Hermite-Hadamard Type Inequalities for g-GA-Convex Dominated Functions

İmdat İşcan

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey e-mail : imdati@yahoo.com

Abstract

In this paper, the author introduces the concept of g-GA-convex dominated function and gives a version of Hermite-Hadamard-type inequalities for g-GA-convex dominated functions. Applications are also given involving a functional and some common means.

MSC: 26A51; 26D10; 26D15
Keywords: Hermite-Hadamard inequality; GA-convex function; g-GA-convex dominated function

$$
\text { Submission date: } 24.12 .2018 \text { / Acceptance date: 06.03.2021 }
$$

1. Introduction

Let real function f be defined on some nonempty interval I of real line \mathbb{R}. The function f is said to be convex on I if inequality

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) \tag{1.1}
\end{equation*}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
It is general knowledge that if $f: I \rightarrow \mathbb{R}$ is a convex function and $a, b \in I$ with $a<b$, then

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

This inequality is well known in the literature as Hermite-Hadamard's inequality for convex functions. For various some results in recent years based on integral inequalities, you may see the papers [1-3].

The following defnitions and results are well known in the literature.
Definition 1.1 ([4, 5]). A function $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ is said to be GA-convex (geometric-arithmetically convex) if

$$
f\left(x^{t} y^{1-t}\right) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in I$ and $t \in[0,1]$.

The following proposition is obvious from definition.
Proposition 1.2. The function $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ is $G A$-convex if and only if $f \circ \exp$ is convex on the interval $\ln I=\{\ln x: x \in I\}$.

As a result of Proposition 1.2, we can give a analogous of Hermite-Hadamard's inequality for GA-convex functions as follows:

If $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ is a GA-convex function and $a, b \in I$ with $a<b$, then

$$
\begin{equation*}
f(\sqrt{a b}) \leq \frac{1}{b-a} \int_{a}^{b} \frac{f(x)}{x} d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

For GA-convex (concave) function, R.A. Satnoianu [6] obtained the following result.
Lemma 1.3. If $f: I \subseteq(0, \infty) \rightarrow(0, \infty)$ is a twice differentiable function, then f is a $G A$ - convex (concave) function in I if and only if $x f^{\prime}(x)+x^{2} f^{\prime \prime}(x) \geq(\leq) 0$ for all $x \in I$.

Definition 1.4 ([1]). Let $g: I \rightarrow \mathbb{R}$ be a given convex function. The function $f: I \rightarrow \mathbb{R}$ is called g-convex dominated on I if

$$
\begin{aligned}
& |t f(x)+(1-t) f(y)-f(t x+(1-t) y)| \\
\leq & t g(x)+(1-t) g(y)-g(t x+(1-t) y)
\end{aligned}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For a mapping $f:[a, b] \rightarrow \mathbb{R}$ with $f \in L[a, b]$, we can define the mapping $H_{f}:[0,1] \rightarrow$ \mathbb{R}

$$
H_{f}(t):=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t)\left(\frac{a+b}{2}\right)\right) d x
$$

The following theorem contains some results of this type for convex-dominated functions:
Theorem 1.5 ([7]). Let $g:[a, b] \rightarrow \mathbb{R}$ be a convex function and $f:[a, b] \rightarrow \mathbb{R}$ a g-convex dominated on $[a, b]$. Then
(i) H_{f} is H_{g}-convex dominated on $[0,1]$.
(ii) One has the inequalities

$$
0 \leq\left|H_{f}\left(t_{2}\right)-H_{f}\left(t_{1}\right)\right| \leq H_{g}\left(t_{2}\right)-H_{g}\left(t_{1}\right)
$$

for all $0 \leq t_{1} \leq t_{2} \leq 1$.
(iii) One has the inequalities

$$
0 \leq\left|f\left(\frac{a+b}{2}\right)-H_{f}(t)\right| \leq H_{g}(t)-g\left(\frac{a+b}{2}\right)
$$

and

$$
0 \leq\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-H_{f}(t)\right| \leq \frac{1}{b-a} \int_{a}^{b} g(x) d x-H_{g}(t)
$$

for all $t \in[0,1]$.

2. g-GA-Convex Dominated Functions

Definition 2.1. Let $g: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a given GA-convex function. The function $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ is called g-GA-convex dominated on I if

$$
\begin{align*}
& \left|t f(x)+(1-t) f(y)-f\left(x^{t} y^{1-t}\right)\right| \tag{2.1}\\
\leq & t g(x)+(1-t) g(y)-g\left(x^{t} y^{1-t}\right)
\end{align*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
The class of g-GA-convex dominated functions on an interval I is manifestly nonempty. If g is GA-convex function on $I \subseteq(0, \infty)$ and $f: I \rightarrow \mathbb{R}$ is defined by $f(x):=x$, then f and g are both g-GA-convex dominated on I. Indeed there are GA-concave functions which are g-GA-convex dominated (for example $-g$).

The following proposition is obvious from definition.
Proposition 2.2. Let $g: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a given $G A$-convex function. The function $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ is g-GA-convex dominated on I if and only if $f \circ \exp$ is $g \circ \exp$-convex dominated on the interval $\ln I=\{\ln x: x \in I\}$.

The next simple characterization of g-GA-convex dominated functions holds.
Lemma 2.3. Let $g: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a GA-convex function and $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a real function. Then the following statements are equivalent:
(1) f is g-GA-convex dominated on I.
(2) The mappings $g-f$ and $g+f$ are $G A$-convex on I.
(3) There exist two GA-convex dominated φ, ψ defined on I such that

$$
f=\frac{1}{2}(\varphi-\psi) \text { and } g=\frac{1}{2}(\varphi+\psi) .
$$

Proof. $1 \Longleftrightarrow 2$: The condition (2.1) is equivalent to

$$
\begin{aligned}
& g\left(x^{t} y^{1-t}\right)-t g(x)-(1-t) g(y) \\
\leq & t f(x)+(1-t) f(y)-f\left(x^{t} y^{1-t}\right) \\
\leq & t g(x)+(1-t) g(y)-g\left(x^{t} y^{1-t}\right)
\end{aligned}
$$

for all $x, y \in I$ and $t \in[0,1]$. The two inequalities may be rearranged as

$$
(g+f)\left(x^{t} y^{1-t}\right) \leq t(g+f)(x)+(1-t)(g+f)(y)
$$

and

$$
(g-f)\left(x^{t} y^{1-t}\right) \leq t(g-f)(x)+(1-t)(g-f)(y)
$$

which are equivalent to the GA-convexity of $g+f$ and $g-f$, respectively.
$2 \Longleftrightarrow 3$: Let we define the mappings f, g as $f=\frac{1}{2}(\varphi-\psi)$ and $g=\frac{1}{2}(\varphi+\psi)$. Then if we sum and subtract f and g, respectively, we have $g+f=\varphi$ and $g-f=\psi$. By the condition 2 in Lemma 2.3, the mappings $g+f$ and $g-f$ are GA-convex on I, so, φ, ψ are GA-convex on I, also.

Proposition 2.4. Suppose $f^{\prime \prime}, g^{\prime \prime}$ exist and satisfy

$$
\left|x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)\right| \leq x g^{\prime}(x)+x^{2} g^{\prime \prime}(x)
$$

on an interval I. Then f is $g-G A$-convex dominated on I.

Proof. By the given condition

$$
x g^{\prime}(x)+x^{2} g^{\prime \prime}(x), x(g-f)^{\prime}(x)+x^{2}(g-f)^{\prime \prime}(x), x(g+f)^{\prime}(x)+x^{2}(g+f)^{\prime \prime}(x)
$$

are all nonnegative on I, so $g, g-f, g+f$ are all GA-convex on I by Lemma 1.3, whence the stated result follows by Lemma 2.3.

Theorem 2.5. Let $g: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex function and the function $f: I \subseteq(0, \infty) \rightarrow \mathbb{R}$ be a g-GA-convex dominated on I. Then for all $a, b \in I$ with $a<b$,

$$
\left|f(\sqrt{x y})-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x\right| \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{g(x)}{x} d x-g(\sqrt{x y})
$$

and

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x\right| \leq \frac{g(a)+g(b)}{2}-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{g(x)}{x} d x
$$

Proof. Since f is a g-GA-convex dominated on I, we have by Lemma 2.3 that $g+f$ and $g-f$ are GA-convex on I, and so by the Hermite-Hadamard inequality (1.2)

$$
(f+g)(\sqrt{x y}) \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{(f+g)(x)}{x} d x \leq \frac{(f+g)(a)+(f+g)(b)}{2}
$$

and

$$
(g-f)(\sqrt{x y}) \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{(g-f)(x)}{x} d x \leq \frac{(g-f)(a)+(g-f)(b)}{2}
$$

which are equivalent to desired inequalities.

3. Means

For a pair x, y of positive numbers, we define the the arithmetic, geometric and logarithmic means by

$$
A(x, y):=\frac{x+y}{2}, G(x, y):=\sqrt{x y} \text { and } L(x, y):=\frac{y-x}{\ln y-\ln x}
$$

respectively. We now give several corollaries that provide examples of GA-convex dominated functions.

Corollary 3.1. Suppose $[a, b] \subseteq(0, \infty)$ and $p \in \mathbb{R} \backslash\{0\}$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping such that $\left|x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)\right| \leq M x^{p}(M>0)$ for $x \in[a, b]$. Then

$$
\left|f(\sqrt{x y})-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x\right| \leq \frac{M}{p^{2}}\left[L\left(a^{p}, b^{p}\right)-G^{p}(a, b)\right]
$$

and

$$
\left|\frac{f(a)+f(b)}{2}-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x\right| \leq \frac{M}{p^{2}}\left[A\left(a^{p}, b^{p}\right)-L\left(a^{p}, b^{p}\right)\right] .
$$

Proof. Define the mapping $f:[a, b] \rightarrow \mathbb{R}$ by

$$
g(x)=\frac{M x^{p}}{p^{2}}
$$

Then

$$
\left|x f^{\prime}(x)+x^{2} f^{\prime \prime}(x)\right| \leq M x^{p}
$$

on $[a, b]$. The stated results follow from Proposition 2.4 and Theorem 2.5.
In particular we derive the following in the case $p=0$.

4. Functionals

If $f:[a, b] \subseteq(0, \infty) \rightarrow \mathbb{R}$ with $f \in L[a, b]$, we define the induced mapping $I_{f}:[0,1] \rightarrow$ \mathbb{R} by

$$
I_{f}(t):=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f\left(x^{t}(\sqrt{a b})^{1-t}\right)}{x} d x
$$

The following theorem holds.
Theorem 4.1. Let $g:[a, b] \rightarrow \mathbb{R}$ be a GA-convex function and $f:[a, b] \rightarrow \mathbb{R}$ a g-GAconvex dominated on $[a, b]$. Then
(i) I_{f} is I_{g}-convex dominated on $[0,1]$.
(ii) One has the inequalities

$$
0 \leq\left|I_{f}\left(t_{2}\right)-I_{f}\left(t_{1}\right)\right| \leq I_{g}\left(t_{2}\right)-I_{g}\left(t_{1}\right)
$$

for all $0 \leq t_{1} \leq t_{2} \leq 1$.
(iii) One has the inequalities

$$
0 \leq\left|f(\sqrt{a b})-I_{f}(t)\right| \leq I_{g}(t)-g(\sqrt{a b})
$$

and

$$
0 \leq\left|\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(x)}{x} d x-I_{f}(t)\right| \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{g(x)}{x} d x-I_{g}(t)
$$

for all $t \in[0,1]$.
Proof. Since g is GA-convex on $[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ a g-GA-convex dominated on [a, b], by Proposition $2.2 f \circ \exp$ is $g \circ \exp$-convex dominated on the on the interval $\ln I$. Then the function $H_{f}:[0,1] \rightarrow \mathbb{R}$

$$
\begin{aligned}
H_{f \circ \exp }(t) & : \\
= & \frac{1}{\ln b-\ln a} \int_{a}^{b}(f \circ \exp)\left(t \ln x+(1-t)\left(\frac{\ln a+\ln b}{2}\right)\right) d \ln x \\
& =I_{f}(t)
\end{aligned}
$$

holds Theorem 1.5. Thus desired results are obtained from Theorem 1.5. We shall omit the details.

References

[1] S.S. Dragomir, N.M. Ionescu, On some inequalities for convex-dominated functions, Anal. Num. Théor. Approx. 19 (1990) 21-28.
[2] S. Erden, H. Budak, M.Z. Sarikaya, S. Iftikhar, P. Kumam, Fractional Ostrowski type inequalities for bounded functions, Journal of Inequalities and Applications 2020 (2020) https://doi.org/10.1186/s13660-020-02381-1.
[3] S. Iftikhar, P. Kumam, S. Erden, Newton's type Integral Inequalities via Local Fractional Integrals, Fractals 28 (3) (2020) https://doi.org/10.1142/s0218348x20500371.
[4] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2) (2000) 155-167.
[5] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (4) (2003) 571-579.
[6] R.A. Satnoianu, Improved GA-convexity inequalities, J. Inequal. Pure appl. Math. 3 (5) (2002) Article no. 82.
[7] S.S. Dragomir, C.E.M. Pearce, J. Pecaric, Means, g-convex dominated functions and Hadamard-type inequalities, Tamsui Oxford Journal of Mathematical Sciences 18 (2) (2002) 161-173.

