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1. Introduction

In 1995, Matthews [1] introduced a new class of (generalized) metric spaces called
partial metric spaces in order to study the denotational semantics of data of networks
which play an important role in constructing models in the theory of computation. Its
definition is

Definition 1.1. A partial metric space is a pair (X, p) where X is a non-empty set and
p : X ×X → [0,∞) is such that

(PM1) p(x, y) = p(y, x) (symmetry);
(PM2) if p(x, x) = p(x, y) = p(y, y), then x = y (equality);
(PM3) p(x, x) ≤ p(x, y) (small self-distances);
(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (the triangle inequality),

for all x, y, z ∈ X.
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Fore more details on topological aspects, one can see [2]. Further, Matthews [1] also
established the Banach contraction principle in the setting of partial metric spaces. Sub-
sequently, many authors obtained several (coincidence and common) fixed point theorems
using the concept of a partial metric. These results have a lot of applications and inter-
esting consequences. For instance, we may refer to [3–13].

On the other hand, the de of a quasi-metric is given as follows:

Definition 1.2. Let X be a non-empty and let d : X ×X → [0,∞) be a function which
satisfies:
(d1)d(x, y) = 0 if and only if x = y,
(d2)d(x, y) ≤ d(x, z)+d(z, y). Then d is called a quasi-metric and the pair (X, d) is called
a quasi-metric space.

Note that, it misses the symmetry (d(x, y) 6= d(y, x)). For some known fixed point
results on these spaces, we refer to [14–22].

On the other hand, the concept of a b-metric space was introduced by Czerwik in
[23] as a generalization of a metric space where the triangular inequality is replaced by
d(x, y) ≤ s[d(x, z) + d(z, y) with s ≥ 1, for all x, y, z ∈ X. Since then several papers deal
with fixed point theory for single valued and multivalued operators in b-metric spaces, for
instance, see [24–32].

In 2015, Gupta and Gautam [33] combine all above concepts and introduced a general-
ized metric space called a quasi-partial b-metric space and established some related fixed
point results.

The de of a quasi partial b-metric space is given as follows:

Definition 1.3. Let s ≥ 1. Let X be a non-empty and let q : X × X → [0,∞) be a
function which satisfies:
(q1)q(x, x) = q(y, y) = q(x, y) then, x = y,
(q2)q(x, x) ≤ q(x, y),
(q3)q(x, x) ≤ q(y, x),
(q4)q(x, y) ≤ s[q(x, z) + q(z, y)] − q(z, z). Then q is called a quasi partial b-metric and
the pair (X, q) is called a quasi partial b-metric space.

We have the following simple lemma

Lemma 1.4. Let (X, q) quasi partial b-metric space. Then,
(1) If q(x, y) = 0 then, x = y,
(2) If x 6= y then, q(x, y) > 0 and q(y, x) > 0.

Mention that the topological notions of quasi partial b-metric spaces, such as, limit,
continuity, completeness and Cauchyness should be reconsidered under the left and right
approaches.

If q is a quasi partial b-metric on X, then the function dq : X ×X → [0,∞) given by

dq(x, y) = q(x, y) + q(y, x)− q(x, x)− q(y, y), (1.1)

is a b-metric on X [33].
Let {xn} be a sequence in X. It is said to be

(i) convergent to a point x ∈ X if and only if

q(x, x) = lim
n−→+∞

q(x, xn) = lim
n−→+∞

q(x, xn).
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(ii) a Cauchy sequence if there exist (and are finite) lim
n,m−→+∞

q(xn, xm) and

lim
n,m−→+∞

q(xm, xn).

A quasi partial b-metric (X, q) is said to be complete if every Cauchy sequence {xn} in
X converges to a point x ∈ X, such that

q(x, x) = lim
n,m−→+∞

q(xn, xm) = lim
n,m−→+∞

q(xm, xn).

Lemma 1.5. [33] Let (X, q) be a quasi partial b-metric space. Then, (X, q) is complete
if the b-metric space (X, dq) is complete.

The following result is easy to check.

Lemma 1.6. Let (X, q) be a quasi partial b-metric space and T : X → X be a given
mapping. Suppose that T is continuous at u ∈ X. Then, for all sequence {xn} in X such
that xn → u, we have Txn → Tu, that is,

q(Tu, Tu) = lim
n−→+∞

q(Tu, Txn) = lim
n−→+∞

q(Tu, Txn).

Example 1.7. Let X = {0, 1, 2} and q : X ×X → R+ defined by

q(0, 0) = q(1, 1) = q(2, 2) = 1, q(2, 0) = q(0, 2) = 4

q(1, 0) = q(2, 1) = 2, q(1, 2) = q(0, 1) = 5.

Then, (X, q) is a quasi partial b−metric space with coefficient s = 2. Note that q is not
a quasi partial metric since q(2, 0) = 4 > 2 = q(2, 1) + q(1, 0)− q(1, 1).

Example 1.8. Let X = [0,+∞). Define q : X × X → R+ by q(x, y) = (|x − y| + x)2.
Then, (X, q) is a quasi partial b−metric space with coefficient s = 2. Note that q is not
a quasi partial metric since q(3, 1) = 25 > 21 = q(3, 2) + q(2, 1)− q(2, 2).

Example 1.9. Let X = [0,+∞). Define q : X × X → R+ by q(x, y) = (2|x − y| +
max{x, y}+ x)2.
Then, (X, q) is a quasi partial b−metric space with coefficient s = 2. Note that q is not
a quasi partial metric since q(3, 1) = 100 > 84 = q(3, 2) + q(2, 1)− q(2, 2).

In 2012, Samet et al. [34] introduced the concept of α-admissible maps and suggested a
very interesting class of mapping, α−ψ contraction mappings, to investigate the existence
and uniqueness of a fixed point.

Definition 1.10. [34] For a nonempty set X, let T : X → X and α : X ×X → [0,∞) be
mappings. We say that the self-mapping T on X is α-admissible if for all x, y ∈ X, we
have

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1. (1.2)

Many papers dealing with above notion have been considered to prove some (common)
fixed point results, for example see [15, 35–43].

Let Ψs be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

i) ψ is nondecreasing;

(ii)

+∞∑
n=1

snψn(t) <∞ for all t > 0.
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Remark 1.11. If ψ ∈ Ψs, we have ψ(t) < t for all t > 0, ψ is continuous at t = 0 and
ψ(0) = 0.

We introduce the following.

Definition 1.12. Let (X, q) be a quasi partial b-metric space and T : X → X be a given
mapping. We say that T is an α−ψ contractive mapping if there exist α : X×X → [0,∞)
and ψ ∈ Ψs such that, for all x, y ∈ X, with α(x, y) ≥ 1, we have

q(Tx, Ty) ≤ ψ(q(x, y)). (1.3)

In this paper, we are concerned with a new class of contractions via α-admissible
mappings. Our aim is to prove some fixed point theorems involving above contractions
in the setting of quasi partial b-metric spaces. Our obtained results are supports by some
examples and an application on dynamic programming.

2. Main Results

We state our first fixed point result.

Theorem 2.1. Let (X, q) be a complete quasi partial b- metric space and T : X → X be
an α− ψ contractive mapping. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

(iii) T is continuous;
(iv) α(z, z) ≥ 1 for all z verifying q(z, Tz) ≤ sq(Tz, Tz) and q(z, z) = 0.

Then, there exists u ∈ X such that u is a fixed point of T , that is, Tu = u.

Proof. By assumption (ii), there exists a point x0 ∈ X such that α(x0, Tx0) ≥ 1. We
define a sequence {xn} in X by xn+1 = Txn = Tn+1x0 for all n ≥ 0. Suppose that
xn0

= xn0+1 for some n0. So the proof is completed since u = xn0
= xn0+1 = Txn0

= Tu.
Consequently, we assume that

xn 6= xn+1 for all n. (2.1)

Since T is α−admissible, observe that

α(x0, x1) = α(x0, Tx0) ≥ 1⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

By repeating the process above, we derive that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . . (2.2)

From, (1.3) and (2.2), we find that for all n = 1, 2, . . .

q(xn, xn+1) = q(Txn−1, Txn) ≤ ψ(q(xn−1, xn)). (2.3)

By induction, we get, for all n = 0, 1, . . .

q(xn, xn+1) =≤ ψn(q(x0, x1)). (2.4)

Since T is α−admissible, we also have

α(x1, x0) = α(Tx0, Tx1) ≥ 1⇒ α(Tx1, Tx0) = α(x2, x1) ≥ 1.

By repeating the process above, we derive that

α(xn+1, xn) ≥ 1, for all n = 0, 1, . . . . (2.5)
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From, (1.3) and (2.5), we find that for all n = 0, 1, . . .

q(xn+1, xn) ≤ ψn(q(x1, x0)).

We will show that {xn} is Cauchy sequence in (X, q).
Using (q4), we have

q(xn, xn+2) ≤ s [q(xn, xn+1) + q(xn+1, xn+2)]− q(xn+1, xn+1)

≤ s [q(xn, xn+1) + q(xn+1, xn+2)] ≤ sq(xn, xn+1) + s2q(xn+1, xn+2)

and, similarly,

q(xn, xn+3) ≤ s [q(xn, xn+1) + q(xn+1, xn+3)]− q(xn+1, xn+1)

≤ s [q(xn, xn+1) + q(xn+1, xn+3)]

≤ sq(xn, xn+1) + s2 [q(xn+1, xn+2) + q(xn+2, xn+3)]− sq(xn+2, xn+2)

≤ sq(xn, xn+1) + s2q(xn+1, xn+2) + s3q(xn+2, xn+3).

By induction, we get for all m > n

q(xn, xm) ≤
m−1∑
k=n

sk−n+1q(xk, xk+1) ≤
m−1∑
k=n

skq(xk, xk+1) (2.6)

≤
m−1∑
k=n

skψk(q(x0, x1)) ≤
∞∑
k=n

skψk(q(x0, x1)). (2.7)

Using again (q4), we also have

q(xn+2, xn) ≤ s [q(xn+2, xn+1) + q(xn+1, xn)]− q(xn+1, xn+1)

≤ s2q(xn+2, xn+1) + sq(xn+1, xn)

and, similarly,

q(xn+3, xn) ≤ s [q(xn+3, xn+1) + q(xn+1, xn)]− q(xn+1, xn+1)

≤ s [q(xn+3, xn+1) + q(xn+1, xn)]

≤ s2 [q(xn+3, xn+2) + q(xn+2, xn+1] + sq(xn+1, xn)− sq(xn+2, xn+2)

≤ s3q(xn+3, xn+2) + s2q(xn+2, xn+1) + sq(xn+1, xn).

By induction, we get for all m > n

q(xm, xn) ≤
m−1∑
k=n

sk−n+1q(xk+1, xk) ≤
m−1∑
k=n

skq(xk+1, xk) (2.8)

≤
∞∑
k=n

skψk(q(x1, x0)). (2.9)

Since

∞∑
n=0

snψn(q(x0, x1)) < ∞ and

∞∑
n=0

snψn(q(x1, x0)) < ∞, then from (2.6) and (2.8),

we obtain

lim
n,m→∞

q(xn, xm) = 0. (2.10)
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We conclude that {xn} is a Cauchy sequence in (X, q). Since (X, q) is complete, so by
(2.10), there exists u ∈ X such that

lim
n→∞

q(xn, u) = lim
n→∞

q(u, xn) = q(u, u) = lim
n,m→∞

q(xn, xm) = 0.

We will show that u is a fixed point of T.
Since T is continuous, we obtain that lim

n→∞
q(Txn, Tu) = q(Tu, Tu).

Using (q4), we have for all n ∈ N,

q(u, Tu) ≤ sq(u, xn+1) + sq(xn+1, Tu)− q(xn+1, xn+1) ≤ sq(u, xn+1) + sq(Txn, Tu)

Then, letting n→∞, we have

q(u, Tu) ≤ sq(Tu, Tu) (2.11)

Having q(u, u) = 0 and (2.11), so by by (iv), we obtain α(u, u) ≥ 1. Using now (1.3) and
the fact that ψ ∈ Ψs, we have

0 ≤ q(Tu, Tu) ≤ ψ(q(u, u)) = ψ(0) = 0

Then, q(Tu, Tu) = 0. So, by (2.11), we get q(u, Tu) = 0. Hence, by Lemma 1.5, we have
Tu = u and hence, u is a fixed point of T.

In the following, we state some consequences and corollaries of our obtained result.

Corollary 2.2. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given mapping. Suppose there exist two functions α : X ×X → [0,∞) and ψ ∈ Ψs such
that

α(x, y)q(Tx, Ty) ≤ ψ(q(x, y)) (2.12)

for all x, y ∈ X. Suppose also that

(i) T is α−admissible;
(ii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

(iii) T is continuous;
(iv) α(z, z) ≥ 1 for all z verifying q(z, Tz) ≤ sq(Tz, Tz) and q(z, z) = 0.

Then, there exists u ∈ X such that u is a fixed point of T , that is, Tu = u.

Proof. Let x, y ∈ X such that α(x, y) ≥ 1. Then, if (2.12) holds, we have

q(Tx, Ty) ≤ α(x, y)q(Tx, Ty) ≤ ψ(q(x, y)).

Then, the proof is concluded by Theorem 2.1.

Corollary 2.3. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given continuous mapping. Suppose there exists a function ψ ∈ Ψs such that

q(Tx, Ty) ≤ ψ(q(x, y)) (2.13)

for all x, y ∈ X. Then, there exists u ∈ X such that u is a fixed point of T , that is,
Tu = u.

Proof. It suffices to take α(x, y) = 1 in Corollary 2.2.
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Corollary 2.4. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given continuous mapping. Suppose there exists a constant 0 < k < 1

s such that

q(Tx, Ty) ≤ kq(x, y) (2.14)

for all x, y ∈ X. Then, there exists u ∈ X such that u is a fixed point of T , that is,
Tu = u.

Proof. It suffices to take ψ(t) = kt with k ∈ (0, 1s ) in Corollary 2.3.

We replace the continuity of T and the condition (iv) given in Theorem 2.1 by the
following hypothesis.

(H) for any sequence {xn} in X with α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all
n ∈ N and xn → x ∈ X as n→∞, then there exists a subsequence {xn(k)} of {xn} such
that α(xn(k), x) ≥ 1 and α(x, xn(k)) ≥ 1 for all k ∈ N.

We also need to consider for T : X → X, the mapping fT : X → [0,∞) defined by

fT (x) =
1

2
(q(x, Tx) + q(Tx, x)).

Now, we state the following result.

Theorem 2.5. Let (X, q) be a complete quasi partial b- metric space and T : X → X be
an α− ψ contractive mapping. Suppose that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

(iii) (H) is verified or fT is lower semi-continuous.

Then, there exists u ∈ X such that u is a fixed point of T , that is, Tu = u.

Proof. Proceeding as in the proof of Theorem 2.1, we construct a Cauchy sequence {xn}
in X with α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n ∈ N and xn → u as n→∞. We
show that Tu = u.
Suppose that (H) is verified (that is, α(xn(k), u) ≥ 1), then, by (1.3) and using (q4), we
have for all k ∈ N,

0 ≤ q(u, Tu) ≤ sq(u, xn(k)+1) + sq(xn(k)+1, Tu)− q(xn(k)+1, xn(k)+1)

≤ sq(u, xn(k)+1) + sq(Txn(k), Tu)

≤ sq(u, xn(k)+1) + sψ(q(xn(k), u)).

We know that

lim
k→∞

q(u, xn(k)+1) = lim
k→∞

q(xn(k), u) = q(u, u) = 0.

Moreover, since ψ ∈ Ψs, so we get

lim
n→∞

ψ(q(xn(k), u)) = ψ(0) = 0.

Thus, q(u, Tu) = 0. So, by Lemma 1.5, we have Tu = u.
Now, we pass to the case where fT is lower semi-continuous. We have

fT (u) ≤ lim
n→∞

1

2
(q(xn, Txn) + q(Txn, xn)) =

1

2
lim
n→∞

(q(xn, xn+1) + q(xn+1, xn)) = 0.

Thus, q(u, Tu) = 0, and so Tu = u.
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Analogously, we can derive the following results.

Corollary 2.6. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given mapping. Suppose there exist two functions α : X ×X → [1,∞) and ψ ∈ Ψs such
that

α(x, y)q(Tx, Ty) ≤ ψ(q(x, y)) (2.15)

for all x, y ∈ X. Suppose also that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

(iii) (H) is verified or fT is lower semi-continuous.

Then, there exists u ∈ X such that u is a fixed point of T , that is, Tu = u.

To prove uniqueness of the fixed point given in Theorem 2.1 (resp. Theorem 2.5), we
need to take the following additional condition:

(U): For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1, where Fix(T ) denotes the set of fixed
points of T.

Theorem 2.7. Adding condition (U) to the hypotheses of Theorem 2.1 (resp. Theorem
2.5), we obtain that u is the unique fixed point of T.

Proof. We argue by contradiction, that is, there exist u, v ∈ X such that u = Tu and
v = Tv with u 6= v. By assumption (U), we have α(u, v) ≥ 1, so by (1.3)

0 < q(u, v) = q(Tu, Tv) ≤ ψ(q(u, v)) < q(u, v)

which is a contradiction. Thus, u = v, so the uniqueness of the fixed point of T.

Corollary 2.8. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given mapping. Suppose there exists a function ψ ∈ Ψs such that

q(Tx, Ty) ≤ ψ(q(x, y)) (2.16)

for all x, y ∈ X. Then there exists u ∈ X such that u is the unique fixed point of T , that
is, Tu = u.

Proof. It suffices to take α(x, y) = 1 in Corollary 2.6. The uniqueness of u follows from
Theorem 2.7.

Corollary 2.9. Let (X, q) be a complete quasi partial b-metric space and T : X → X be
a given mapping. Suppose there exists a constant 0 < k < 1

s such that

q(Tx, Ty) ≤ kq(x, y) (2.17)

for all x, y ∈ X. Then, there exists a unique fixed point of T .

Proof. It suffices to take ψ(t) = kt in Corollary 2.8.

Now, we give the following example to support our result.
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Example 2.10. We go back to example 1.8 where X = [0,+∞). Define q : X×X → R+

by q(x, y) = (|x− y|+x)2. Mention that (X, q) is a complete quasi partial b-metric space

. Define the map T : X → X by T (x) =
1

2
x and

α(x, y) =

{
1, x, y ∈ [0, 1]

0, otherwise.

Let ψ(t) =
1

3
t. It’s clear that ψ ∈ Ψs. Note that T is α−admissible. In fact, let x, y ∈ X

such that α(x, y) ≥ 1. So x, y ∈ [0, 1]. Owing the definition of T, we have Tx, Ty ∈ [0, 1]
and hence, α(Tx, Ty) ≥ 1. Then, T is α−admissible. Now, we show that (H) is verified.
Let {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all
n ∈ N, then {xn} ⊂ [0, 1]. If xn → u as n → ∞, we have q(u, xn) = (|xn − u| + u)2 →
q(u, u) = u2 as n → ∞. Then, |xn − u| → 0 as n → ∞. Hence, u ∈ [0, 1] and hence,
α(xn, u) = α(u, xn) = 1.
Moreover, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1. In fact, for
x0 = 1

2 , we have

α(
1

2
, T

1

2
) = α(

1

2
,

1

4
) = 1, α(T

1

2
,

1

2
) = α(

1

4
,

1

2
) = 1.

Now, we show that T is α−ψ−contractive mapping. Let x, y ∈ X such that α(x, y) ≥ 1.
So, x, y ∈ [0, 1]. We have

q(Tx, Ty)=(|Tx− Ty|+ Tx)2 =
1

4
(|x− y|+ x)2 ≤ 1

3
(|x− y|+ x)2=

1

3
q(x, y) = ψ(q(x, y))

Then, all the required hypothesis of Theorem 2.5 are satisfied. Here , u = 0 is the unique
fixed point of T.

Remark 2.11. Note that Theorem 2.1 is true for the Example 2.10, since T is continuous
in (X, q) and condition (iv) of this theorem is verified.

3. Application

In this section, we present an application on dynamic programming. In particular,
we assume that U and V are Banach space and W ⊂ U is a state space and D ⊂ V is
a decision space. it is well known that the dynamic programming provides useful tools
for mathematical optimization and computer programming as well. In particular, we are
interested in resolving the following functional equation

r(x) = sup
y∈D
{f(x, y) +G(x, y, r(τ(x, y)))}, x ∈W, (3.1)

where τ : W ×D → W, f : W ×D → R and G : W ×D × R → R. Here, we study the
existence and uniqueness of the bounded solution of the functional equation (3.1).
Let B(W ) denote the set of all bounded real valued functions on W and, for an arbitrary
h ∈ B(W ), define ‖h‖ = supx∈W |h(x)|. Clearly, (B(W ), ‖.‖) is a Banach space. Let
B(W ) be endowed with the quasi partial b−metric q (with s = 2) defined by

q(h, k) = [ sup
x∈W

|h(x)− k(x)|+ sup
x∈W

|h(x)|]2 = (‖h− k‖+ ‖h‖)2.
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We also define T : B(W )→ B(W ) by

T (h)(x) = sup
y∈D
{f(x, y) +G(x, y, h(τ(x, y)))}, (3.2)

for all h ∈ B(W ) and x ∈W. Obviously, if the functions f and G are bounded, then T is
well-defined. We shall prove the following theorem.

Theorem 3.1. Assume that there exists 0 ≤ r < 1√
2

such that for every (x, y) ∈W ×D

|G(x, y, h(τ(x, y)))−G(x, y, k(τ(x, y)))| ≤ r sup
x∈W

|h(x)− k(x)| (3.3)

f(x, y) +G(x, y, h(τ(x, y))) ≤ r sup
x∈W

|h(x)| (3.4)

where the functions G : W × D × R → R and f : W × D → R are bounded. Then, the
functional equation (3.1) has a unique bounded solution.

Proof. Let λ > 0 be an arbitrary positive real number, x ∈W , h ∈ B(W ) and k ∈ B(W ).
Then, by (3.2), there exist y1, y2 ∈ D such that

T (h)(x) < f(x, y1) +G(x, y1, h(τ(x, y1))) + λ, (3.5)

T (k)(x) < f(x, y2) +G(x, y2, k(τ(x, y2))) + λ, (3.6)

and

T (k)(x) ≥ f(x, y1) +G(x, y1, k(τ(x, y1))), (3.7)

T (h)(x) ≥ f(x, y2) +G(x, y2, h(τ(x, y2))). (3.8)

Then, by (3.5) and (3.7)

T (h)(x)− T (k)(x) ≤ G(x, y1, h(τ(x, y1)))−G(x, y1, k(τ(x, y1))) + λ

≤ |G(x, y1, h(τ(x, y1)))−G(x, y1, k(τ(x, y1)))|+ λ.

Also, by (3.6) and (3.8)

T (k)(x)− T (h)(x) ≤ G(x, y2, h(τ(x, y2)))−G(x, y2, h(τ(x, y2))) + λ

≤ |G(x, y2, h(τ(x, y2)))−G(x, y2, h(τ(x, y2)))|+ λ.

Thus, by (3.3), we have

|T (h)(x)− T (k)(x)| ≤ r sup
x∈W

|h(x)− k(x)|+ λ,

and with (3.4) we have

T (h)(x) ≤ r sup
x∈W

|h(x)|. (3.9)

Therefore, for h, k ∈ B(W ),

q(T (h), T (k)) = [ sup
x∈W

|T (h)(x)− T (k)(x)|+ sup
x∈W

|T (h)(x)|]2

≤ [r sup
x∈W

|h(x)− k(x)|+ λ+ r sup
x∈W

|h(x)|]2.

Since λ > 0 be an arbitrary positive real number, so

q(T (h), T (k)) ≤ [r sup
x∈W

|h(x)− k(x)|+ r sup
x∈W

|h(x)|]2 = r2q(h, k).
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Therefore, all conditions of Corollary 2.9 are verified with s = 2 and hence the operator
T has a unique fixed point. Then, the functional equation (3.1) has a unique bounded
solution.
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