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1 Introduction

The notion of a probabilistic metric space corresponds to the situation when we do

not know the distance between the points but know only probabilities of possible

value of this distance. Since the 16th century, probability theory has been studying

a kind of uncertainty randomness, that is, the uncertainty of the occurrence of an

event; but in this case, the event itself is completely certain and the only uncertain

thing is whether the event will occur or not and the causality is not clearly known.
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Following the study on certainty and on randomness, the study of mathematics

began to explore the restricted zone - fuzziness. Fuzziness is a kind of uncertainty

i.e., for some events, it cannot be completely determined that in which cases these

events should be subordinated to, (they have already occurred or not yet), they

are in non-black or non-white state. We can say that the law of excluded middle

in logic cannot be applied any more. Zadeh [26] introduced the concept of fuzzy

set as a new way to represent vagueness in our everyday life. A fuzzy set A in X is

a function with domain X and values in [0, 1]. Since then, many authors regarding

the theory of fuzzy sets and its applications have developed a lot of literatures.

However, when the uncertainty is due to fuzziness rather than randomness, as

sometimes in the measurement of an ordinary length, it seems that the concept of

a fuzzy metric space is more suitable.

There are many viewpoints of the notion of the metric space in fuzzy topology.

We can divide them into following two groups:

The first group involves those results in which a fuzzy metric on a set X is

treated as a map d : X × X → R+ where X represents the totality of all fuzzy

points of a set and satisfy some axioms which are analogous to the ordinary metric

axioms. Thus, in such an approach numerical distances are set up between fuzzy

objects. On the other hand in second group, we keep those results in which the

distance between objects is fuzzy and the objects themselves may or may not be

fuzzy.
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Definition 1.1. A t-norm is a 2-place function ∗ : [0, 1] → [0, 1] satisfying the

following

(i) ∗ (0, 0) = 0,

(ii) ∗ (0, 1) = 1,

(iii) ∗ (a, b) = ∗(b, a),

(iv) if a ≤ c, b ≤ d, then ∗ (a, b) ≤ ∗ (c, d),

(v) ∗ (∗ (a, b), c) = ∗ (a, ∗ (b, c)) for all a, b, c in [0, 1].

Example 1.2. (i) ∗ (a, b) = ab;

(ii) ∗ (a, b) = max(a + b− 1, 0);

(iii) ∗ (a, b) = min(a, b).

In 1975, Kramosil and Michalek [13] introduced the concept of fuzzy metric

spaces as follows:

Definition 1.3. The 3-tuple (X, M, ∗) is called a fuzzy metric space (shortly, FM-

space) if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set in

X2 × [0,∞) satisfying the following conditions:

(FM-1) M(x, y, 0) = 0,

(FM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t),

(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) and

(FM-5) M(x, y, ·) : [0, 1) → [0, 1] is left continuous for all x, y, z ∈ X and s, t > 0.
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Note that M(x, y, t) can be thought of as the degree of nearness between x

and y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0 and

M(x, y, t) = 0 with t = 0. Since ∗ is a continuous t-norm, it follows from (FM-

4) that the limit of the sequence in FM-space is uniquely determined. In 1994,

George and Veermani [6] introduced the concept of Hausdorff topology on fuzzy

metric spaces and showed that every metric space induces a fuzzy metric space.

We can fuzzify examples of metric spaces into fuzzy metric spaces in a natural

way:

Let (X, d) be a metric space. Define a ∗ b = ab for all x, y in X and t > 0.

Define M(x, y, t) = t/(t + d(x, y)) for all x, y in X and t > 0. Then (X, M, ∗)

is a fuzzy metric space and this fuzzy metric induced by a metric d is called the

standard fuzzy metric.

We consider M be a fuzzy metric space with the following condition:

(FM-6) lim
t→∞

M(x, y, t) = 1 for all x, y in X and t > 0.

Definition 1.4. Let (X, M, ∗) be a fuzzy metric space. A sequence {xn} in X is

said to be

(i) a convergent to a point x ∈ X (denoted by lim
n→∞

xn = x),

if lim
n→∞

M(xn, x, t) = 1, for all t > 0,

(ii) a Cauchy sequence if

lim
n→∞

M(xn+p,xn, t) = 1, for all t > 0 and p > 0.
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(iii) a complete fuzzy metric space in which every Cauchy sequence converges to

a point in it.

Especially, Erceg [5], Kaleva and Seikkala [12], Kramosil and Michalek [13]

have introduced the concept of fuzzy metric spaces in different ways. Grabiec’s [7]

followed Kramosli and Michalek and obtained the fuzzy version of Banach con-

traction principle. Grabiec results [7] were further generalized by Subramanyam

[23] for a pair of commuting mappings. In fact, Mishra [15], Chugh and Kumar

[1], Chugh et al. [2] introduced the notions of compatible,compatible of type (A)

and compatible of type (P) mappings respectively in fuzzy metric spaces and proved

some common fixed point theorems for these maps.

Recently, several authors [5-7, 12, 22-25] proved fixed-point theorems for fuzzy

metric spaces in different ways.

Two mappings f and g of a fuzzy metric space (X,M, ∗) into itself are said to

be weakly commuting if

M(fgx, gfx, t) ≥ M(fx, gx, t) for each x in X.

Further, Mishra [15] introduced more generalized commutativity, so called compat-

ibility. Let f and g be self-mappings of a fuzzy metric space (X, M, ·).

The mappings f and g are said to be compatible if lim
n→∞

M(fgxn, gfxn, t) = 1,

whenever {xn}∞n=1 is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = p for some

p in X and for each t > 0, which is more general than that of weak commutativity.

Commuting, weakly commuting mappings are compatible but neither implication is

reversible, see Jungck [9].
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Remark 1.5. Compatible maps are not necessarily weakly commuting mappings.

Let X be the set {1/n : n ∈ N} ∪ {0} with the metric d defined by

d(x, y) = |x− y|.

For each t ∈ (0,∞) define

M(x, y, t) =
t

t + |x− y| for x, y ∈ X and M(x, y, 0) = 0 .

Clearly, (X,M, ∗) is a complete fuzzy metric on X where ∗ is defined by a∗b = ab.

Define Ax = x3 and Bx = 2− x for all x ∈ X and for some t > 0.

Since

M(Axn, Bxn, t) =
t

t + |Axn −Bxn| =
t

t + |(xn − 1)| |(x2
n + xn + 2)| → 1 iff xn → 1 ,

M(BAxn, ABxn, t) =
t

t + 6|(xn − 1)2| → 1 iff xn → 1

Thus, A and B are compatible. But they are not weakly commuting mappings since

M(ABx, BAx, t) =
t

t + |ABx−BAx| =
t

t + 6
for x = 0 in X ,

and

M(Ax,Bx, t) =
t

t + |Ax−Bx| =
t

t + 2
for x = 0 in X.

In 1998, Jungck and Rhoades [10] introduced the notion of weakly compatible maps

as followed:

Definition 1.6. Two maps f and g are said to be weakly compatible if they com-

mute at coincidence points.
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Example 1.7. Let X = R and define f, g : R → R by fx = x/3, x ∈ R and gx =

x2, x ∈ R. Here 0 and 1/3 are two coincidence points for the maps f and g. Note

that f and g commute at 0, i.e., fg(0) = gf(0) = 0, but fg(1/3) = f(1/9) = 1/27

and gf(1/3) = g(1/9) = 1/81 and so f and g are not weakly compatible maps on

R.

Remark 1.8. (i) Weakly compatible maps need not be compatible.

Let X = [2, 20] and d be the usual metric on X. Define f, g : X → X by

fx = 2 if x = 2 or x > 5, fx = 4 if 2 < x ≤ 5,

g2 = 2, gx = 12 if 2 < x ≤ 5, gx = (x + 1)/3 if x > 5.

Also define M(x, y, t) = t/(t + d(x, y)). Clearly (X, M, ∗) is a complete fuzzy

metric on X, where ∗ is defined by a ∗ b = ab.

Moreover, fX = {2} ∪ {4}, gX = [2, 7] ∪ {9}. Clearly fX ⊂ gX.

Since

M(fxn, gxn, t) =
t

t + |fxn − gxn| =
t

t + |(xn − 1)| |(x2
n + xn + 2)| → 1 iff xn → 1 ,

M(fgxn, gfxn, t) =
t

t + 6|(xn − 1)2| → 1 iff xn → 1 .

To see that f and g are noncompatible maps, consider the sequence {xn =

5 + 1/n;n ≥ 1} in X. Then fxn→∞ = 2, lim
n→∞

gxn = 2, lim
n→∞

fgxn = 6 and

lim
n→∞

gfxn = 2. It is easy to check that f and g are noncompatible maps. Also, f

and g are weakly compatible maps since they commute at their coincidence point

at x = 2. Moreover, both f and g are discontinuous at the common fixed point

x = 2.
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(ii) Let X = [0, 2] and a ∗ b = min{a, b}. Let M(x, y, t) = t/(t+ d(x, y)) be the

standard fuzzy metric space induced by d, where d(x, y) = |x− y| for all x, y in X.

Define f, g : X → X by

fx =

{
2− x if 0 ≤ x ≤ 1
2 if 1 < x ≤ 2

gx =

{
x if 0 ≤ x ≤ 1
2 if 1 < x ≤ 2

Consider the sequence {xn} defined by {xn = 1−1/n; n ≥ 1}. Clearly f and g are

weakly compatible but not compatible.

In 2003, Chugh and Kumar [1] defined the concept of compatible mapping of

type (A) or (Sharma [22] call it compatible of type (α)) as follows:

Two mappings f and g are said to be compatible of type (A) if

lim
n→∞

M(fgxn, ggxn, t) = 1 and lim
n→∞

M(gfxn, ffxn, t) = 1,

whenever {xn}∞n=1 is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = p for

some p ∈ X and for each t > 0.

Recently, Chugh et al. [2] introduced the concept of compatible mappings of type

(P) and compared with compatible mappings of type (A) and compatible mappings.

The mappings f and g are said to be compatible of type (P) if lim
n→∞

M(ffxn, ggxn, t) =

1 whenever {xn}∞n=1 is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = p for

some p in X and for each t > 0, see for more details [2].

Remark 1.9. Weakly compatible maps need not be compatible of type (A) and

compatible of type (P).

Let X = [2, 20] and d be the usual metric on X. Define mappings B, T : X →
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X by

Bx = x if x = 2 or > 5, Bx = 8 if 2 < x ≤ 5, Tx = x if x = 2,

Tx = 12 + x if 2 < x ≤ 5, Tx = x− 3 if x > 5.

Also define M(x, y, t) = t/(t + d(x, y)). Clearly (X,M, ∗) is a complete fuzzy

metric on X, where ∗ is defined by a ∗ b = ab.

To see that B and T are not compatible of type (A) and compatible of type

(P). Let us consider a sequence {xn} defined by {xn = 5 + (1/n), n ≥ 1}. Then

Txn → 2, Bxn = 2,TTxn → 14, BTxn = 8, BBxn = 2, lim
n→∞

d(TTxn, BBxn) =

12 6= 0 and lim
n→∞

d(BTxn, TTxn) = 6 6= 0, therefore, B and T are not compatible

of type (A) and compatible of type (P), but B and T commute at the coincidence

point at x = 2, therefore, they are weakly compatible maps.

In 1994, Pant [19] introduced the concept of R-weakly commuting of mappings

as follows:

Two self maps f and g of a metric space (X, d) are called R-weakly commuting

at a point x ∈ X if

d(fgx, gfx) ≤ Rd(fx, gx) for some R > 0.

Also, f and g are called point wise R-weakly commuting on X if given x in X,

there exists R > 0 such that

d(fgx, gfx) ≤ Rd(fx, gx).

Later on Pathak et al. [16] introduced an interesting generalization of R-weak

commutativity of maps by defining R-weak commutativity of type (Ag) as follows:
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Two self maps f and g of a metric space (X, d) are called R-weakly commuting

of type (Ag) if there exists some positive real number R > 0 such that

d(ffx, gfx) ≤ Rd(fx, gx) for all x in X.

Moreover, such mappings commute at their coincidence points.

The study of fixed points of contractive type mappings in fuzzy metric spaces

has been concerned around compatible mapping around a decade. However, the

study of common fixed points of noncompatible mappings is also equally inter-

esting in fuzzy metric spaces, moreover, interestingly enough, the best example of

noncompatible mapping are found among pair of mappings which are discontinuous

at their common fixed point.

The notion of point wise R-weakly commuting is useful in studying common

fixed of non-compatible maps.

However, noncompatibility of f and g implies that there exists a sequence {xn}

in X such that lim
n→∞

fxn = lim
n→∞

gxn = p for some p in X but lim
n→∞

M(fgxn, gfxn, t) 6=

1 or nonexistent.

In 1999,Vasuki [25] introduced the notion of R-weakly commuting in fuzzy

metric space as follows:

The mappings f and g of a fuzzy metric space (X, M, ∗) into itself are R-weakly

commuting, provided there exists some positive real number R such that

M(fgx, gfx, t) ≥ M(fx, gx, t/R) for all x inX.

R-weak commutativity implies weak commutativity only when R ≤ 1.
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Two self maps f and g of a fuzzy metric space (X,M, ∗) are called point wise

R-weakly commuting if given x in X, there exists some real number R > 0 such

that

M(fgx, gfx, t) ≥ M(fx, gx, t/R) for each t > 0.

Clearly point wise R-weak commutativity is

(i) Equivalent to commutativity at coincidence points(weakly compatible)

(ii) a necessary, hence minimal condition for existence of common fixed points

of contractive type mappings.

The notion of point wise R-weakly commuting is useful in studying common fixed

of non-compatible maps. However, non compatibility of f and g implies that there

exists a sequence {xn} in X such that lim
n→∞

fxn = lim
n→∞

gxn = p for some p in X

but lim
n→∞

M(fgxn, gfxn, t) is either nonunit or non existent.

Remark 1.10. R-weakly commuting need not be weakly commuting Let X = R,

the set of all real numbers. Define a ∗ b = ab and

M(x, y, t) =
(

exp
( |x− y|

t

))−1

, for all x, y in X and t > 0 and M(x, y, 0) = 0.

Then (X, M, ∗) is a fuzzy metric space. Define f(x) = 2x−1 and g(x) = x2. Now

M(fgx, gfx, t) =
(

exp
(

2
|x− 1|2

t

))−1

,

M(fx, gx, t/2) =
(

exp
(

2
|x− 1|2

t

))−1

.

Therefore, for R = 2, f and g are R-weakly commuting. But f and g are not

weakly commuting since exponential function is strictly increasing
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Now we introduce the notion of R-weakly commuting of type (Ag) in fuzzy

metric space as follows:

Two self maps f and g of a fuzzy metric space (X, M, ∗) are called R-weakly

commuting of type (Ag) if there exists some positive real number R such that

M(ffx, gfx, t/R) ≥ M(fx, gx, t) for each t > 0 and for all x in X.

We note that such mappings commute at their coincidence points. The converse

of this is also true.

For, if f and g commute at their coincidence points, we can define

R = {M(gfx, ffx, t)/M(fx, gx, t)}, when fx 6= gx and R = 1 when fx = gx.

Therefore, f and g can fail to be point wise R- weakly commuting of type (Ag) only

if there exists some x in X such that fx = gx but gfx 6= ffx. Therefore point

wise R-weakly commuting mappings commute at their coincidence points

Remark 1.11. Point wise R-weakly commuting mappings need not be compatible

(resp. compatible of type (A) and compatible of type (P)).

Let X = [2, 20] and d be the usual metric on X.

For each t ∈ [0,∞), define

M(x, y, t) =





0, if t = 0
t

(t + |x− y|) , if t > 0, x, y ∈ X.

Clearly (X, M, ∗) is a complete fuzzy metric on X, where ∗ is defined by a∗b = ab.

Define mappings B, T : X → X by

Bx = x if x = 2 or x > 5, Bx = 8 if 2 < x ≤ 5, Tx = x if x = 2,

Tx = 12 + x if 2 < x ≤ 5, Tx = x− 3 if x > 5.
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To see that B and T are not compatible (resp.compatible of type (A) and compatible

of type (P)). Let us consider a sequence {xn} defined by {xn = 5 + (1/n), n ≥ 1}.

Then Txn → 2, Bxn = 2, TTxn → 14 and BTxn = 8, BBxn = 2. Clearly B and

T are not compatible of type (A) and compatible of type (P).

But they are Point wise R-weakly commuting mappings since they commute at

coincidence point at x = 2.

2 Fixed Points for Weakly Compatible Maps

In this section, we prove some common fixed-point theorem for weakly compatible

maps, which are not necessarily continuous. Before proving main results we prove

two lemmas that are helpful in proving results in this section and further sections.

Lemma 2.1. If for all x, y ∈ X, t > 0 and for a number k ∈ (0, 1), then

M(x, y, kt) ≥ M(x, y, t) then x = y.

Proof. Suppose that there exists k ∈ (0, 1) such that

M(x, y, kt) ≥ M(x, y, t) for all x, y in X and t > 0

Then M(x, y, t) ≥ M(x, y, t/k) and after n-th iteration M(x, y, t) ≥ M(x, y, t/kn)

for some positive integer n. Taking limit as n →∞, we have

M(x, y, t) ≥ 1 and hence x = y.

Lemma 2.2. Let {yn} be a cauchy sequence in a fuzzy metric space (X, M, ∗) with

∗ continuous t-norm with the condition (FM-6). If there exists a number q ∈ (0, 1)
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such that

M(yn+2,yn+1,qt) ≥ M(yn+1,yn,t) for all t > 0

and n = 1, 2, . . . then {yn} is cauchy in X.

Proof. For t > 0, and q ∈ (0, 1), we have

M(y2, y3, qt) ≥ M(y1, y2, t) ≥ M(y0, y1, t/q).

By induction, we have for all t > 0 and n = 1, 2, 3 . . .

M(yn+1, yn+2, t) ≥ M(y1, y2, t/qn)

Thus for any positive integer p, and real number t > 0, we have

M(yn, yn+p, t) ≥ M(yn, yn+1, t/p) ∗ · · · p-times · · · ∗M(yn+p−1, yn+p, t/p)

≥ M(y1, y2, t/pqn−1) ∗ · · · p-times · · · ∗M(y1, y2, t/pqn+p−2)

Therefore, by (FM-6), we have lim
n→∞

M(yn, yn+p, t) ≥ 1 ∗ · · · p-times · · · ∗ 1 ≥ 1,

which implies {yn} is a Cauchy sequence in X.

In 2002 Sharma [22] proved the following theorem.

Theorem 2.3. Let (X,M, ∗) be a complete fuzzy metric space with t ∗ t ≥ t for

all t ∈ [0, 1]. Let A,B, S, T, P and Q be mappings from X into itself satisfying the

following conditions:

(2.1) P (X) ⊂ AB(X), Q(X) ⊂ ST (X),

(2.2) AB = BA, ST = TS, PB = BP , SQ = QS, QT = TQ,
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(2.3) Pairs (P, AB) and (Q,ST ) are compatible of type (α) (or compatible of type

(A)),

(2.4) A,B, S and T are continuous,

(2.5) There exists a number k ∈ (0, 1) such that

M(Px, Qy, kt) ≥ M(ABx, Px, t) ∗M(STy, Qy, t) ∗M(STy, Px, βt)

∗M(ABx, Qy, (2− β)t) ∗M(ABx, STy, t),

for all x, y ∈ X,β ∈ (0, 2) and t > 0.

Then A,B, S, T, P and Q have a unique common fixed point in X.

Now we prove the following results:

Theorem 2.4. Let (X,M, ∗) be a complete fuzzy metric space with t∗ t ≥ t for all

t ∈ [0, 1]. Let A,B, S, T, P and Q be mappings from X into itself satisfying (2.1),

(2.2), (2.5) and the following condition:

(2.6) Pairs (P, AB) and (Q,ST ) are weakly compatible.

If the range one of the subspaces P (X) or AB(X) or Q(X) or ST (X) is complete,

then A,B, S, T, P and Q have a unique common fixed point in X.

Proof. By [22], {yn} is a Cauchy sequence in X. Since X is complete, so {yn}

converges to a point z ∈ X. Since {Px2n}, {Qx2n+1}, {ABx2n+1} and {STx2n+2}

are subsequences of {yn}, they also converge to the same point z.

Since P (X) ⊂ AB(X), there exists a point u ∈ X such that ABu = z. Then,
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using (2.5)

M(Pu, z, kt) ≥ M(Pu,Qx2n+1, kt)

≥ M(ABu, Pu, t) ∗M(STx2n+1, Qx2n+1, t) ∗M(STx2n+1, Pu, βt)

∗M(ABu, Qx2n+1, (2− β)t) ∗M(ABu, STx2n+1, t) .

Proceeding limit as n →∞ and setting β = 1,

M(Pu, z, kt) ≥ M(Pu, z, t) ∗M(z, z, t) ∗M(z, Pu, βt) ∗M(z, z, t) ∗M(z, z, t),

= M(Pu, z, t) ∗ 1 ∗M(Pu, z, t) ∗ 1 ∗ 1,

≥ M(Pu, z, t) .

By Lemma (2.1), Pu = z. Therefore, ABu = Pu = z.

Since Q(X) ⊂ ST (X), there exists a point v ∈ X such that z = STv. Then,

again using (2.5)

M(Pu, Qv, kt) ≥ M(ABu, Pu, t) ∗M(STv, Qv, t) ∗M(STv, Pu, Bt)

∗M(ABu, Qv, (2− β)t) ∗M(ABu, STv, t)

Proceeding limit as n →∞, we have for β = 1, Qv = z.

Therefore, ABu = Pu = STv = Qv = z.

Since pair (P, AB) is weakly compatible, therefore, Pu = ABu implies that

PABu = ABPu i.e., Pz = ABz. Now we show that z is a fixed point of P . For
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β = 1, we have

M(Pz, Qv, kt) ≥ M(ABz, Pz, t) ∗M(STv, Qv, t) ∗M(STv, Pz, βt)

∗ M(ABz, Qv, (2− β)t) ∗M(ABz, STv, t)

= 1 ∗ 1 ∗M(z, Pz, t) ∗M(Pz, z, t) ∗M(Pz, z, t)

Therefore, we have by Lemma 2.1, Pz = z. Hence

Pz = z = ABz.

Similarly, pair of map {Q, ST} is weakly compatible, we have

Qz = STz = z.

Now we show that Bz = z, by putting x = Bz and y = x2n+1 with β = 1 in for

(2.5) we have

M(PBz,Qx2n+1, kt) ≥ M(AB(Bz), P (Bz), t) ∗M(STx2n+1, Qx2n+1, t)

∗M(STx2n+1, PBz, t) ∗M(AB(Bz), Qx2n+1, t)

∗M(AB(Bz), STx2n+1, t) .

Proceeding limits as n → ∞, and using Lemma 2.1, we have Bz = z. Since

ABz = z, therefore, Pz = ABz = Bz = z = Qz = STz. Finally, we show that

Tz = z, by putting x = z and y = Tz with β = 1 in (2.5).

M(Pz, Q(Tz), kt) ≥ M(ABz, Pz, t) ∗M(ST (Tz), Q(Tz), t)

∗M(ST (Tz), P z, t)∗M(ABz,Q(Tz), t)

∗M(ABz, ST (Tz), t) .



256 Thai J. Math. 6(2008)/ S. Kumar

Therefore, Tz = z.

Hence ABz = Bz = STz = Tz = Pz = Qz = z.

Uniqueness follows easily.

If we put B = T = I, the identity map on X, in Theorem 2.2, we have the

following:

Corollary 2.5. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t ≥ t for

all t ∈ (0, 1) and the condition:

(FM-6) lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X,

Let A,S, P and Q be the mapping from X into itself such that

(2.7) P (X) ⊂ A(X), Q(X) ⊂ S(X).

The pairs (A, S) and (Q,S) are weakly compatible. There exists a number k ∈ (0, 1)

such that

(2.8) M(Px, Qy, kt) ≥ M(Ax, Px, t) ∗M(Sy,Qy, t) ∗M(Sy, Px, βt)∗

M(Ax,Qy, (2− β)t) ∗M(Ax, Sy, t),

for all x, y ∈ X, β ∈ (0, 2) with t > 0.

If the range one of the subspaces is complete then A,S, P and Q have a unique

common fixed point in X.

If we put A = B = S = T = I in Theorem 2.2, we have the following:
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Corollary 2.6. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t ≥ t for

all t ∈ [0, 1] and the condition (FM-6). Let P and Q be weakly compatible mapping

from X into itself. If there exists a constant k ∈ (0, 1) such that

M(Px, Qy, kt) ≥ M(x, Px, t) ∗M(y, Qy, t) ∗M(y, Px, βt)

∗M(x, Qy, (2− β)t) ∗M(x, y, t),

for all x, y ∈ X, β ∈ (0, 2) and t > 0.

If the range one of the subspaces is complete then P and Q have a unique common

fixed point in X.

If we put P = Q, A = S and B = T = I in Theorem 2.2, we have the following:

Corollary 2.7. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t ≥ t for

all t ∈ [0, 1] and the condition (FM-6). Let P, S be weakly compatible maps on X

such that P (X) ⊂ S(X) and satisfy the following condition:

M(Px, Py, t) ≥ M(Sx, Px, t) ∗M(Sy, Py, t) ∗M(Sy, Px, βt)

∗M(Sx, Py, (2− β)t) ∗M(Sx, Sy, t),

for all x, y ∈ X, β ∈ (0, 2) and t > 0. If the range one of the subspaces is complete

then P and S have a unique common fixed point in X.

Example 2.8 ([22]). Let X = [0, 1] with usual metric d and for each t ∈ [0, 1]

define

M(x, y, t) =
t

t + |x− y| , M(x, y, 0) = 0 for all x, y ∈ X.
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Clearly (X,M, ∗) is a complete fuzzy metric space where ∗ is defined by a ∗ b = ab.

Let A,B, S, T, P and Q be defined by Ax = x, Bx = x/2, Sx = x/5, Tx = x/3,

Px = x/6 and Qx = 0 for all x, y ∈ X.

Then P (X) = [0, 1/6] ⊂ [0, 1/2] = AB(X) and Q(X) = 0 ⊂ [0, 1/5] = STx.

If we take k = 1/2, t = 1 and β = 1, we see that all conditions of Theorem

2.2 are satisfied.

Moreover, the pair {P, AB} and {Q,ST} are weakly compatible.

3 Fixed Points for R-weakly Commuting Map-
pings

In this section, we prove some common fixed-point theorem for R-weakly commut-

ing mappings which are not necessarily continuous.

Now, let A,B, S and T be mappings from a fuzzy metric space X into itself

satisfying the following conditions:

(3.1) A(X) ⊂ T (X) and B(X) ⊂ S(X),

(3.2) M(Ax,By, t) ≥ r(M(Sx, Ty, t)) where r : [0, 1] → [0, 1] is a continuous

function such that r(t) > t for each 0 < t < 1 and for all x, y, in X.

Then for an arbitrary point x0 in X, by (3.1), we choose a point x1 in X

such that Tx1 = Ax0 and for this point x1, there exists a point x2 in X such

that Sx2 = Bx1 and so on. Continuing in this manner, we can define a

sequence {yn} in X such that

(3.3) y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1 for n = 0, 1, 2, . . . .
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The sequence {xn} and {yn} in X are such that xn → x, yn → y, t > 0

implies M(xn, yn, t) → M(x, y, t).

Lemma 3.1. Let A,B, S and T be mappings from a fuzzy metric space (X, M, ∗)

into itself satisfying the conditions (3.1) and (3.2). Then the sequence {yn} defined

by (3.3) is a Cauchy sequence in X.

Proof. For t > 0,

M(y2n, y2n+1, t) = M(Ax2n, Bx2n+1, t) ≥ r(M(Sx2n, Tx2n+1, t)),

= r(M(y2n−1, y2n, t)),

(3.4) > M(y2n−1, y2n, t) .

Similarly, we have M(y2n+1, y2n+2, t) > M(y2n, y2n+1, t) .

Since r(t) > t for 0 < t < 1. Therefore, for every n ∈ N , {M(yn, yn+1, t), n ≥

0} is a increasing sequence of positive real numbers in [0, 1] and therefore tends to

limit l ≥ 1. We claim that l = 1. For if l < 1, on letting n →∞ in (3.4), we have

l ≥ r(l) > l, a contradiction. Hence l = 1.

Now for any positive integer p,

M(yn, yn+p, t) ≥ M(yn, yn+1, t/p) ∗ . . . ∗M(yn+p, yn+p, t/p)

≥ M(yn, yn+1, t/p) ∗ . . . ∗M(yn, yn+1, t/p),

for any positive integer n.

Since lim
n→∞

M(yn, yn+1, t) = 1, for t > 0, it follows that

lim
n→∞

M(yn, yn+p, t) ≥ 1 ∗ . . . ∗ 1 ≥ 1.
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Thus {yn} is a Cauchy sequence in X.

Theorem 3.2. Let A,B, S and T be mappings from a fuzzy metric space (X, M, ∗)

into itself satisfying the conditions (3.1) and (3.2). Suppose that

(3.5) One of A, B, S and T is continuous,

(3.6) pairs (A,S) and (B, T ) are R-weakly commuting on X.

Then sequences {xn} and {yn} in X are such that xn → x, yn → y, t > 0

implies M(xn, yn, t) → M(x, y, t).

Proof. By Lemma 3.1, {yn} is a Cauchy sequence and by the completeness of

X, {yn} converges to some point z ∈ X. Consequently, the subsequences {Ax2n},

{Sx2n+2}, {Bx2n+1} and {Tx2n+1} of yn also converge to z.

Assume that S is continuous. Since A and S are R-weakly commuting it

follows that

(3.7) M(ASxn, SAxn, t) ≥ M(Axn, Sxn, t/R)

On letting n →∞ in (3.7) we get ASxn → Sz.

By (3.2), we obtain

(3.8) M(ASx2n, Bx2n+1, t) ≥ r(M(SSx2n, Tx2n+1, t))

Proceeding limn→∞, from (3.8) we have

M(Sz, z, t) ≥ r(M(Sz, z, t)) > M(Sz, z, t), a contradiction.

Therefore, Sz = z. By (3.2), we also obtain
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(3.9) M(Az,Bx2n+1, t) ≥ r(M(Sz, Tx2n+1, t))

Taking limn→∞ in (3.9), we have

M(Az, z, t) ≥ r(M(Sz, z, t)) = r(M(z, z, t)) = r(1) = 1

since r(t) 1 for t = 1, which implies Az = z.

Since A(X) ⊂ T (X). For u in X there exists a point z in X such that Az = Tu.

Hence z = Az = Tu.

M(z, Bu, t) = M(Az, Bu, t) ≥ r(M(Sz, Tu, t)), implies Bu = z. Since B and

T are R-weakly commuting on X and Tu = Bu = z.

¿From (3.2), we have

M(BTu, TBu, t) ≥ M(Bu, Tu, t/R), implies Tz = TBu = BTu = Bz.

Moreover, by (3.2), we obtain

M(z, Tz, t) = M(Az, Bz, t) ≥ r(M(Sz, Tz, t)) = r(M(z, Tz, t)).

Hence z = Tz. Therefore, z is common fixed point of A,B, S and T .

Similarly, we can also complete the proof by assuming any one of the mappings

A,B, and T is continuous.

Now to prove the uniqueness, let if possible z′ 6= z be another common fixed

point of A,B, S and T . Then there exists t > 0 such that

M(z, z′, t) < 1
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and

M(z, z′, t) = M(Az,Bz′, t) ≥ r(M(Sz, Tz′, t))

= r(M(z, z′, t))

> M(z, z′, t)

Since r(t) > t for 0 < t < 1, which is a contradiction. Therefore, z = z′ i.e. z is a

unique common fixed point of A,B, S and T .

Example 3.3. Let X = [2, 20] with the metric d defined by d(x, y) = |x− y|. For

each t ∈ [0,∞), define

M(x, y, t) =





0, if t = 0
t

(t + |x− y|) , if t > 0, x, y, z ∈ X.

Clearly (x,M, ∗) is a fuzzy metric on X, where ∗ is defined by a ∗ b = ab. Also

(x,M, ∗) is a complete fuzzy metric space [1994].

Define

Ax = x for all x ∈ X,Sx = x if x = 2, Sx = 6 if x > 2,

Bx = x if x = 2 or x > 5 and Bx = 6 if 2 < x ≤ 5,

Tx = 12 if 2 < x ≤ 5 and Tx = x− 3 if x > 5.

It is evident that A(X) ⊂ T (X) and B(X) ⊂ S(X) and A is continuous.

Define r = [0, 1] → [0, 1] by r(t) =
√

t for 0 < t < 1 and r(t) = 1 for t = 1.

Then r(t) > t for 0 < t < 1. Also M(Ax,By, t) ≥ r(M(Sx, ty, t)) for all x, y,

in X. Pairs (A, S) and (B, T ) are R-weakly commuting on X.

Thus all the conditions of theorem (3.1) are satisfied and 2 is common fixed

point of A,B, S and T .
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4 Fixed Points for R-weakly Commuting Type
(Ag) Mappings

As an application of the notion of R-weak commutativity of type (Ag), we prove a

common fixed point theorem for the class of nonexpansive or lipschitz type map-

ping pairs even without assuming continuity of mappings involved or completeness

of the space.

Theorem 4.1. Let f and g be noncompatible self mappings of a fuzzy metric space

(X, M,∗ ) satifying the following:

(4.1) f(X) ⊂ g(X), where f(X) denotes the closure of f(X)

(4.2) M(fx, fy, kt) ≥ M(gx, gy, t), k 6= 0 and

(4.3) M(x, fx, t) > M(x, gx, t) whenever x 6= fx. If f and g are pointwise R-

weakly commuting of type(Ag) then f and g have a unique common fixed

point and the fixed point is a point of discontinuity.

Proof. Non compatibility of f and g implies that there exists a sequence {xn} in

X such that lim
n→∞

fxn = lim
n→∞

gxn = p for some p in X but lim
n→∞

M(fgxn, gfxn, t)

is either nonunit or non existent. Since p ∈ f(X) and f(X) ⊂ g(X), there exists

u in X such that p = gu. From (4.2), we have

M(fu, fxn, kt) ≥ M(gu, gxn, t).

Proceeding limit as n →∞, we have

lim
n→∞

fxn = fu, i.e., fu = gu.
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Since f and g are R-weakly commuting of type(Ag), we have

M(ffu, gfu, t/R) = M(fu, gu, t) = 1, i.e., ffu = gfu

If fu 6= ffu, using(4.3), we get

M(fu, ffu, t) > M(fu, gfu, t) = M(fu, ffu, t),

a contradiction. Hence fu = ffu = gfu and fu is a common fixed point of f and

g.

Uniqueness follows easily.

We now show that f and g are discontinuous at the common fixed-point p =

fu = gu. If possible, suppose f is continuous. Then considering the sequence

{xn} of (4.1), we get

limn→∞ ffxn = fp = p and limn→∞ fgxn = fp.

R-weak commutativity of type(Ag) implies that

M(ffxn, gfxn, t/R) ≥ M(fxn, gxn, t).

Letting limit as n →∞, we have

lim
n→∞

gfxn = fp = p.

Further, this in turn, implies

lim
n→∞

M(fgxn, gfxn, t) = M(fp, gp, t) = 1.

This contradicts the fact that lim
n→∞

M(fgxn, gfxn, t) is either nonunit or nonexis-

tent for the sequence {xn} of (4.1). Hence f is discontinuous at the fixed point.
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Therefore, g is also discontinuous at the fixed point, by virtue of (4.2), continuity

of g implies continuity of f .

This establishes our theorem.

We now give an example to illustrate the above theorem.

Example 4.2. Let X = [2, 20] and d be the usual metric on X.

Define M(x, y, t) = {t/t + d(x, y)} for t > 0. Clearly (X, M,∗ ) is a fuzzy

metric space. Also Define

f, g : X → X by

fx = 2 if x = 2 or x > 5, fx = 6 if 2 < x ≤ 5,

g2 = 2, gx = 9 if 2 < x ≤ 5, gx = (x + 1)/3 if x > 5.

Then f and g satisfy all the condition of the theorem and have a unique common

fixed point at x = 2.

Moreover, fX = {2} ∪ {6}, gX = [2, 7] ∪ {9} and fX ⊂ gX. It can also be

verified that f and g are point wise R-weakly commuting type (Ag).

To see that f and g are noncompatible maps, consider the sequence {xn =

5 + 1/n; n ≥ 1} in X. Then lim
n→∞

fxn = 2, lim
n→∞

gxn = 2, lim
n→∞

fgxn = 6 and

lim
n→∞

gfxn = 2. Hence f and g are noncompatible maps. Clearly f and g satisfy

the Lipschitz type condition

M(fx, fy, kt) = M(gx, gy, t) with k = 2, together with the condition, M(x, fx, t) >

M(x, gx, t).

Moreover, both f and g are discontinuous at the common fixed point x = 2.
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Theorem 4.3. Let f and g be noncompatible selfmappings of a fuzzy metric space

(X,M,∗ ) satifying the following:

(4.4) fX ⊂ gX, where fX denotes the closure of the range of the mapping f

(4.5) M(fx, fy, t) ≥ M(gx, gy, t) and

(4.6) M(x, fx, t) > M(x, gx, t) whenever x 6= fx. If f and g are point wise R-

weakly commuting type(Ag) then f and g have a common fixed point and the

fixed point is a point of discontinuity.

The above theorem can be proved on similar lines by setting k = 1 in Theo-

rem 4.1.

Theorem 4.4. Let f and g be noncompatible self mappings of a fuzzy metric space

(X,M,∗ ) such that f(X) ⊂ g(X), where f(X) denotes the closure of f(X) and

satisfying the following:

(4.7) M(fx, fy, t) > M(gx, gy, t), fx 6= fy.

If f and g be R-weakly commuting of type (Ag), then f and g have a unique

common fixed point and the fixed point is a point of discontinuity.

Proof. Noncompatibility of f and g implies that there exists a sequence {xn} in X

such that lim
n→∞

fxn = lim
n→∞

gxn = p for some p in X but lim
n→∞

M(fgxn, gfxn, t) 6=

1 or nonexistent. Since p ∈ f(X) and f(X) ⊂ g(X), there exists u in X such that

p = gu.

By (4.7), M(fu, fxn, t) = M(gu, gxn, t).
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Proceeding limit as n →∞, we have

lim
n→∞

fxn = fu, i.e, fu = gu.

Since f and g are R-weakly commuting of type (Ag), we have

M(ffu, gfu, t/R) = M(fu, gu, t) = 1, i.e ffu = gfu.

If fu 6= ffu, using (4.7), we have

M(fu, ffu, t/R) > M(gu, gfu, t) = M(fu, ffu, t),

a contradiction. Hence fu = ffu = gfu and fu is a common fixed point of f and

g. Uniqueness follows easily from (4.7).

Now we show that f and g are discontinuous at the common fixed point p =

fu = gu. If possible, suppose f is continuous. Let {xn} be a sequence of f(X) ⊂

g(X) we have limn→∞ ffxn = fp = p and limn→∞ fgxn = fp.

By R-weak commutativity of type (Ag), we have

M(ffxn, gfxn, t/R) = M(fxn, gxn, t),

Proceeding limit as n →∞, we have

limn→∞ gfxn = ft = t.

Further, M(fgxn, gfxn, t) = 1, this contradicts the fact that

limn→∞M(fgxn, gfxn, t) 6= 1 or non existent for the sequence

{xn} of f(X) ⊂ g(X). Hence f is discontinuous at the fixed point.

Therefore by virtue of (4.7), g is also discontinuous at the fixed point, since

continuity of g implies the continuity of f .



268 Thai J. Math. 6(2008)/ S. Kumar

References

[1] R. Chugh and S. Kumar, Common fixed point theorem in fuzzy metric spaces,

Bull. Pure. App. Sci., 20E(2001), 198–204.

[2] R. Chugh, S. Rathi and S. Kumar, Common fixed point theorem for compati-

ble mappings of type (P) in fuzzy metric spaces, Studii Si Cercetari Stintifce,

Seria Matematica, 12(2002), 75–84.

[3] R. Chugh and S. Kumar, Common fixed points for weakly compatible maps,

Proc. Indian Acad. Sci. (Math. Sci.), 111 (2) (2001), 241–247.

[4] R. Chugh and S. Kumar, Common fixed point theorem using minimal com-

mutativity and reciprocal conditions in metric space, Scientiac Mathematiace

Japonica, 56 (2) (2002), 269–275.

[5] M. A. Erceg, Fixed points in fuzzy metric spaces, J. Math. Anal. Appl., 69

(1979), 205–230.

[6] A. George and P. Veermani, On some results in fuzzy metric space, Fuzzy

Sets and Systems, 64 (1994), 395–399.

[7] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27

(1983), 385–389.

[8] G. Jungck, Commuting mappings and fixed point, Amer. Math. Monthly, 83

(1976), 261–263.

[9] G. Jungck, Compatible mappings and common fixed points, Int. J. Math.

Math. Sci., 9 (1986), 771–779.

[10] G. Jungck and B. E. Rhoades, Fixed point for set valued functions without

continuity, Indian J. Pure Appl. Math., 29 (3) (1998), 227–238.



Common Fixed Point Theorem for Minimal ... 269

[11] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A)

and common fixed points, Japonica, 38 (2) (1993), 381–390.

[12] O.Kaleva, and S.Seikkala, On Fuzzy metric spaces, Fuzzy Sets and System,

12 (1984), 215–229.

[13] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Ky-

bernetica, 11 (1975), 326–334.

[14] R. Kannan, Some Results on fixed points, Bull. Cal. Math. Soc., 60 (1968),

71–76.

[15] S. N. Mishra, common fixed points of self maps on fuzzy metric spaces, In-

ternat. J. Math. Sci., 17 (1994), 253–258.

[16] H. K . Pathak, Y . J. Cho and S. M. Kang, Remarks on R-Weakly commuting

mapping and common fixed point theorems, Bull. Korean Math. Soc., 34

(1997), 247–257.

[17] R. P.Pant, Common fixed points four for mappings, Bull. Cal. Math. Soc., 90

(1998), 281–286.

[18] R. P. Pant, Common fixed points theorems for contractive maps, J. Math.

Anal. Appl., 226 (1998), 251–258.

[19] R. P. Pant, Common fixed points of non commuting mappings, J. Math. Anal.

Appl., 188 (1994), 436–440.

[20] S. Sessa, On a weak commutativity conditions of mappings in fixed point

consideration, Publ. Inst. Math. Beograd, 32 (46) (1982), 146–153.

[21] S.Sessa and B. Fisher, Common fixed points of weakly commuting mappings,

Bull. Polish. Acad. Sci. Math., 36 (1987), 341–349.

[22] S. Sharma, Common fixed point theorems in fuzzy metric spaces, Fuzzy sets

and System, 127 (2002), 345–352.



270 Thai J. Math. 6(2008)/ S. Kumar

[23] P. V. Subramanyam, Common fixed point theorems in fuzzy metric spaces,

Infor. Sci., 83 (4) (1995), 109–112.

[24] R.Vasuki, Common fixed points of R-weakly commuting mappings in fuzzy

metric spaces, Indian J. Pure. Appl. Math., 30 (4) (1999), 419–423.

[25] L. A. Zadeh, Fuzzy sets, Information control, 89 (1965), 338–353.

(Received 30 May 2007)

Sanjay Kumar

DESM, NCERT,

New Delhi 110 016

INDIA

e-mail: sanjaymudgal2004@yahoo.com


