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Abstract In this paper, we consider the system of generalized nonlinear variational-like inclusions in

Hilbert spaces. In particular, system of generalized nonlinear variational-like inclusions reduces to a

variational inclusion, an extension of variational inclusion studied by Hassouni and Moudafi. Using

fixed-point technique, we develop a three-step iterative algorithm for solving the system of generalized

nonlinear variational-like inclusions. Further, we prove the existence of solution and discuss convergence

criteria for the approximate solution of the system of generalized nonlinear variational-like inclusions.

Our three-step iterative algorithm and its convergence results are new and the theorems presented in this

paper improve and unify many known results in the literature as well.
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1. Introduction

One of the most significant and important problems in the variational inequality theory
is the development of efficient iterative algorithms to compute approximate solutions.
Although one of the most effective numerical technique for solving variational inequalities
is the projection method and its variant forms.

In 2007, Zeng et al. [1] extended the auxillary principle technique to develop a three-
step iterative algorithm for solving the system of generalized mixed quasi-variational in-
clusions in Hilbert spaces. For further generalizations of variational and quasi-variational
inequalities/inclusions see for example [2–6].

Motivated by recent research work going on variational inequalities, we consider the
system of generalized nonlinear variational-like inclusions in Hilbert spaces and suggest a
three-step iterative algorithm. Further, we prove the existence of solution of the system
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of generalized nonlinear variational-like inclusions and discuss the convergence criteria for
the three-step iterative algorithm.

The suggested three-step iterative algorithm include as special cases the algorithm
developed by Kazmi and Bhat [7]. The results presented in this paper improve and
extend some known results in the literature.

2. Preliminaries and Basic Results

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖, respectively. The
following concepts and results are needed in the sequel:

Definition 2.1. A mapping η : H × H → H be a single-valued mapping, then for all
u, v ∈ H, η(·, ·) is said to be

(i) monotone, if

〈η(u, v), u− v〉 ≥ 0;

(ii) strictly monotone, if

〈η(u, v), u− v〉 > 0

and the equality in above holds only when u = v;
(iii) δ-strongly monotone, if there exists a constant δ > 0, such that

〈η(u, v), u− v〉 ≥ δ‖u− v‖2;

(iv) τ -Lipschitz continuous, if there exists a constant τ > 0, such that

‖η(u, v)‖ ≤ τ‖u− v‖.

We remark that strongly monotonicity of η implies strictly monotonicity of η.

Definition 2.2. Let η : H × H → H be a single-valued mapping. Then a multivalued
mapping M : H → 2H , where 2H is the power set of H, is said to be

(i) η-monotone, if

〈x− y, η(u, v)〉 ≥ 0, ∀ u, v ∈ H, ∀x ∈M(u), y ∈M(v);

(ii) σ-strongly η-monotone, if there exists a constant σ > 0 such that

〈x− y, η(u, v)〉 ≥ σ‖u− v‖2, ∀ u, v ∈ H, ∀x ∈M(u), y ∈M(v);

(iv) maximal η-monotone, if M is η-monotone and (I + ρM)(H) = H, for any
ρ > 0, where I stands for an identity operator.

Definition 2.3. [2] Let η : H ×H → H be a single-valued mapping. A proper convex
function φ : H → IR ∪ {+∞} is said to be η-subdifferentiable at a point u ∈ H, if there
exists a point f? ∈ H such that

φ(v)− φ(u) ≥ 〈f?, η(u, v)〉, ∀v ∈ H, (2.1)

where f? is called an η-subdifferentiable of φ at u. The set of all η-subdifferentiable of φ
at u is denoted by ∂φ(u). The mapping ∂φ : H → 2H defined by

∂φ(u) = {f? ∈ H : φ(v)− φ(u) ≥ 〈f?, η(u, v)〉, ∀v ∈ H},

is said to be η-subdifferential of φ at u.
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Definition 2.4. [2] Let φ : H → IR ∪ {+∞} be a proper convex function. For any given
u ∈ H and ρ > 0, if there exists a mapping η : H × H → H and a given unique point
w ∈ H such that

〈η(v, w), w − u〉 ≥ ρφ(w)− ρφ(v), ∀v ∈ H, (2.2)

then the mapping u 7→ w, denoted by J∂φρ (u) is said to be η-proximal mapping of φ.

By (2.1) and the definition of J∂φρ (u), it follows that

J∂φρ (u) = (I + ρ∂φ)−1(u), ∀u ∈ H, (2.3)

is called the proximal (resolvent) mapping of φ, where I stands for identity mapping on
H.

Let N1, N2, N3 : H × H → H, g : H → H be single-valued mappings and let M :
H → 2H be a maximal η-monotone mapping. Then the system of generalized nonlinear
variational-like inclusions (in short, SGNVLI) is to find u, v, w ∈ H such that

0 ∈ g(u)− g(v) + ρ1
[
N1(u, v) +M(g(u))

]
, ρ1 > 0, (2.4)

0 ∈ g(v)− g(w) + ρ2
[
N2(v, w) +M(g(v))

]
, ρ2 > 0, (2.5)

0 ∈ g(w)− g(u) + ρ3
[
N3(w, u) +M(g(w))

]
, ρ3 > 0. (2.6)

We remark that if u = v = w and ρ1 = ρ2 = ρ3, SGNVLI (2.4)-(2.6) reduces to a
variational inclusion of finding u ∈ H such that

0 ∈ N1(u, u) +M(g(u)). (2.7)

Variational inclusion (2.7) is an important generalization of variational inclusion consid-
ered by Hassouni and Moudafi [8]. For applications of such variational inclusions, see
[1, 2, 7, 9].

Some More Special Cases.

Case I: If g ≡ I, the Identity mapping and M(g(.)) ≡ ∂φ(.), where φ : H → R ∪ {+∞}
is a proper function, and ∂φ denotes the η-subdifferential of φ, then SGNVLI (2.4)-(2.6)
reduces to the following system of nonlinear variational-like inequalities: Find u, v, w ∈ H
such that〈

N1(u, v)− ρ−1
1 (u− v), η(x, u)

〉
+ φ(x)− φ(u) ≥ 0, ∀x ∈ H, ρ1 > 0 , (2.8)

〈
N2(v, w)− ρ−1

2 (v − w), η(x, v)
〉

+ φ(x)− φ(v) ≥ 0, ∀x ∈ H, ρ2 > 0 , (2.9)

〈
N3(w, u)− ρ−1

3 (w − u), η(x,w)
〉

+ φ(x)− φ(w) ≥ 0, ∀x ∈ H, ρ3 > 0 , (2.10)

which appears to be a new one.
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Case II: If in the system (2.8)-(2.10), η(x, u) ≡ x − u, η(x, v) ≡ x − v, η(x,w) ≡
x − w, ∀x, u, v, w,∈ H and ∂φ be the subdifferential of a proper convex lower semicon-
tinuous function φ : H → R∪{+∞}, then it reduces to the following system of nonlinear
variational inequalities: Find u, v, w ∈ H such that〈

N1(u, v)− ρ−1
1 (u− v), x− u

〉
+ φ(x)− φ(u) ≥ 0, ∀x ∈ H, ρ1 > 0 , (2.11)

〈
N2(v, w)− ρ−1

2 (v − w), x− v
〉

+ φ(x)− φ(v) ≥ 0, ∀x ∈ H, ρ2 > 0 , (2.12)

〈
N3(w, u)− ρ−1

3 (w − u), x− w
〉

+ φ(x)− φ(w) ≥ 0, ∀x ∈ H, ρ3 > 0 , (2.13)

which appears to be a new system.

Case III: If in the system (2.11)-(2.13), we take ∂φ = δK , the indicator function on a
nonempty closed convex set K ⊂ H, then system (2.11)-(2.13), reduces to the following
system: Find u, v, w ∈ K such that〈

ρ1N1(u, v)− (u− v), x− u
〉
≥ 0, ∀x ∈ K, ρ1 > 0 , (2.14)

〈
ρ2N2(v, w)− (v − w), x− v

〉
≥ 0, ∀x ∈ K, ρ2 > 0 , (2.15)

〈
ρ3N3(w, u)− (w − u), x− w

〉
≥ 0, ∀x ∈ K, ρ3 > 0 , (2.16)

which also appears to be a new system.

Case IV: If we take N3 = 0, w = u, N1(u, v) = N2(u, v) = T (v), where T : H → H be a
single-valued mapping, then SGNVLI (2.4)-(2.6), reduces to the following system: Find
u, v ∈ K such that

0 ∈ g(u)− g(v) + ρ1
[
T (v) +M(g(u))

]
, ρ1 > 0, (2.17)

0 ∈ g(v)− g(u) + ρ2
[
T (u) +M(g(v))

]
, ρ2 > 0, (2.18)

which is same as the system of nonlinear variational-like inclusions considered by Kazmi
and Bhat [7].

Remark 2.5. For the suitable choices of the mappings N1, N2, N3, g and M , SGNVLI
(2.4)-(2.6) reduces to similar types of variational inclusions and variational inequalities
considered by Yang et al. [10], Verma [6], Chang et al. [11], He and Gu [12].

Next, we give the following results, which are used in the sequel.

Lemma 2.6. [9] Let η : H ×H → H be a strictly monotone and let M : H → 2H be a
maximal η-monotone mapping. Then the following conclusions hold:
(a) 〈x− y, η(u, v)〉 ≥ 0, ∀(y, u) ∈ Graph(M) implies (x, u) ∈ Graph(M),
where Graph(M) := {(x, u) ∈ H ×H : x ∈Mu};
(b) the mapping (I + ρM)−1 is single-valued for any ρ > 0.
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Lemma 2.7. [9] Let η : H ×H → H be δ-strongly monotone and τ -Lipschitz continuous
mapping and let M : H → 2H be a maximal η-monotone mapping. Then the η-proximal

mapping of M , JMρ := (I + ρM)−1 is
τ

δ
-Lipcshitz continuous, i.e.,∥∥JMρ (u)− JMρ (v)

∥∥ ≤ τ

δ
‖u− v‖, ∀u, v ∈ H. (2.19)

where ρ > 0 is a constant.

Proof. Let u, v ∈ H. From the definition of JMρ , we have JMρ (u) = (I + ρM)−1(u).
This implies that

ρ−1(u− JMρ (u)) ∈M(JMρ (u)).

Similarly, we have

ρ−1(v − JMρ (v)) ∈M(JMρ (v)).

Since M is maximal η-monotone, we obtain

0 ≤ ρ−1
〈

(u− JMρ (u))− (v − JMρ (v)), η
(
JMρ (u), JMρ (v)

)〉
= ρ−1

〈
u− v, η

(
JMρ (u), JMρ (v)

)〉
− ρ−1

〈
JMρ (u)− JMρ (v), η

(
JMρ (u), JMρ (v)

)〉
.

Since ρ > 0, and η is δ-strongly monotone and τ -Lipschitz continuous, from the above
inequality, we have

δ
∥∥JMρ (u)− JMρ (v)

∥∥2 ≤ τ‖u− v‖ · ‖JMρ (u)− JMρ (v)‖.

This implies that ∥∥JMρ (u)− JMρ (v)
∥∥ ≤ τ

δ
‖u− v‖, ∀u, v ∈ H,

and this completes the proof.

3. Iterative Algorithms

In this section, a three-step iterative algorithm for solving SGNVLI (2.4)-(2.6) is sug-
gested and analyzed. First, we give the following lemma:

Lemma 3.1. u, v, w ∈ H is the solution of SGNVLI (2.4)–(2.6) if and only if it satisfies:

g(u) = JMρ1

[
g(v)− ρ1N1(u, v)

]
; ρ1 > 0, (3.1)

where

g(v) = JMρ2
[
g(w)− ρ2N2(v, w)

]
; ρ2 > 0, (3.2)

and

g(w) = JMρ3
[
g(u)− ρ3N3(w, u)

]
; ρ3 > 0. (3.3)

Here JMρi := (I+ρiM)−1; i = 1, 2, 3, ... is the proximal mapping, I stands for the Identity
mapping on H.
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Proof. From the definition of JMρ1 , we have

g(u) = (I + ρ1M)−1
[
g(v)− ρ1N1(u, v)

]
⇐⇒ g(v)− ρ1N1(u, v) ∈ (I + ρ1M)g(u)

⇐⇒ g(v)− ρ1N1(u, v) ∈ g(u) + ρ1M(g(u))

⇐⇒ 0 ∈ g(u)− g(v) + ρ1
[
N1(u, v) +M(g(u))

]
.

Similarly,

⇐⇒ 0 ∈ g(v)− g(w) + ρ2
[
N2(v, w) +M(g(v))

]
and

⇐⇒ 0 ∈ g(w)− g(u) + ρ3
[
N3(w, u) +M(g(w))

]
,∀u, v, w ∈ H.

Thus u, v, w ∈ H is the solution of SGNVLI (2.4)-(2.6).

The above lemma allows us to suggest the following iterative algorithm:

Algorithm 1

For any arbitrary chosen u0, v0, w0 ∈ H, compute the sequences {un}, {vn}, {wn} by
the iterative schemes:

un+1 = un − g(un) + JM1,η1
ρ1

[
g(vn)− ρ1N1(un, vn)

]
; ρ1 > 0

where

g(vn) = JM2,η2
ρ2

[
g(wn)− ρ2N2(vn, wn)

]
; ρ2 > 0

and

g(wn) = JM3,η3
ρ3

[
g(un)− ρ3N3(wn, un)

]
; ρ3 > 0

n = 0, 1, 2, ... .

If ρ1 = ρ2 = ρ3, un = vn = wn, N1 = N2 = N3 and M1 = M2 = M3 for all n ≥ 0, then
the Algorithm 1 reduces to the following iterative algorithm.

Algorithm 2

For any arbitrary chosen u0 ∈ H, compute the sequence {un} by the iterative scheme

un+1 = un − g(un) + JM1,η1
ρ1

[
g(un)− ρ1N1(un, un)

]
; ρ1 > 0

n = 0, 1, 2, ... .

We remark Iterative Algorithm 2 gives the approximate solution to the variational inclu-
sion (2.7).

4. Existence of Solution and Convergence Criteria

First, we recall the following concepts.

Definition 4.1. For all u, v ∈ H, a mapping N : H ×H → H, is said to be

(i) α1-strongly monotone with respect to first argument, if there exists a constant
α1 > 0 such that
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〈
N(u, .)−N(v, .), u− v

〉
≥ α1‖u− v‖2;

(ii) α2-strongly monotone with respect to second argument, if there exists a con-
stant α2 > 0 such that〈

N(., u)−N(., v), u− v
〉
≥ α2‖u− v‖2;

(iii) β1-Lipschitz continuous with respect to first argument, if there exists a constant
β1 > 0 such that

‖N(u, .)−N(v, .)‖ ≤ β1‖u− v‖;

(iv) β2-Lipschitz continuous with respect to second argument, if there exists a con-
stant β2 > 0 such that

‖N(., u)−N(., v)‖ ≤ β2‖u− v‖.

Now, we prove the following theorem, which ensures the existence of solution and the
convergence criteria of Algorithm 1 for SGNVLI (2.4)–(2.6).

Theorem 4.2. Let H be a real Hilbert space. Let η : H×H → H be δ-strongly monotone
and τ -Lipschitz continuous mapping, M : H → 2H be a maximal η-monotone mapping,
N1 : H ×H → H be α1-strongly monotone with respect to second argument and (β1, β2)-
Lipschitz continuous with respect to first and second argument, respectively, N2 : H ×
H → H be α2-strongly monotone with respect to second argument and (β3, β4)-Lipschitz
continuous with respect to first and second argument, respectively, N3 : H × H → H be
α3-strongly monotone with respect to second argument and (β5, β6)-Lipschitz continuous
with respect to first and second argument, respectively, g : H → H be σ-strongly monotone
and ζ-Lipschitz continuous. If there exist constants ρ1 > 0, ρ2 > 0, ρ3 > 0 such that

∣∣∣∣ρ1 − α1 + β1θ1
β2
2 − β2

1

∣∣∣∣ <
√
τ21

[
α2
1 − (1− θ21)β2

2

]
+ β1τ21 (β1 + 2αθ1)

(β2
2 − β2

1)τ1
, (4.1)

α1 > β2

√
1− θ21 , θ1 < 1 ,∣∣∣∣ρ2 − α2τ2 − (σδ2 − θ1τ2)β3

(β2
4 − β2

3)τ2

∣∣∣∣

<

√[
α2τ2 − (σδ2 − θ1τ2)β3

]2
− (β2

4 − β2
3){σδ2(2θ1τ2 − σδ2) + τ22 (1− θ21)}

(β2
4 − β2

3)τ2
,

(4.2)

α2τ2 − (σδ2 − θ1τ2)β3 >
√

(β2
4 − β2

3){σδ2(2θ1τ2 − σδ2) + τ22 (1− θ21)} ,

∣∣∣∣ρ3 − α3τ3 − (σδ3 − θ1τ3)β5
(β2

6 − β2
5)τ3

∣∣∣∣
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<

√[
α3τ3 − (σδ3 − θ1τ3)β5

]2
− (β2

6 − β2
5){σδ3(2θ1τ3 − σδ3) + τ23 (1− θ21)}

(β2
6 − β2

5)τ3
,

(4.3)

α3τ3 − (σδ3 − θ1τ3)β5 >
√

(β2
6 − β2

5){σδ3(2θ1τ3 − σδ3) + τ23 (1− θ21)}, (4.4)

where θ1 =
√

1− 2σ + ζ2, then the iterative sequences {un}, {vn}, {wn} generated by
Algorithm 1 strongly converge to u, v, w, respectively, in H and u, v, w ∈ H is the solution
of SGNVLI (2.4)–(2.6).

Proof. From Algorithm 1, Lemma 3.1 and (3.1), we have

‖un+2 − un+1‖ =
∥∥un+1 − g(un+1) + JMρ1

[
g(vn+1)− ρ1N1(un+1, vn+1)

]
− un + g(un)− JMρ1

[
g(vn)− ρ1N1(un, vn)

]∥∥
≤
∥∥un+1 − un −

(
g(un+1)− g(un)

)∥∥
+
∥∥JMρ1 [g(vn+1)− ρ1N1(un+1, vn+1)

]
− JMρ1

[
g(vn)− ρ1N1(un, vn)

]∥∥
≤
∥∥un+1 − un −

(
g(un+1)− g(un)

)∥∥
+
τ1
δ1

∥∥g(vn+1)− g(vn)− ρ1
[
N1(un+1, vn+1)−N1(un, vn)

]∥∥
≤
∥∥un+1 − un −

(
g(un+1)− g(un)

)∥∥
+
τ1
δ1

∥∥g(vn+1)− g(vn)− ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

+N1(un+1, vn)−N1(un, vn)
]∥∥

≤
∥∥un+1 − un −

(
g(un+1)− g(un)

)∥∥
+
τ1
δ1

∥∥g(vn+1)− g(vn)− ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

]
+ ρ1

[
N1(un, vn)−N1(un+1, vn)

]∥∥
≤
∥∥un+1 − un −

(
g(un+1)− g(un)

)∥∥
+
τ1
δ1

∥∥g(vn+1)− g(vn)− ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

]∥∥
+
τ1ρ1
δ1

∥∥[N1(un, vn)−N1(un+1, vn)
]∥∥

≤
∥∥g(un+1)− g(un)−

(
un+1 − un

)∥∥
+
τ1
δ1

∥∥g(vn+1)− g(vn)− (vn+1 − vn)
∥∥

+
τ1
δ1

∥∥vn+1 − vn − ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

]∥∥
+
τ1ρ1
δ1

∥∥[N1(un+1, vn)−N1(un, vn)
]∥∥. (4.5)
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Since g is σ-strongly monotone and ζ-Lipschitz continuous, we have the following estimate:

‖g(vn+1)− g(vn)− (vn+1 − vn)‖2

= ‖g(vn+1)− g(vn)‖2 − 2
〈
g(vn+1)− g(vn), vn+1 − vn

〉
+ ‖vn+1 − vn‖2

≤ ζ2‖vn+1 − vn‖2 − 2σ‖vn+1 − vn‖2 + ‖vn+1 − vn‖2

≤ (1− 2σ + ζ2)‖vn+1 − vn‖2.

Hence,

‖g(vn+1)− g(vn)− (vn+1 − vn)‖ ≤
√

1− 2σ + ζ2 ‖vn+1 − vn‖. (4.6)

Similarly, we have

‖g(un+1)− g(un)−
(
un+1 − un

)
‖ ≤

√
1− 2σ + ζ2 ‖un+1 − un‖. (4.7)

Also, since N1 is α1-strongly monotone with respect to second argument and (β1, β2)-
Lipschitz continuous with respect to first and second arguments, respectively, we have
the following estimates:

‖N1(un+1, vn)−N1(un, vn)‖ ≤ β1‖un+1 − un‖,

and ∥∥vn+1 − vn − ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

]∥∥2
≤ ‖vn+1 − vn‖2 − 2ρ1

〈
N1(un+1, vn+1)−N1(un+1, vn), vn+1 − vn

〉
+ ρ21||N1(un+1, vn+1)−N1(un+1, vn)||2

≤ ‖vn+1 − vn‖2 − 2ρ1α1‖vn+1 − vn‖2 + ρ21β
2
2‖vn+1 − vn‖2

=
(

1− 2ρ1α1 + ρ21β
2
2

)
‖vn+1 − vn‖2.

Hence,

∥∥vn+1 − vn − ρ1
[
N1(un+1, vn+1)−N1(un+1, vn)

]∥∥ ≤ √
1− 2ρ1α1 + ρ21β

2
2 ‖vn+1−vn‖.

(4.8)

Now, we have

‖g(vn+1)− g(vn)‖ ‖vn+1 − vn‖ ≥
〈
g(vn+1)− g(vn), vn+1 − vn

〉
≥ σ‖vn+1 − vn‖2,

which implies
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‖vn+1 − vn‖ ≤
1

σ
‖g(vn+1)− g(vn)‖

≤ 1

σ

∥∥JMρ2 [g(wn+1)− ρ2N2(vn+1, wn+1)
]
− JMρ2

[
g(wn)− ρ2N2(vn, wn)

]∥∥
≤ τ2
σδ2

∥∥g(wn+1)− g(wn)− ρ2
[
N2(vn+1, wn+1)−N2(vn, wn)

]∥∥
≤ τ2
σδ2

∥∥g(wn+1)− g(wn)− ρ2
[
N2(vn+1, wn+1)−N2(vn+1, wn)

+N2(vn+1, wn)−N2(vn, wn)
]∥∥

≤ τ2
σδ2

∥∥g(wn+1)− g(wn)− (wn+1 − wn) + (wn+1 − wn)

− ρ2
[
N2(vn+1, wn+1)−N2(vn+1, wn)

]∥∥
+
τ2ρ2
σδ2

∥∥N2(vn, wn)−N2(vn+1, wn)
∥∥

≤ τ2
σδ2

∥∥g(wn+1)− g(wn)− (wn+1 − wn)
∥∥

+
τ2
σδ2

∥∥wn+1 − wn − ρ2
[
N2(vn+1, wn+1)−N2(vn+1, wn)

]∥∥
+
τ2ρ2
σδ2

∥∥N2(vn+1, wn)−N2(vn, wn)
∥∥. (4.9)

Since N2 is α2-strongly monotone with respect to second argument and (β3, β4)-Lipschitz
continuous with respect to first and second arguments, respectively, we have the following
estimates:

‖N2(vn+1, wn)−N2(vn, wn)‖ ≤ β3‖vn+1 − vn‖ ,
and ∥∥wn+1 − wn − ρ2

[
N2(vn+1, wn+1)−N2(vn+1, wn)

]∥∥2
≤ ‖wn+1 − wn‖2 − 2ρ2

〈
N2(vn+1, wn+1)−N2(vn+1, wn), wn+1 − wn

〉
+ ρ22‖N2(vn+1, wn+1)−N2(vn+1, wn)‖2

≤ ‖wn+1 − wn‖2 − 2ρ2α2‖wn+1 − wn‖2 + ρ22β
2
4‖wn+1 − wn‖2

=
(
1− 2ρ2α2 + ρ22β

2
4

)
‖wn+1 − wn‖2.

Hence,

∥∥wn+1 − wn − ρ2
[
N2(vn+1, wn+1)−N2(vn+1, wn)

]∥∥
≤
√

1− 2ρ2α2 + ρ22β
2
4 ‖wn+1 − wn‖. (4.10)

Again, since g is σ-strongly monotone and ζ-Lipschitz continuous, we have the following
estimate:



Three-Step Iterative Scheme for Solvability ... 441

‖g(wn+1)− g(wn)− (wn+1 − wn)‖2

= ‖g(wn+1)− g(wn)‖2 − 2
〈
g(wn+1)− g(wn), wn+1 − wn

〉
+ ‖wn+1 − wn‖2

≤ ζ2‖wn+1 − wn‖2 − 2σ‖wn+1 − wn‖2 + ‖wn+1 − wn‖2

≤ (1− 2σ + ζ2)‖wn+1 − wn‖2.

Hence,

‖g(wn+1)− g(wn)− (wn+1 − wn)‖ ≤
√

1− 2σ + ζ2 ‖wn+1 − wn‖. (4.11)

Now, we have

‖g(wn+1)− g(wn)‖ ‖wn+1 − wn‖ ≥
〈
g(wn+1)− g(wn), wn+1 − wn

〉
≥ σ‖wn+1 − wn‖2,

which implies

‖wn+1 − wn‖ ≤
1

σ
‖g(wn+1)− g(wn)‖

≤ 1

σ

∥∥JMρ3 [g(un+1)− ρ3N3(wn+1, un+1)
]
− JMρ3

[
g(un)− ρ3N3(wn, un)

]∥∥
≤ τ3
σδ3

∥∥g(un+1)− g(un)− ρ3
[
N3(wn+1, un+1)−N3(wn, un)

]∥∥
≤ τ3
σδ3

∥∥g(un+1)− g(un)− ρ2
[
N3(wn+1, un+1)−N3(wn+1, un)

+N3(wn+1, un)−N3(wn, un)
]∥∥

≤ τ3
σδ3

∥∥g(un+1)− g(un)− (un+1 − un) + (un+1 − un)

− ρ3
[
N3(wn+1, un+1)−N3(wn+1, un)

]∥∥
+
τ3ρ3
σδ3

∥∥N3(wn, un)−N3(wn+1, un)
∥∥

≤ τ3
σδ3

∥∥g(un+1)− g(un)− (un+1 − un)
∥∥

+
τ3
σδ3

∥∥un+1 − un − ρ3
[
N3(wn+1, un+1)−N3(wn+1, un)

]∥∥
+
τ3ρ3
σδ3

∥∥N3(wn+1, un)−N3(wn, un)
∥∥. (4.12)

Since N3 is α3-strongly monotone with respect to second argument and (β5, β6)-Lipschitz
continuous with respect to first and second arguments, respectively, we have the following
estimates:

‖N3(wn+1, un)−N3(wn, un)‖ ≤ β5‖wn+1 − wn‖,
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and ∥∥un+1 − un − ρ3
[
N3(wn+1, un+1)−N3(wn+1, un)

]∥∥2
≤ ‖un+1 − un‖2 − 2ρ3

〈
N3(wn+1, un+1)−N3(wn+1, un), un+1 − un

〉
+ ρ23‖N3(wn+1, un+1)−N3(wn+1, un)‖2

≤ ‖un+1 − un‖2 − 2ρ3α3‖un+1 − un‖2 + ρ23β
2
6‖un+1 − un‖2

=
(
1− 2ρ3α3 + ρ23β

2
6

)
‖un+1 − un‖2.

Hence,∥∥un+1 − un − ρ3
[
N3(wn+1, un+1)−N3(wn+1, un)

]∥∥ ≤ √
1− 2ρ3α3 + ρ23β

2
6 ‖un+1−un‖.

Thus from (4.12), we have

‖wn+1 − wn‖ ≤
τ3
σδ3

√
1− 2σ + ζ2 ‖un+1 − un‖

+
τ3
σδ3

√
1− 2ρ3α3 + ρ23β

2
6 ‖un+1 − un‖+

τ3ρ3β5
σδ3

‖wn+1 − wn‖,

which implies

‖wn+1 − wn‖ ≤
τ3(θ1 + θ2)

σδ3 − τ3ρ3β5
‖un+1 − un‖, (4.13)

where θ1 =
√

1− 2σ + ζ2 ; θ2 =
√

1− 2ρ3α3 + ρ23β
2
6 .

Now from (4.9), we have

‖vn+1 − vn‖ ≤
τ2
σδ2

√
1− 2σ + ζ2 ‖wn+1 − wn‖

+
τ2
σδ2

√
1− 2ρ2α2 + ρ22β

2
4 ‖wn+1 − wn‖+

τ2ρ2β3
σδ2

‖vn+1 − vn‖,

which implies

‖vn+1 − vn‖ ≤
τ2(θ1 + θ3)

σδ2 − τ2ρ2β3
‖wn+1 − wn‖, (4.14)

where θ1 =
√

1− 2σ + ζ2 ; θ3 =
√

1− 2ρ2α2 + ρ22β
2
4 .

Now from (4.5), we have

‖un+2 − un+1‖ ≤ θ1‖un+1 − un‖+
τ1θ1
δ1
‖vn+1 − vn‖

+
τ1
δ1

√
1− 2ρ1α1 + ρ21β

2
2 ‖vn+1 − vn‖

+
τ1ρ1β1
δ1

‖un+1 − un‖

≤
(
θ1 +

τ1ρ1β1
δ1

)
‖un+1 − un‖+

τ1
δ1

(θ1 + θ4) ‖vn+1 − vn‖,
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where θ1 =
√

1− 2σ + ζ2 ; θ4 =
√

1− 2ρ1α1 + ρ21β
2
2 .

‖un+2 − un+1‖

≤
(
θ1 +

τ1ρ1β1
δ1

)
‖un+1 − un‖+

τ1τ2(θ1 + θ3)(θ1 + θ4)

δ1(σδ2 − τ2ρ2β3)
||wn+1 − wn||

≤
(
θ1 +

τ1ρ1β1
δ1

)
‖un+1 − un‖+

τ1τ2(θ1 + θ3)(θ1 + θ4)

δ1(σδ2 − τ2ρ2β3)
‖wn+1 − wn‖

≤
(
θ1 +

τ1ρ1β1
δ1

)
||un+1 − un||+

τ1τ2τ3(θ1 + θ2)(θ1 + θ3)(θ1 + θ4)

δ1(σδ2 − τ2ρ2β3)(σδ3 − τ3ρ3β5)
‖un+1 − un‖

=
{
θ1 +

τ1ρ1β1
δ1

+
τ1τ2τ3(θ1 + θ2)(θ1 + θ3)(θ1 + θ4)

δ1(σδ2 − τ2ρ2β3)(σδ3 − τ3ρ3β5)

}
‖un+1 − un‖,

where

θ1 =
√

1− 2σ + ζ2 ; θ2 =
√

1− 2ρ3α3 + ρ23β
2
6 ;

θ3 =
√

1− 2ρ2α2 + ρ22β
2
4 ; θ4 =

√
1− 2ρ1α1 + ρ21β

2
2 .

Hence, we have

‖un+2 − un+1‖ ≤ θ‖un+1 − un‖, (4.15)

where

θ := θ1 +
τ1ρ1β1
δ1

+
τ1τ2τ3(θ1 + θ2)(θ1 + θ3)(θ1 + θ4)

δ1(σδ2 − τ2ρ2β3)(σδ3 − τ3ρ3β5)

< θ1 +
τ1ρ1β1
δ1

+
τ1(θ1 + θ4)

δ1
.

Since
τ3(θ1 + θ2)

(σδ3 − τ3ρ3β5)
< 1 ,

τ2(θ1 + θ3)

(σδ2 − τ2ρ2β3)
< 1 by conditions (4.2) and (4.3). Also

condition (4.1) ensures that θ1 +
τ1ρ1β1
δ1

+
τ1(θ1 + θ4)

δ1
< 1.

Thus 0 < θ < 1 . Now (4.15) implies that {un} is a Cauchy sequence in H. Also,
(4.13) and (4.14) implies that {vn}, {wn} are cauchy sequences in H. Hence, there exist
u, v, w ∈ H such that un → u, vn → v and wn → w. Since N1,N2,N3,g, JMρ1 ,JMρ2 , JMρ3 are
continuous, then it follows from Algorithm 1 that u, v, w ∈ H satisfy (3.1), (3.2), (3.3),
and thus, by Lemma 3.1, it follows that u, v, w ∈ H is a solution of SGNVLI (2.4)–(2.6).
This completes the proof.

If ρ1 = ρ2 = ρ3 and u = v = w, Theorem 4.2 reduces to the following theorem
which ensures the existence of a solution and the convergence criteria of Algorithm 2 for
variational inclusion (2.7).

Theorem 4.3. Let η,M ,N1 and g be same as in Theorem 4.2. If there exists a constant
ρ1 > 0 such that ∣∣∣∣ρ1 − τ1α1 − β1[δ1(1− θ1)− τ1θ1]

τ1(β2
2 − β2

1)

∣∣∣∣
<

√{
τ1α1 − β1[δ1(1− θ1)− τ1θ1

}2

− (β2
2 − β2

1)
{
τ21 −

(
δ1(1− θ1)− τ1θ1

)2}
(β2

2 − β2
1)τ1

,
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τ1α1 − β1[δ1(1− θ1)− τ1θ1] >

√
(β2

2 − β2
1)
{
τ21 −

(
δ1(1− θ1)− τ1θ1

)2}
, (4.16)

where
θ1 :=

√
1− 2σ + ζ2;

then the iterative sequence {un} generated by Algorithm 2 strongly converges to u ∈ H is
the solution of variational inclusion (2.7).
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