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Abstract In this paper, we show that the notions of maximal feebly open and minimal feebly closed

sets are nothing except maximal α-open and minimal α-closed sets. Further, we show that the ideas of

minimal feebly open and maximal feebly closed sets coincide with minimal open and maximal closed sets.

Therefore, we introduce new notions of minimal open and maximal closed sets, namely f -minimal open

and f -maximal closed sets, some of their properties, characterizations, and relationships established.

MSC: 54A05; 54B05; 54B10

Keywords: maximal and minimal open and closed sets; f -minimal open and f -maximal closed sets

Submission date: 08.04.2016 / Acceptance date: 15.06.2020

1. Introduction

In 1996, Rosen and Peters [1] used topology as a body of mathematics to unify diverse
areas of computer-aided geometric design and engineering design, while El Naschie [2]
derived quantum gravity from set theory, and so topology plays an important role in
so many areas of applications, for example, in quantum physics [2–4], in Image analysis
[5, 6], and in Biology (DNA) [7–9]. The notions of semi-open and α-open sets were
introduced by Levine [10] in 1963, and Njasted [11] in 1965, respectively. The Study of
feebly open sets was initiated by Maheshwari and Tapi [12] in 1978. However, Jankovic
and Reilly [13] proved that the class of feebly open sets is exactly the class of α-open
sets. Nakaoka and Oda [14, 15] introduced and studied the idea of minimal and maximal
open sets. Thereafter, dualizing those concepts they introduced the concepts of minimal
and maximal closed sets [16]. In 2013, Shakir [17] gave the concepts of minimal and
maximal f -open ( f -closed ) sets. While, Hasan [18] in 2015, defined and studied the
notions of maximal α-open and minimal α-closed sets. In the present paper, we prove
that the concepts of maximal α-open and maximal f -open coincide as well as minimal α-
closed and minimal f -closed sets. Also, we show that the concepts of minimal f -open and
maximal f -closed sets coincide with the concepts of minimal open and maximal closed
sets, respectively. Therefore, we introduce a new type of minimal open and maximal
closed sets. Also, we state and prove some of their properties, characterizations, and

Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.



470 Thai J. Math. Vol. 19 (2021) /H. M. Darwesh

relationships. In what follows, by a space X we mean a topological space (X, τ) on
which no separation axioms are assumed unless explicitly stated, and for a subset A of
X , we denote by ClA(ClXA) and IntA(IntXA) the closure and interior of A in X,
respectively. A subset A of a space X is said to be semi-open [10] (resp., α-open [11])
if there exists an open set G (resp., open set G and a nowhere dense set N) such that
G ⊆ A ⊆ ClG ( resp., A = G−N), equivalently if A ⊆ IntClA (resp., A ⊆ IntClIntA).
The complement of semi-open ( resp., α-open ) is said to be semi-closed (resp., α-closed
). The intersection (union) of all semi-closed ( semi-open ) subsets of a space X contains
( contained in ) A ⊆ X is the semi-closure ( semi-interior ) [19] of A which is denoted by
sClXA (sIntXA), we may do not subscribe X when there is no possibility of confusion.
A subset A of a space X is said to be feebly open [12], if there exists an open set G such
that G ⊆ A ⊆ sClG.
The authors of [13] established:

Theorem 1.1. For a subset A of a space X, the following statements are true:

(1) A is feebly open if and only if it is α-open.
(2) sClA = A

⋃
IntClA and sIntA = A

⋂
ClIntA.

Definition 1.2. A non-empty proper open ( resp., feebly open ) subset A of a space X
is said to be a minimal open [14] ( resp., minimal f-open [17] ) set, if any open ( resp.,
feebly open) subset of X contained in A is either ∅ or A.

The complement of a minimal open (resp., minimal f -open) set is called maximal closed
[16] (resp., maximal f -closed [17]).

Definition 1.3. A non-empty proper open ( resp., feebly open , α-open ) subset A of a
space X is said to be a maximal open [15] ( resp., maximal f-open [17], maximal α-open
[18] ) set if any open ( resp., feebly open, α-open ) subset of X contains A is either A or
X.

The complement of maximal open (resp., maximal f -open , maximal α-open ) sets are
called minimal closedb[16] (resp., minimal f -closed [17], minimal α-closed [18]) sets.

Proposition 1.4. For a non-empty proper subset A of a space X, we have:

(1) A is maximal f -open if and only if it is maximal α-open.
(2) A is minimal f -closed if and only if it is minimal α-closed.

Proof. Both followed by part (1) of Theorem 1.1.

Because of Proposition 1.4, we notice that almost all results of section 3 of [18] are the
same as the results in section 2 of [17]. However, in the next result, we show that the
concepts of minimal open sets and minimal f -open sets coincide as well as the concepts
of maximal closed sets and maximal f -closed sets.

Theorem 1.5. For a non-empty proper subset A of a space X, we have:

(1) A is minimal open if and only if it is minimal f -open.
(2) A is maximal closed if and only if it is maximal f -closed.
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Proof. (1)
(⇒) Let A be a minimal open subset of X. Then, A is feebly open. To show A is minimal
f -open, we suppose that U is a feebly open subset of X such that U ⊆ A. Then, either
IntU = ∅ or IntU 6= ∅. If IntU = ∅, then IntClIntU = ∅, therefore, U = ∅. If IntU 6= ∅,
then IntU is a non-empty open subset of a minimal open set A, so IntU = A. Thus,
A = IntU ⊆ U ⊆ A. Hence, A = U . This means that A is minimal f -open.
(⇐) Let A be a minimal f -open subset of X. Then, A is feebly open. To show A is
minimal open, Let G be any open subset of X such that G ⊆ A. Since every open set is
feebly open, so either G = ∅ or G = A. It remains only to show A is open. Since IntA is
an open set contained in A, so by what we have done for G, we have either IntA = ∅ or
IntA = A, but, since A is feebly open and A 6= ∅, then IntA = A. Thus A is open, and
hence it is a minimal open set.

(2) A is maximal f -closed if and only if X −A is minimal f -open if and only if X −A
is minimal open { by part (1) of this theorem} if and only if A is maximal closed.

2. f-Minimal Open and f-Maximal Closed Sets

In Theorem 1.5, we proved that the spaces (X, τ) and (X, τα) have the same class of
minimal open sets and maximal closed sets. This equivalence between minimal f -open
sets and minimal open sets leads us to introduce and study a new type of minimal open
and maximal closed sets, namely f -minimal open and f -maximal closed sets.

Definition 2.1. A non-empty proper subset A of a space X is said to be an f -minimal
open set, if there exists a minimal open sets G such that G ⊆ A ⊆ sClG. The complement
of an f -minimal open set is called an f -maximal closed set.

Remark 2.2. It is evident that:

(1) Every minimal open set is an f -minimal open set.
(2) Every f -minimal open set is an α-open (u feebly − open) set.

But the converse of neither parts of the above remark is true, as we show by the
following examples:

Example 2.3. Let X = {a, b, c} and τ = {∅, {a}, X}. Then the set {a, b} is an f -minimal
open set, but it is not minimal open.

Example 2.4. In the usual real line topological space (R,=U ), every open set is α-open
(u feebly− open), but this space has no minimal open sets, so that, it has no f -minimal
open sets.

Theorem 2.5. A subset A of a space X is f -minimal open if and only if there exists a
minimal open set G in X such that G ⊆ A ⊆ IntClG.

Proof. It follows from Definition 2.1 and part (2) of Theorem 1.1.

Theorem 2.6. A subset A of a Hausdorff space X is f -minimal open if and only if
minimal open.
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Proof. Let A be an f -minimal open subset of a Hausdorff space X. Then, there exists a
minimal open subset G of X such that G ⊆ A ⊆ sClG. Since ∅ 6= G, so there exists a
point x ∈ G. Now, if y is any point of X \ G, there exist disjoint open sets Ux and Vy
such that x ∈ Ux and y ∈ Vy. By [14, part 2 of Lemma 2.2], we have G ⊆ Ux. Therefore,
G
⋂
Vy = ∅.This implies that y /∈ ClG, so y /∈ sClG. Hence, A = G which is minimal

open.
Conversely; it follows from part (1) of Remark 2.2.

Theorem 2.7. A subset A of a space X is f -maximal closed if and only if there exists a
maximal closed sets H in X such that sIntH ⊆ A ⊆ H.

Proof. (⇒) Let A be an f -maximal closed subset of X. Then, X − A is f -minimal
open, so there is a minimal open set G such that G ⊆ (X − A) ⊆ sClG. Therefore,
sInt(X − G) = X − sClG ⊆ A ⊆ X − G. By Definition 1.2, the set H = X − G is the
required maximal closed set.
(⇐) Let F be a maximal closed subset of X such that sIntH ⊆ A ⊆ H. By Definition 1.2,
X−H is a minimal open subset ofX such thatX−H ⊆ X−A ⊆ X−sIntH = sCl(X−H).
Therefore, X −A is f -minimal open, and hence A is f -maximal closed.

Proposition 2.8. If A is an f -minimal open subset of X and B a subset of X such that
A ⊆ B ⊆ sClA, then B is f -minimal open.

Proof. Let G be a minimal open subset of X such that G ⊆ A ⊆ sClG. Then, sClA =
sClB, So G ⊆ A ⊆ B ⊆ sClA ⊆ sClG. Hence, B is an f -minimal open subset of X.

Corollary 2.9. The semi-closure of any minimal open (resp, f -minimal open) is f -
minimal open.

The following example shows that Proposition 2.8 and Corollary 2.9 may fail if we
replace sClA with ClA.

Example 2.10. Let X = {a, b, c, d} and τ = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, X}.
Then, the set A = {b} is minimal open ( whence, f -minimal open) and A ⊆ B ⊆ ClA,
where B = ClA = {b, c, d} is not f -minimal open.

It is easy to see that the only f -minimal open subsets of X in Example 2.10 are the
sets A = {a}, B = {b} and C = {b, c}, but neither A

⋃
B = {a, b} nor A

⋂
B = ∅ is

f -minimal open. So, it is natural to ask (under what condition the intersection (union) of
two f -minimal open sets is also f -minimal open?) The answer is in the following results:

Theorem 2.11. The intersection of two f -minimal open subsets A and B of a space X
is not f -minimal open if and only if A

⋂
B = ∅.

Proof. (⇒) Let A and B be two f -minimal open subsets of X such that A
⋂
B is not f -

minimal open. Then, there exist two minimal open sets G and U such that G ⊆ A ⊆ sClG
and U ⊆ B ⊆ sClU . By [14, part 2 of Lemma 2.2], either G

⋂
U = ∅ or G = U . If

G = U , then sClG = sClU . Thus, G = G
⋂
U ⊆ A

⋂
B ⊆ sClG

⋂
sClU = sClG. This

means that A
⋂
B is f -minimal open which is impossible. Hence, G

⋂
U = ∅. Then

IntClG
⋂
IntClU = ∅, so by part 2 of Theorem 1.1 sClG

⋂
sClU = ∅. Therefore,

∅ = G
⋂
U ⊆ A

⋂
B ⊆ sClG

⋂
sClU = ∅. Hence, A

⋂
B = ∅.

(⇐) It is obvious.
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Corollary 2.12. The intersection of two f -minimal open sets A and B of a space X is
f -minimal open if and only if A

⋂
B 6= ∅.

Corollary 2.13. Let A and B be two f -minimal open sets. Then:

(1) A
⋂
B is f -minimal open if and only if there exists a minimal open set G such

that G ⊆ A,B ⊆ sClG.
(2) A

⋂
B is not f -minimal open if and only if there exist disjoint minimal open

sets G and U such that G ⊆ A ⊆ sClG and U ⊆ B ⊆ sClU .

Theorem 2.14. The union of two f -minimal open sets is f-minimal open if and only if
their intersection is f -minimal open.

Proof. Let A and B be two f -minimal open subsets of a space X.
(⇒) Let A

⋃
B be an f -minimal open set. Then, there exists a minimal open sets V such

that V ⊆ A
⋃
B ⊆ sClV . To show A

⋂
B is f -minimal open. If, we suppose that A

⋂
B is

not f -minimal open, then by Theorem 2.11 A
⋂
B = ∅ and by Corollary 2.13, there exists

two disjoint minimal open sets G and U such that G ⊆ A ⊆ sClG and U ⊆ B ⊆ sClU .
Since G 6= U , then either V = G or V = U . If V = G, then G ⊆ A ⊆ A

⋃
B ⊆ sClG.

This implies that G
⋂
U 6= ∅ which is impossible. Again, if V = U , then we obtain

G
⋂
U 6= ∅ which is against to G

⋂
U = ∅. Thus, A

⋂
B is f -minimal open.

(⇐) Let A
⋂
B be an f -minimal open set. By Corollary 2.13, there exists a minimal open

set G such that G ⊆ A,B ⊆ sClG. Therefore, A
⋃
B is f -minimal open.

Corollary 2.15. For any two f -minimal open sets A and B of a space X, the following
statements are equivalent:

(1) A
⋂
B is f -minimal open.

(2) A
⋃
B is f -minimal open.

(3) A
⋂
B 6= ∅ .

(4) There exists a minimal open set G such that G ⊆ A
⋂
B ⊆ A

⋃
B ⊆ sClG.

Since in Example 2.10, the intersection of the sets A = {a, b} and B = {b, c} is f -
minimal open but neither A nor B is f -minimal open. This means that the f -minimal
openness of A

⋂
B does not imply that A or B is f -minimal open.

Proposition 2.16. Let G and U be two minimal open subsets of a space X such that
G ⊆ A ⊆ sClG. If G

⋂
U = ∅ , then A

⋂
U = ∅

Proof. Since G and U are minimal open sets, then A and U are f -minimal open sets.
Since G and U are disjoint, then by Corollary 2.13 A

⋂
U is not f -minimal open. So by

Theorem 2.11, A
⋂
U = ∅.

It is easy to prove the following lemma:

Lemma 2.17. Let G be an open subset of a subspace Y of a space X, If x /∈ sClYG,
then x /∈ sClXG.

Theorem 2.18. Let A be a non-empty proper subset of a subspace Y of a space X. If A
is f -minimal open in X, then it is f-minimal open in Y .
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Proof. Let A be f -minimal open in X. Then, there exists a minimal open set G in X
such that G ⊆ A ⊆ sClXG. Since G ⊆ A ⊆ Y , then G is minimal open in Y . To show
A is f -minimal open in Y , we have to show A ⊆ sClYG. If x /∈ sClYG, then by Lemma
2.17 x /∈ sClXG. Thus x /∈ A, this means that A ⊆ sClYG. Hence, A is f -minimal open
in Y .

By the following example, we show that if A is f -minimal open in Y , where Y is a
subspace of X, it isn’t necessary to be f -minimal open in X.

Example 2.19. Let X = {a, b, c} and τ = {∅, {a}, {a, b}, {a, c}, X}. The only f -minimal
open subsets of X are {a}, {a, b}, {a, c} and X. If Y = {b, c}, then τY = {∅, {b}, {c}, Y } =
P (Y ). So the set A = {b} is f -minimal open in Y but it is not f -minimal open in X.

Theorem 2.20. Let A be an f -minimal open subset of a space X. Then:

(1) A ⊆ sClS ⊆ ClS, for each non-empty semi-open subset S of X contained in
A.

(2) ClA = ClS and sClA = sClS, for each non-empty semi-open subset S of X
contained in A.

(3) sClA = IntClA.

Proof. (1) Let S be a non-empty semi-open subset of X contained in A. Then, IntS 6= ∅
and IntS ⊆ A. Since A is f -minimal open, then there exists a minimal open set G
such that G ⊆ A ⊆ sClG. Since IntS

⋂
G ⊆ G, so by [14, part 1 of Lemma 2.2],

either IntS
⋂
G = ∅ or G ⊆ IntS. If IntS

⋂
G = ∅, then IntS

⋂
sClG = ∅. Therefore,

IntS
⋂
A = ∅, that is, IntS = ∅ which is impossible. Hence, G ⊆ IntS. Thus, A ⊆

sClIntS ⊆ sClS ⊆ ClS.
(2) It follows from the fact that S ⊆ A , sClsClS = sClS and part 1 of this theorem.
(3) Since the minimal open set G which is contained in A, is a non-empty semi-open
subset of X contained in A, then by part 2, we have sClA = sClG = IntClG = IntClA.

Remark 2.21. (1) Since every open and every α-open (u feebly open) sets are
semi-open, so we can replace the semi-open in both parts of Theorem 2.20 by an
open and α-open (u feebly open) set.

(2) Since in Example 2.3, the set A = {a, b} is f -minimal open and {b} ⊆ A but
A * sCl{b}. Therefore, we cannot replace the semi-open set with any non-empty
subset in Theorem 2.20.

(3) Since each non-empty open subset of the cofinite topological space (R,=cof )
satisfies each part of Theorem 2.20 but no subset of (R,=cof ) is f -minimal open.
This means that, neither part of Theorem 2.20 is equivalent to the notion of the
f -minimal open set.

(4) Since the indiscrete space (X,=ind), where =ind = {∅, X} and X is finite set
has no minimal open set, therefore, [14, Theorem 3.1] fails to hold. To correct it,
it must be adding the condition that X has at least one non-empty proper open
subset.

Proposition 2.22. A non-empty proper subset A of a finite space X is f -minimal open
if and only if IntA 6= ∅ and A ⊆ sClO , for each non-empty open subset O of X contained
in A.
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Proof. (⇒) Let A be an f -minimal open set. Then, there exists a minimal open subset
G of X such that G ⊆ A ⊆ sClG. Therefore, ∅ 6= G ⊆ IntA. If O is any non-empty open
subset of X contained in A, then by [14, part 1 of Lemma 2.2], we have G ⊆ O. Hence,
A ⊆ sClG ⊆ sClO.
(⇐) Since A 6= X and IntA 6= ∅, then ∅ 6= A 6= X, that is, X has a non-empty proper
open subset. Since X is finite, so by [14, Theorem 3.1] and part 4 of Remark 2.21, IntA
contains a minimal open subset of X, say G. By our hypothesis, A ⊆ sClG. Hence, A is
f -minimal open.

It is easy to see that Theorem 2.22 is true if we replace the open set with semi− open
or α-open (u feebly open) and IntA 6= ∅ with sIntA 6= ∅ or αIntA 6= ∅.

Theorem 2.23. If Ai is an f -minimal open set in a space Xi (i = 1, 2), then A1 × A2

is f -minimal open in X = X1 ×X2.

Proof. Since Ai is f -minimal open in Xi (i = 1, 2), then there is a minimal open set
Gi in Xi such that Gi ⊆ Ai ⊆ sClXi

Gi (i = 1, 2). Therefore, G1 × G2 ⊆ A1 × A2 ⊆
sClX1

G1×sClX2
G2 = sClX(G1×G2). Since G1×G2 is minimal open in X, then A1×A2

is f -minimal open in X.

It is easy to prove the following two Lemmas, so we omitted their proofs:

Lemma 2.24. If G = G1 × G2 is a minimal open subset of X = X1 × X2, then G1 is
minimal open in X1 or G2 is minimal open in X2

Lemma 2.25. If X = X1×X2 has a minimal open subset, then X1 or X2 has a minimal
open subset.

Theorem 2.26. If A = A1 ×A2 is an f -minimal open subset of X = X1 ×X2, then A1

is f -minimal open in X1 or A2 is f-minimal open in X2.

Proof. Let A = A1×A2 be an f -minimal open subset of X. Then, there exists a minimal
open subset G of X such that G ⊆ A ⊆ sClXG. Since G 6= ∅, then there exists a point
(x1, x2) ∈ G, and so there are open subsets Vi of Xi (i = 1, 2) such that (x1, x2) ∈
V1 × V2 ⊆ G. Since G is minimal open, then by [14, part 2 of Lemma 2.2] G = V1 × V2,
by Lemma 2.24 V1 is minimal open in X1 or V2 is minimal open in X2. Since V1 × V2 =
G ⊆ A = A1 × A2 ⊆ sClXG = sClXV1 × V2 = sClX1

V1 × sClX2
V2. Its easy to see that

Vi ⊆ Ai ⊆ sClXiVi (i = 1, 2). Thus, A1 is f -minimal open in X1 or A2 is f -minimal open
in X2.

Theorem 2.27. If X = X1 ×X2 has an f -minimal open subset, then X1 or X2 has an
f -minimal open subset.

Proof. Let A be an f -minimal open subset of X. Then, there exists a minimal open
subset G of X such that G ⊆ A ⊆ sClG. So by Lemma 2.25, X1 or X2 has a minimal
open subset. This implies that X1 or X2 has an f -minimal open subset.

The following example shows that the converse of Lemma 2.24, Lemma 2.25, Theorem
2.26 and Theorem 2.27 are not true in general:
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Example 2.28. Let X1 and X2 be the spaces of Example 2.3 and Example 2.4, respec-
tively. The set A = {a} is minimal open (hence f -minimal open) in X1, but X1×X2 has
neither f -minimal open nor minimal open subset.

Remark 2.29. Since the non-empty proper subset {c} of the space X in Example 2.3
is f -maximal closed but it is not f -maximal closed in the subspace Y = {b, c} of X.This
means that, Theorem 2.18 is not true for f -maximal closed sets. However, analogous to
the other results, one can easily establish the dual results to f -maximal closed sets by
using Theorem 2.7 and the facts that X−sClA = sInt(X−A), sCl(X−A) = X−sIntA
and (A ⊆ B if and only if X −B ⊆ X −A).
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