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Abstract In this paper we use the notion of (A,B)-weakly increasing mappings in the sense of W.

Shatanawi and M. Postolache [W. Shatanawi, M. Postolache, Common fixed point results for mappings

under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl. 2013

(2013)] to introduce some new common fixed point results in complete G-metric spaces which can not be

deduced from fixed point theorems in the setting of standard metric spaces.
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1. Introduction

It is well known that the Banach contraction theorem is the first outstanding result
in the field of the fixed point theory that ensure the existence of unique fixed point in
complete metric spaces, which is known later as Banach contraction principle. After that,
many authors extended the Banach contraction theorem to many directions for example
see [1–14].

Recently Mustafa and Sims [15] introduced a new generalization of the standard notion
of metric space, named G-metric space. After that many authors proved several fixed
point theorems in complete G-metric spaces for example see [16–21].

Cyclic mappings are studied by many authors in the field of fixed point theory for
example see [22–38]

Jleli and Samet [39] and Samet et.al [40] showed that some of fixed point theorems in
G-metric spaces can be deduced from standard metric spaces or quasi metric spaces.

Karapinar and Agarwal [41] proved that the approach of Jleli and Samet [39] and Samet
et.al [40] cannot be applied if the contraction condition in the statement of the theorem
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can’t be reducible to two variables and they introduced and proved diverse results in
G-metric spaces.

Saadati et al. [42] initiated the notion of Ω-distance. They employed the notion of
Ω-distance to created and proved some fixed point results in G-metric spaces. After that,
Some authors obtained many fixed and common fixed point theorems in the setting of
G-metric space by using the notion of Ω-distance [43–47]. It is worth mentioning that,
the techniques of Jleli and Samet [39] and Samet et.al [40] are not working in the notion
of Ω-distance.

Kirk et al. [48] gave a new generalization of Banach contraction theorem in very
smart way. For this instant, he introduced the notion of cyclic mappings and proved a
generalized version of Banach contraction theorem. Recently, many authors studied many
fixed and common fixed point theorems for mappings of cyclic form in different matric
space, for more details we refer the reader to [22–38]. Recently, Shatanawi and Postolache
[8] introduced the notion on (A,B)-weakly increasing mappings and generalized many
fixed and common fixed point results of cyclic form.

In this paper, we utilized the notion of (A,B)-weakly increasing mappings in the sense
of W. Shatanawi, and M. Postolache to derive fixed point results in the setting of G-metric
spaces where the techniques of Samet [39] and Samet et.al [40] are not working in our
works.

2. Preliminary

In this section we present the important definitions and theorems which is used in
sequel.

Definition 2.1 ([15]). Let X be a nonempty set, and let G : X × X × X → R+ be a
function satisfying:
(G1)G(x, y, z) = 0 if x = y = z,
(G2)G(x, x, y) > 0 for all x, y ∈ X ,with x 6= y,
(G3)G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X ,with y 6= z,
(G4)G(x, y, z) = G(p{x, y, z}), where p{x, y, z} is the all possible permutation of x,y,z
(symmetry in all three variables ),
(G5)G(x, y, z) ≤ G(x, a, a) + G(a, y, z)∀x, y, z, a ∈ X(rectangle inequality). Then the
function G is called a generalized metric space, or more specifically G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 2.2 ([15]). Let (X,G) be a G-metric space, and let (xn) be a sequence of
points of X, we say that (xn) is G-convergent to x if

lim
n,m→∞

G(x, xn, xm) = 0; that is for any ε > 0, there exists k ∈ N such that G(x, xn, xm) <

ε, for all n,m ≥ k.

Proposition 2.3 ([15]). Let (X,G) be G-metric space then the following are equivalent.
(1) (xn) is G-convergent to x.
(2) G(xn, xn, x)→ 0, as n →∞.
(3) G(xn, x, x)→ 0, as n →∞.

Definition 2.4 ([15]). Let (X,G) be G-metric space, a sequence (xn) ⊆ X is said to be
G-Cauchy if for every ε > 0, there exists k ∈ N such that G(xn, xm, xl) < ε
for all n,m,l ≥ k.
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Proposition 2.5 ([15]). In a G-metric space, the following are equivalent.
(1) The sequence (xn) is G-Cauchy.
(2)For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for all n,m,l ≥ k.

Definition 2.6 ([17]). A G-metric space (X,G) is said to be G-complete or complete
G-metric space if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

Definition 2.7 ([17]). Let (X,G) and (X ′, G′) be two G-metric spaces and let
f : X → X ′ be a function, then f is said to be G-continuous at a point a ∈ X if given
ε > 0, there exists δ > 0 such that x,y ∈ X; G(a, x, y) < δ implies G′(fa, fx, fy) < ε. A
function f is G-continuous on X if and only if it is G-continuous at every point a ∈ X.

Proposition 2.8 ([17]). Let (X,G) and (X ′, G′) be two G-metric spaces and let
f : X → X ′ be a function, then f is said to be G-continuous at a point x ∈ X if and
only if it is G-sequentially continuous at x; that is, whenever (xn) is G-convergent to x,
(f(xn)) is G′-convergent to f(x).

Proposition 2.9 ([15]). Let (X,G) be G-metric space. Then the function G is jointly
continuous in all three of it’s variables.

3. Main Result

We start with the following definitions:

Definition 3.1 ([8]). Let (X,�) be a partially ordered set and A,B be two nonempty
subsets of X with X = A∪B. Let f, g : X → X be two mappings. Then the pair (f, g) is
said to be (A,B)-weakly increasing if fx � gfx for all x ∈ A and gx � fgx for all x ∈ B

Definition 3.2 ([49]). The function φ : [0,∞) → [0,∞) is called an altering distance
function if the following properties are satisfied
(1) φ is continuous and nondecreasing.
(2) φ(t) = 0 if and only if t = 0.

For more acquaintance on theorems related to altering distance functions, see [8, 50–
54].

Theorem 3.3. Let (X,�) be a partially ordered set and suppose that there exists a G-
metric on X such that (X,G) is complete G-metric space. Let A,B be two nonempty closed
subsets of X with X = A∪B. Let f, g : A∪B → A∪B such that the pair (f, g) is (A,B)-
weakly increasing with f(A) ⊆ B, g(B) ⊆ A. Let φ, ψ be an altering distance functions.
Also suppose that

φG(fx, gfx, gy) ≤ φmax{G(x, y, y), G(fx, fx, x), G(gy, gy, y)}
−ψmax{G(x, y, y), G(fx, fx, x), G(gy, gy, y)}
for all comparative x, y ∈ X with x ∈ A, y ∈ B

(3.1)

and

φG(gx, fgx, fy) ≤ φmax{G(x, y, y), G(gx, gx, x), G(fy, fy, y)}
−ψmax{G(x, y, y), G(gx, gx, x), G(fy, fy, y)}
for all comparative x, y ∈ X with x ∈ B, y ∈ A.

(3.2)

If f or g is continuous then f and g have a common fixed point in A ∩B
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Proof. Let x0 ∈ A. Since f(A) ⊆ B, then fx0 = x1 ∈ B. Also, since g(B) ⊆ A,
then gx1 = x2 ∈ A. Continuing this process we obtain a sequence (xn) in X such that
fx2n = x2n+1, x2n ∈ A and gx2n+1 = x2n+2, x2n+1 ∈ B n ∈ N. Since (f, g) is (A,B)
weakly increasing, then x1 = fx0 � gfx0 = gx1 = x2 � fgx1 = fx2 = x3 · · · . Therefore
xn � xn+1 ∀n ∈ N. If x2n+1 = x2n+2 for some n ∈ N, then x2n+1 is a fixed point for
g inA ∩ B. To prove that x2n+1 is a fixed point for f it is equivalent to prove that
x2n+1 = x2n+2 = x2n+3.
Since x2n+1 � x2n+2, then by (3.2) we get
φG(x2n+2, x2n+3, x2n+3) = φG(gx2n+1, fgx2n+1, fx2n+2)

≤ φmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+2, x2n+2, x2n+1), G(x2n+3, x2n+3, x2n+2)}
−ψmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+2, x2n+2, x2n+1), G(x2n+3, x2n+3, x2n+2)}.

Since x2n+1 = x2n+2, then

G(x2n+1, x2n+2, x2n+2) = G(x2n+2, x2n+2, x2n+1) = 0,

and so

φG(x2n+2, x2n+3, x2n+3) ≤ φG(x2n+3, x2n+3, x2n+2)− ψG(x2n+3, x2n+3, x2n+2).

This implies that

ψG(x2n+3, x2n+3, x2n+2) = 0

and hence G(x2n+3, x2n+3, x2n+2) = 0. Thus, x2n+3 = x2n+2, and so x2n+3 = x2n+2 =
x2n+1. Therefore x2n+1 is also a fixed point for f . Hence x2n+1 is a common fixed point
for f and g inA ∩B.
Now assume that xn+1 6= xn, ∀n ∈ N. Let n ∈ N. Since x2n+1 � x2n+2, then by (3.2) we
have

φG(x2n+2, x2n+3, x2n+3) = φG(gx2n+1, fgx2n+1, fx2n+2)
≤ φmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+2, x2n+2, x2n+1), G(x2n+3, x2n+3, x2n+2)}
−ψmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+2, x2n+2, x2n+1), G(x2n+3, x2n+3, x2n+2)}

= φmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+3, x2n+3, x2n+2)}
−ψmax{G(x2n+1, x2n+2, x2n+2),
G(x2n+3, x2n+3, x2n+2)}.

If max{G(x2n+1, x2n+2, x2n+2), G(x2n+3, x2n+3, x2n+2)} = G(x2n+3, x2n+3, x2n+2), then

φG(x2n+2, x2n+3, x2n+3) ≤ φG(x2n+2, x2n+3, x2n+3)− ψG(x2n+2, x2n+3, x2n+3).

Therefore ψG(x2n+2, x2n+3, x2n+3) = 0, and so G(x2n+2, x2n+3, x2n+3) = 0.
Hence x2n+3 = x2n+2 a contradiction. So,
max{G(x2n+1, x2n+2, x2n+2), G(x2n+3, x2n+3, x2n+2)} = G(x2n+1, x2n+2, x2n+2).
Hence

φG(x2n+2, x2n+3, x2n+3) ≤ φG(x2n+1, x2n+2, x2n+2)− ψG(x2n+1, x2n+2, x2n+2). (3.3)
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G(x2n+2, x2n+3, x2n+3) ≤ G(x2n+1, x2n+2, x2n+2). (3.4)

Again, since x2n � x2n+1, then by (3.1) we have
φG(x2n+1, x2n+2, x2n+2) = φG(fx2n, gfx2n, gx2n+1)

≤ φmax{G(x2n, x2n+1, x2n+1),
G(x2n+1, x2n+1, x2n), G(x2n+2, x2n+2, x2n+1)}
−ψmax{G(x2n, x2n+1, x2n+1),
G(x2n+1, x2n+1, x2n), G(x2n+2, x2n+2, x2n+1)}
= φmax{G(x2n, x2n+1, x2n+1),

G(x2n+2, x2n+2, x2n+1)}
−ψmax{G(x2n, x2n+1, x2n+1),

G(x2n+2, x2n+2, x2n+1)}.

If max{G(x2n, x2n+1, x2n+1), G(x2n+2, x2n+2, x2n+1)} = G(x2n+2, x2n+2, x2n+1),
then
φG(x2n+1, x2n+2, x2n+2) ≤ φG(x2n+1, x2n+2, x2n+2)− ψG(x2n+1, x2n+2, x2n+2).
Therefore ψG(x2n+1, x2n+2, x2n+2) = 0 and so G(x2n+1, x2n+2, x2n+2) = 0.
Hence x2n+2 = x2n+1 a contradiction.
Thus

φG(x2n+1, x2n+2, x2n+2) ≤ φG(x2n, x2n+1, x2n+1)−ψG(x2n, x2n+1, x2n+1). (3.5)

G(x2n+1, x2n+2, x2n+2) ≤ G(x2n, x2n+1, x2n+1). (3.6)

From (3.4) and (3.6) we conclude that ∀n ∈ N
G(xn+1, xn+2, xn+2) ≤ G(xn, xn+1, xn+1). (3.7)

which means that (G(xn, xn+1, xn+1) : n ∈ N) is a nonnegative decreasing sequence.
Therefore ∃r ≥ 0 such that lim

n→∞
G(xn, xn+1, xn+1) = r. From (3.3) and (3.5) we conclude

that ∀n ∈ N
φG(xn+1, xn+2, xn+2) ≤ φG(xn, xn+1, xn+1)− ψG(xn, xn+1, xn+1). (3.8)

By taking the limit as n→∞ in (3.8) and using the fact that φandψ are continuous we
get
φr ≤ φr − ψr. Therefore ψr = 0 and so r = 0.
Hence

lim
n→∞

G(xn, xn+1, xn+1) = 0. (3.9)

Also, it can be proved that

lim
n→∞

G(xn, xn, xn+1) = 0. (3.10)

To show that (xn) is G-Cauchy sequence it is sufficient to show that (x2n) is G-Cauchy
sequence.
Suppose to the contrary that (x2n) is not G-Cauchy sequence. Then ∃ε > 0 and two
subsequences (x2nk

),(x2mk
) of (x2n) such that mk is chosen as the smallest index for

which

G(x2nk
, x2mk

, x2mk
) ≥ ε mk > nk, (3.11)



450 Thai J. Math. Vol. 19 (2021) /W. Shatanawi and A. Bataihah

this means that

G(x2nk
, x2mk−2, x2mk−2) < ε. (3.12)

From (3.11) and (3.12), we get
ε ≤ G(x2nk

, x2mk
, x2mk

) ≤ G(x2nk
, x2mk−2, x2mk−2) +G(x2mk−2, x2mk

, x2mk
)

≤ G(x2nk
, x2mk−2, x2mk−2) +G(x2mk−2, x2mk−1, x2mk−1)

+G(x2mk−1, x2mk
, x2mk

)
< ε+G(x2mk−2, x2mk−1, x2mk−1) +G(x2mk−1, x2mk

, x2mk
).

On letting k →∞ and using (3.9) and (3.10), we get

lim
k→∞

G(x2nk
, x2mk

, x2mk
) = ε. (3.13)

Also, by (G5) we have
G(x2nk

, x2nk
, x2mk

)−G(x2nk
, x2nk

, x2nk−1) ≤ G(x2nk−1, x2nk−1, x2mk
)

≤ G(x2nk
, x2nk−1, x2nk

)
+G(x2nk

, x2mk
, x2mk

)
On letting k →∞ and using (3.9), (3.10) and (3.13) we get

lim
k→∞

G(x2nk−1, x2nk−1, x2mk
) = ε. (3.14)

Again, by (G5) we have
G(x2nk

, x2nk+1, x2mk+1) ≤ G(x2nk
, x2nk

, x2nk+1) +G(x2nk
, x2nk

, x2mk
)

+G(x2mk
, x2mk

, x2mk+1).
On letting k →∞ and using (3.10) and (3.13) we get

lim
k→∞

G(x2nk
, x2nk+1, x2mk+1) ≤ ε.

Also,
G(x2nk

, x2nk
, x2mk

) ≤ G(x2nk
, x2nk+1, x2nk+1) +G(x2nk+1, x2nk

, x2mk+1)
+G(x2mk+1, x2mk+1, x2mk

).

On letting k →∞ and using (3.9) and (3.13) we get

ε ≤ lim
k→∞

G(x2nk
, x2nk+1, x2mk+1).

Thus

lim
k→∞

G(x2nk
, x2nk+1, x2mk+1) = ε. (3.15)

Now, since x2nk−1 � x2mk
, then by using (3.2) we get

φG(x2nk
, x2nk+1, x2mk+1) = φG(gx2nk−1, fgx2nk−1, fx2mk

)
≤ φmax{G(x2nk−1, x2mk

, x2mk
),

G(x2nk
, x2nk

, x2nk−1),
G(x2mk+1, x2mk+1, x2mk

)}
−ψmax{G(x2nk−1, x2mk

, x2mk
),

G(x2nk
, x2nk

, x2nk−1),
G(x2mk+1, x2mk+1, x2mk

)}.

Taking the limit as k → ∞ and using the fact that φ and ψ are continuous and using
(3.9), (3.14) and (3.15), we get
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φε ≤ φε− ψε.
Therefore ψε = 0 and so ε = 0 a contradiction. Hence (x2n) is G-Cauchy sequence,

and so (xn) is G-Cauchy sequence. Since (X,G) is a complete G-metric space, then
there exists u ∈ X such that (xn) is G-converges to u. Therefore the subsequences
(gx2n+1), f(x2n), (x2n+1), and (x2n) are G-converge to u. Since (x2n) ⊆ A and A closed
then u ∈ A, and since (x2n+1) ⊆ B and B closed, then u ∈ B. First suppose (without
lose of generality) that f is continuous. Then
lim
n→∞

fx2n = fu and lim
n→∞

fx2n = lim
n→∞

x2n+1 = u, by uniqueness of the limit we have

fu = u. Since u ∈ A ∩B and u � u then by (3.1) we have
φG(u, gu, gu) = φG(fu, gfu, gu) ≤ φmax{G(u, u, u), G(fu, fu, u),

G(gu, gu, u)}
−ψmax{G(u, u, u), G(fu, fu, u),

G(gu, gu, u)}
≤ φG(gu, gu, u)− ψG(gu, gu, u).

Therefore ψG(gu, gu, u) = 0 and so G(gu, gu, u) = 0. Hence gu = u. Hence u is a
common fixed point for f and g in A ∩B.

Corollary 3.4. Let (X,�) be a partially ordered set and suppose that there exists a G-
metric on X such that (X,G) is complete G-metric space. Let A,B be two nonempty
closed subsets of X with X = A ∪ B. Let f : A ∪ B → A ∪ B be a continuous function,
such that fx � f2x∀x ∈ X, with f(A) ⊆ B, f(B) ⊆ A. Let φ, ψ be an altering distance
functions, and suppose that

φG(fx, f2x, fy) ≤ φmax{G(x, y, y), G(fx, fx, x), G(fy, fy, y)}
−ψmax{G(x, y, y), G(fx, fx, x), G(fy, fy, y)} (3.16)

for all comparative x, y ∈ X with x ∈ A, y ∈ B or x ∈ B, y ∈ A. Then f has a fixed point
in A ∩B.

Proof. It follows from Theorem 3.3 by taking g = f.

Theorem 3.5. Let (X,�) be a partially ordered set and suppose that there exists a G-
metric on X such that (X,G) is complete G-metric space. Let A,B be two nonempty
closed subsets of X with X = A ∪ B. Let f, g : A ∪ B → A ∪ B such that the pair (f, g)
is (A,B)-weakly increasing with f(A) ⊆ B and g(B) ⊆ A. Suppose that ∃ r ∈ [0, 1) such
that

G(fx, gfx, gy) ≤ r max{G(x, y, y), G(fx, fx, x), G(gy, gy, y)} (3.17)

for all comparative x, y ∈ X with x ∈ A, y ∈ B ,and

G(gx, fgx, fy) ≤ r max{G(x, y, y), G(gx, gx, x), G(fy, fy, y)} (3.18)

for all comparative x, y ∈ X with x ∈ B, y ∈ A
If f or g is continuous then f and g have a common fixed point in A ∩B.
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Proof. Define φ, ψ : [0,∞) → [0,∞) by φ(t) = t and ψ(t) = (1 − r)t. Then the proof
follows from Theorem 3.3.

Corollary 3.6. Let (X,�) be a partially ordered set and suppose that there exists a G-
metric on X such that (X,G) is complete G-metric space. Let A,B be two nonempty closed
subsets of X with X = A ∪B. Let f : A ∪B → A ∪B be a continuous function such that
fx � f2x∀x ∈ X with f(A) ⊆ B and f(B) ⊆ A. Suppose that ∃ r ∈ [0, 1) such that

G(fx, f2x, fy) ≤ rmax{G(x, y, y), G(fx, fx, x), G(fy, fy, y)} (3.19)

for all comparative x, y ∈ X with x ∈ A, y ∈ B or x ∈ B, y ∈ A.
Then f has a fixed point in A ∩B.

Proof. The proof follows from Theorem (3.5) by taking g = f .

Conclusion

Samet et al [39, 40] in their outstanding paper proved that some fixed point theorems
in G-metric spaces in sense of Mustafa and Sims [15] can be reduce to some known
fixed point theorems in standard metric space. While, Karapinar and Agarwal [41] in
their nice paper introduced some theorems where the method of Samet et al [39, 40] can
not be used in their theorems. In this paper, we showed that the study of fixed point
theorems in G-metric spaces in the sense of Sims and Mustafa [15] is significant and
real generalization of fixed point theorems in standard fixed point theorems. Our result
supported the conclusion of Karapinar and Agarwal in their paper [41] about the fixed
point theorems in G-metric spaces.
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