, for n ≥ n0, it is observed that Γτ(n) ≤ Γτ(n)+1 if n 6= τ(n)(that is τ(n) < n)
because Γj > Γj+1 for τ(n) + 1 ≤ j ≤ n. Consequently for all n ≥ n0,

0 ≤ Γn ≤ max{Γτ(n),Γτ(n) + 1} = Γτ(n) + 1.

So limn→∞ Γn = 0, that is {xn},{yn} and {wn} converge strongly to p ∈ Fs(S)∩Fs(T )∩Ω.

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let f1 : H1 → H1 be µ-inverse strongly monotone mapping and f2 :
H2 → H2 be ν-inverse strongly monotone mapping. Let B1 : H1 → 2H1 and B2 : H2 →
2H2 be multi-valued maximal monotone mappings. Let Ω be a solution set of (1.10)–
(1.11). Let S, T : H1 → P (H1) be two multivalued nonexpansive mappings such that
Fs(S) ∩ Fs(T ) ∩ Ω 6= ∅. Let {xn} be the sequence generated for x0 ∈ H1 by

wn = (1− αn)xn
yn = JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)
xn+1 = βnyn + (1− βn)[ρnvn + (1− ρn)un], ∀n ≥ 0

(3.28)

where vn ∈ Tyn and un ∈ Syn, 0 < λ < 2µ, 2ν and γ ∈ (0, 1
L ), L is the spectral radius of

the operator AA∗ and A∗ is the adjoint of A. Suppose {αn}∞n=1, {ρn}∞n=1 and {βn}∞n=1

are real sequences in (0, 1) satisfying the following conditions

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞,

(iii) lim infn→∞(1− βn)(1− ρn)βn > 0,

(iv) lim infn→∞(1− βn)βnρn > 0.

Then {xn}∞n=1 converges strongly to p ∈ Fs(S) ∩ Fs(T ) ∩ Ω.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let f1 : H1 → H1 be µ-inverse strongly monotone mapping and f2 : H2 →
H2 be ν-inverse strongly monotone mapping. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be
multi-valued maximal monotone mappings. Let Ω be a solution set of (1.10)–(1.11). Let
S, T : H1 → P (H1) be two strictly pseudocontractive mappings with contractive coefficients
κ1 and κ2 such that Fs(S)∩Fs(T )∩Ω 6= ∅. Let {xn} be the sequence generated for x0 ∈ H1

by 
wn = (1− αn)xn
yn = JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn)
xn+1 = βnyn + (1− βn)[ρnvn + (1− ρn)un], ∀n ≥ 0

(3.29)

where vn ∈ PT yn and un ∈ PSyn, 0 < λ < 2µ, 2ν and γ ∈ (0, 1
L ), L is the spectral radius

of the operator AA∗ and A∗ is the adjoint of A. Suppose {αn}∞n=1, {ρn}∞n=1 and {βn}∞n=1

are real sequences in [0, 1] satisfying the following conditions

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞,

(ii) βn ≥ max{κ1, κ2} ∀n ≥ 0,
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(iii) lim infn→∞(1− βn)(1− ρn)(βn − κ1) > 0,

(iv) lim infn→∞(1− βn)(βn − κ2)ρn > 0.

Then {xn}∞n=1 converges strongly to p ∈ Fs(S) ∩ Fs(T ) ∩ Ω.

4. Applications

4.1. Split Minimization Problem

Consider the following Split Minimization Problem (SMP): Find x∗ ∈ H1 such that

x∗ = min
x∈H1

(ϕ1(x) + ψ1(x)), (4.1)

and y∗ = Ax∗ ∈ H2 is such that

y∗ = min
y∈H2

(ϕ2(y) + ψ2(y)), (4.2)

where ϕ1, ψ1 : H1 → R and ϕ2, ψ2 : H2 → R. Moreover ϕ1 and ϕ2 are assumed to be
differentiable. A : H1 → H2 is a bounded linear operator. Denote the solution set of
(4.1)–(4.2) by Λ.
Recall that the subdifferentials of a function h : H → R at x is the set-valued operator
on H defined by

∂h(x) := {z ∈ H : h(x̄) ≥ h(x) + 〈z, x̄− x〉 ∀ x̄ ∈ H}.

It is well known that ∂ψ1 and ∂ψ2 are maximal monotone operators. Also we know that

J∂ψi

λ = proxλψi
(i = 1, 2). The proximal operators proxλψi

(i = 1, 2) of ψi with parameter
λ > 0 is defined by

proxλψi(x) = arg min
u∈Hi

{ψi(u) +
1

2λ
||x− u||}.

Lemma 4.1. ([44] Lemma 1.5, [45] Corollary 10) Let ϕ : H → R be a differentiable
convex function and let L > 0. Suppose that ∇ϕ is L-Lipschitz continuous. Then ∇ϕ is
L−1-inverse strongly monotone. In [44], the word cocoercive is used for inverse strongly
monotone.

Theorem 4.2. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let ϕ1 : H1 → H1 be a differentiable convex function with 1

µ -Lipschitz

continuous gradient and ϕ2 : H2 → H2 be a differentiable convex function with 1
ν -Lipschitz

continuous gradient. Let ψ1 : H1 → 2H1 and ψ2 : H2 → 2H2 be convex lower semicontin-
uous functions. Let S, T : H1 → P (H1) be two strictly pseudocontractive-type mappings
with contractive coefficients κ1 and κ2 such that Fs(S) ∩ Fs(T ) ∩ Λ 6= ∅. Let {xn} be the
sequence generated for x0 ∈ H1 by wn = (1− αn)xn

yn = proxλψ1
(I − λ∇ϕ1)(wn + γA∗(proxλψ2

(I − λ∇ϕ2)− I)Awn)
xn+1 = βnyn + (1− βn)[ρnvn + (1− ρn)un], ∀n ≥ 0

(4.3)

where vn ∈ Tyn and un ∈ Syn, 0 < λ < 2µ, 2ν and γ ∈ (0, 1
L ), L is the spectral radius of

the operator AA∗ and A∗ is the adjoint of A. Suppose {αn}∞n=1, {ρn}∞n=1 and {βn}∞n=1

are real sequences in [0, 1] satisfying the following conditions

(i) limn→∞ αn = 0,
∑∞
n=1 αn =∞,
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(ii) βn ≥ max{κ1, κ2} ∀n ≥ 0,

(iii) lim infn→∞(1− βn)(1− ρn)(βn − κ1) > 0,

(iv) lim infn→∞(1− βn)(βn − κ2)ρn > 0.

Then {xn}∞n=1 converges strongly to p ∈ Fs(S) ∩ Fs(T ) ∩ Ω.

Proof. Let f1 = ∇ϕ1, f2 = ∇ϕ2, g1 = ∂ψ1 and g2 = ∂ψ2. Then the conclusion follows
from Theorem 3.1.

4.2. Split Variational Inequality Problem

Let f1 : H1 → H1 and f2 : H2 → H2 be two inverse strongly monotone operators and
A : H1 → H2 a bounded linear operator. Suppose C and Q are nonempty, closed and
convex subsets of H1 and H2 respectively. We consider the following Split Variational
Inequality Problem (SVIP):

Find a point x∗ ∈ C such that 〈f1(x∗), x− x∗〉 ≥ 0 ∀ x ∈ C, (4.4)

and such that

the point y∗ = Ax∗ ∈ Q solves 〈f2(y∗), y − y∗〉 ≥ 0 ∀ y ∈ Q. (4.5)

Let Θ denote the solution set of (4.4)–(4.5).
If considered alone, (4.4) is the classical variational inequality problem with solution set
V I(C, f1), (see [46–49]) for details and recent results.
Let D be a nonempty, closed and convex subset of a real Hilbert space H. The normal
cone of D at the point x ∈ D is defined by

ND(x) := {d ∈ H : 〈d, y − x〉 ≤ 0,∀y ∈ D}. (4.6)

By means of normal cones, (4.4)–(4.5) can be written as

find a point x∗ ∈ C such that 0 ∈ B1(x∗) +NC(x∗), (4.7)

and such that

the point y∗ = Ax∗ ∈ Q solves 0 ∈ B2(x∗) +NQ(x∗). (4.8)

It is well-known that the normal cone of a nonempty closed convex set is a maximal
monotone operator (since, it is equal to the subdifferential of its indication function), then
by applying Theorem 3.1 with B1 = NC and B2 = NQ, we obtain a strong convergence
result for approximating a point of Fs(S) ∩ Fs(T ) ∩Θ.
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