ISSN 1686-0209

The Endospectrum of $(n-3)$-Regular Graphs of Order n

Nirutt Pipattanajinda
Program of Mathematics, Faculty of Sciences and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand
e-mail : nirutt.p@gmail.com

Abstract

Let G be a graph, the endomorphism spectrum or simply called for short by endospectrum of G is the 6 -tuple of 6 types of endomorphisms on G the following cardinalities

Endspec $G=(|\operatorname{End}(G)|,|\operatorname{EEnd}(G)|,|\operatorname{LEnd}(G)|,|\operatorname{EEnd}(G)|,|\operatorname{SEnd}(G)|,|\operatorname{Aut}(G)|)$.

In this paper, we find the endospectrum of an $(n-3)$-regular graph of order n.
MSC: 05C25; 05C60
Keywords: endomorphism spectrum; $(n-3)$-regular graph of order n; join product; complement of cycle

Submission date: 30.09.2018 / Acceptance date: 0810.2019

1. Introduction and Preliminaries

The endomorphism spectrum and the endomorphism type of graph was defined by Knauer and Böttcher. In 1992 and resp. 2003 [1, 2], Knauer and Böttcher, proved that there is graph G with Endotype $G=x$, when given $x ; x \in\{0, \ldots, 31\} \backslash\{1,17\}$. Furthermore, on the sufficiency, who found the results of endospectrum and endotype of some family of graph as following. In 2001 [3], Fan found the results on bipartite graph with diameter 3 and girth 6. In 2008 [4], Hou, Luo and Cheng found the results on complement of path. In 2009 [5], Hou, Fan and Luo found the results on generalized polygons. In 2011 [6], Wang and Hou found the results on n-prism graph. In 2014 [7], Pipattanajinda found the endotype of $(n-3)$-regular graphs of order n. The results for the number of endomorphisms of path, cycle, cycle complement, generalized wheel graphs, and the number of locally strong endomorphisms of paths, see [8-12] and [13], respectively. Further, see [14], the result of the endomorphisms monoids of graphs of order n with a minimum degree $n-3$. The results of the endomorphisms monoids and the endotype in $[7,14,15]$, gives the interesting to make the absoluteness of the results of endospectrum on the $(n-3)$-regular graphs of order n.

Consider finite simple graphs G with vertex set $V(G)$ and edge set $E(G)$. Let f : $V(G) \rightarrow V(G)$ be a mapping. We recall the 6 types of endomorphisms of a graph G.

First, the mapping f is said to be an endomorphism if f preserves edges, i.e. $\{u, v\} \in$ $E(G)$ implies $\{f(u), f(v)\} \in E(G)$. Further, the endomorphism f is said to be a half strong endomorphism if $\{f(u), f(v)\} \in E(G)$ implies that there exists $x \in f^{-1}(f(u))$, the preimages of $f(u)$, and $y \in f^{-1}(f(v))$, the preimages of $f(v)$, such that $\{x, y\} \in E(G)$. The endomorphism f is said to be a locally strong endomorphism if $\{f(u), f(v)\} \in E(G)$ implies for each $x \in f^{-1}(f(u))$ that there exists $y \in f^{-1}(f(v))$ such that $\{x, y\} \in E(G)$, and analogously for each $y \in f^{-1}(f(v))$. The endomorphism f is said to be a quasi strong endomorphism if $\{f(u), f(v)\} \in E(G)$ implies that there exists $x \in f^{-1}(f(u))$ such that $\{x, y\} \in E(G)$ for all $y \in f^{-1}(f(v))$, and analogously for preimages of $f(v)$. The endomorphism f is said to be a strong endomorphism if $\{f(u), f(v)\} \in E(G)$ implies $\{x, y\} \in E(G)$, for all $x \in f^{-1}(f(u))$ and $y \in f^{-1}(f(v))$. Finally, the endomorphism f is said to be an automorphism if f is bijective and f^{-1} is an endomorphism.

In this paper we use the following notations:

- $\operatorname{End}(G)$, the set of all endomorphisms of G,
- $\operatorname{HEnd}(G)$, the set of all half strong endomorphisms of G,
- $\operatorname{LEnd}(G)$, the set of all locally strong endomorphisms of G,
- $Q E n d(G)$, the set of all quasi strong endomorphisms of G,
- $\operatorname{SEnd}(G)$, the set of all strong endomorphisms of G, and
- $\operatorname{Aut}(G)$, the set of all automorphisms of G.

It is clear that, $\operatorname{End}(G) \supseteq \operatorname{HEnd}(G) \supseteq \operatorname{LEnd}(G) \supseteq \operatorname{QEnd}(G) \supseteq S E n d(G) \supseteq \operatorname{Aut}(G)$. With this sequence, we associate the sequence of respective cardinalities by

Endspec $G=(|\operatorname{End}(G)|,|\operatorname{HEnd}(G)|,|\operatorname{End}(G)|,|\operatorname{EEnd}(G)|,|S E n d(G)|,|\operatorname{Aut}(G)|)$ and call this 6 -tuple the endomorphism spectrum or endospectrum of G.

We associate with the above sequence a 5 -tuple $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$ with $s_{i} \in\{0,1\}, i=$ $1,2,3,4,5$, where 1 stands for \neq and 0 stands for $=$ at the respective position in the above sequence, i.e. $s_{1}=1$ indicates that $\operatorname{End}(G) \neq \operatorname{HEnd}(G)$ etc. The integer $\sum_{i=1}^{5} s_{i} 2^{i-1}$ is called the endomorphism type or endotype of graph G and is denoted by Endotype G.

Let G be a graph. The number of vertices of G is often called the order of G. The degree of a vertex u in a graph G is the number of vertices adjacent to u and is denoted by $d_{G}(u)$ or simply by $d(u)$ if the graph G is clear from the context. If $d(u)=r$ for every vertex u of G, where $0 \leq r \leq n-1$, then G is called a r-regular. The complement (graph) \bar{G} of G is a graph such that $V(\bar{G})=V(G)$ and $\{u, v\} \in E(\bar{G})$ if and only if $\{u, v\} \notin E(G)$ for any $u, v \in V(G), u \neq v$. A subgraph H of G is called an induced subgraph, if for any $u, v \in V(H),\{u, v\} \in E(G)$ implies $\{u, v\} \in E(H)$. Let G and H be two graphs. The join of G and H, denoted by $G+H$, is a graph such that $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\{\{u, v\} \mid u \in V(G), v \in V(H)\}$. The graph with vertex set $\{1, \ldots, n\}$, such that $n \geq 3$, and edge set $\{\{i, i+1\} \mid i=1, \ldots, n\} \cup\{1, n\}$ is called a cycle C_{n}.

Some results on the $(n-3)$-regular graph of order n.
In [15], N. Pipattanajinda, U. Knauer, B. Gyurov and S. Panma investigated ($n-3$)regular graph of order n.

Lemma 1.1 ([15]). Let G be a graph of order $n \geq 3$. Then G is an $(n-3)$-regular graph if and only if $G=\stackrel{s}{+} \bar{C}_{n_{i}}$ where $n=n_{1}+\ldots+n_{s}$ and $s \geq 1$. In particular $s>1$ implies $n \geq 6$.

Let $G=\bar{C}_{\left(2 m_{1}\right)_{1}}+\ldots+\bar{C}_{\left(2 m_{s}\right)_{s}}$ be an $(n-3)$-regular graph of order n. Sets $O_{i}=$ $\left\{1_{i}, 3_{i}, \ldots,\left(2 m_{i}-1\right)_{i}\right\}$ and $E_{i}=\left\{2_{i}, 4_{i}, \ldots,\left(2 m_{i}\right)_{i}\right\}$. Denote by $S_{X_{1}, X_{2}, \cdots, X_{s}}=X_{1} \cup X_{2} \cup$ $\ldots \cup X_{s}$ where $X_{i} \in\left\{O_{i}, E_{i}\right\}, 1 \leq i \leq s$. Further, let $f \in \operatorname{End}(G)$ and G_{1} is an induced subgraph of G. Denote the set of all elements $f(x)$ where $x \in V\left(G_{1}\right)$ by $f\left(G_{1}\right)$, and the restriction of f on G_{1} by $\left.f\right|_{G_{1}}$.
Lemma 1.2 ([15]). Let $G=\bar{C}_{\left(2 m_{1}\right)_{1}}+\ldots+\bar{C}_{\left(2 m_{s}\right)_{s}}$ and $f: V(G) \rightarrow V(G)$. Then $f \in \operatorname{End}(G)$ if and only if f satisfies:
(1) If $f\left(x_{i}\right)=f\left(y_{i}\right)$ for some two different elements $x_{i}, y_{i} \in V\left(\bar{C}_{n_{i}}\right)$, then $y_{i}=$ $(x-1)_{i}$ or $y_{i}=(x+1)_{i}$.
(2) $f\left(S_{O_{1}, \cdots, O_{s}}\right)=X_{1} \cup \ldots \cup X_{s}$ and $f\left(S_{E_{1}, \cdots, E_{s}}\right)=Y_{1} \cup \ldots \cup Y_{s}$ where $X_{i}, Y_{i} \in$ $\left\{O_{i}, E_{i}\right\}, 1 \leq i \leq s$.
(3) If $O_{i}, E_{i} \in f(G)$ for some $1 \leq i \leq s$, then $f\left(\bar{C}_{\left(2 m_{j}\right)_{j}}\right)=\bar{C}_{\left(2 m_{i}\right)_{i}}$ and $m_{j}=m_{i}$ for some $1 \leq j \leq s$ such that $\left.f\right|_{\bar{C}_{\left(2 m_{j}\right)_{j}}}$ is an isomorphism from $\bar{C}_{\left(2 m_{j}\right)_{j}}$ to $\bar{C}_{\left(2 m_{i}\right)_{i}}$.
(4) If $f\left(x_{i}\right)=f\left((x+1)_{i}\right)$ for some $x_{i} \in V\left(\bar{C}_{2 m_{i}}\right)$, then
(4.1) $f\left(1_{i}\right)=f\left(2_{i}\right), f\left(3_{i}\right)=f\left(4_{i}\right), \ldots, f\left(\left(2 m_{i}-1\right)_{i}\right)=f\left(\left(2 m_{i}\right)_{i}\right)$, if x is odd, or
(4.2) $f\left(\left(2 m_{i}\right)_{i}\right)=f\left(1_{i}\right), f\left(2_{i}\right)=f\left(3_{i}\right), \ldots, f\left(\left(2 m_{i}-2\right)_{i}\right)=f\left(\left(2 m_{i}-1\right)_{i}\right)$, if x is even.

Lemma 1.3 ([15]). Let G be an $(n-3)$-regular graph of order n. Denote by G_{x} and G_{E} set of all induced subgraphs \bar{C}_{x} and $\bar{C}_{2 m}$ of G, respectively (note that $G_{x}=\emptyset$, if G does not contain an induced subgraph \bar{C}_{x}). Then
(1) $|\operatorname{End}(G)|=\left|\operatorname{End}\left(G_{E}\right)\right| \times\left|\operatorname{End}\left(G_{3}\right)\right| \times\left|\operatorname{End}\left(G_{5}\right)\right| \times\left|\operatorname{End}\left(G_{7}\right)\right| \times \ldots$, if $G_{x} \neq \emptyset$, for all $x=3,5,7, \ldots$,
(2) $\operatorname{End}\left(G_{3}\right) \cong S_{m_{1}} \times T_{3}$, where $\left|G_{3}\right|=m_{1}$, and
(3) for each odd integer $x \geq 5, \operatorname{End}\left(G_{x}\right)=\operatorname{Aut}\left(G_{x}\right) \cong S_{m_{2}} \times D_{x}$, where $\left|G_{x}\right|=m_{2}$.

Example 1.4. Let $G=\bar{C}_{4_{1}}+\bar{C}_{4_{2}}+\bar{C}_{6_{3}}$, the 11-regular graph of order 14, and f : $V(G) \rightarrow V(G)$ such that

$$
f=\left(\begin{array}{llllllllllllll}
1_{1} & 2_{1} & 3_{1} & 4_{1} & 1_{2} & 2_{2} & 3_{2} & 4_{2} & 1_{3} & 2_{3} & 3_{3} & 4_{3} & 5_{3} & 6_{3} \\
3_{2} & 3_{2} & 4_{3} & 4_{3} & 3_{1} & 2_{1} & 1_{1} & 4_{1} & 6_{3} & 1_{2} & 1_{2} & 2_{3} & 2_{3} & 6_{3}
\end{array}\right) .
$$

Since for each $x, y \in V(G),\{x, y\} \in E(G)$ implies $\{f(x), f(y)\} \in E(G), f$ is an endomorphism.

Furthermore, from Lemma 1.2, f satisfies (1), since if $f(x)=f(y)$ then $y=x-1$ or $y=x+1$.
f satisfies (2), because $S_{O_{1}, O_{2}, O_{3}}=\left\{1_{1}, 3_{1}, 1_{2}, 3_{2}, 1_{3}, 3_{3}, 5_{3}\right\}$ and
$S_{E_{1}, E_{2}, E_{3}}=\left\{2_{1}, 4_{1}, 2_{2}, 4_{2}, 2_{3}, 4_{3}, 6_{3}\right\}$ such that $f\left(S_{O_{1}, O_{2}, O_{3}}\right)=\left\{3_{2}, 4_{3}, 3_{1}, 1_{1}, 6_{3}, 1_{2}, 2_{3}\right\}=$ $O_{1} \cup O_{2} \cup E_{3}$ and $f\left(S_{E_{1}, E_{2}, E_{3}}\right)=\left\{3_{2}, 4_{3}, 2_{1}, 4_{1}, 1_{2}, 2_{3}, 6_{3}\right\}=E_{1} \cup O_{2} \cup E_{3}$.
f satisfies (3), because $O_{1}, E_{1} \in f(G)$ and there exists $\bar{C}_{4_{2}}$ such that $f\left(\bar{C}_{4_{2}}\right)=\bar{C}_{4_{1}}$ and $\left.f\right|_{\bar{C}_{4_{2}}}$ is an isomorphism from $\bar{C}_{4_{2}}$ to $\bar{C}_{4_{1}}$.

Finally, f satisfies (4), because $f\left(1_{1}\right)=f\left(2_{1}\right), f\left(3_{1}\right)=f\left(4_{1}\right)$ and $f\left(6_{3}\right)=f\left(1_{3}\right), f\left(2_{3}\right)=$ $f\left(3_{3}\right), f\left(4_{3}\right)=f\left(5_{3}\right)$, when $f\left(1_{1}\right)=f\left(2_{1}\right)$ and $f\left(2_{3}\right)=f\left(3_{3}\right)$, respectively.

In [7], N. Pipattanajinda found the results of the endomorphism of an $(n-3)$-regular graph of order n as following.

Lemma 1.5 ([7]). Let G be an $(n-3)$-regular graph of order n and $f \in \operatorname{End}(G)$.
(1) If $x \in f(G)$, then $1 \leq\left|f^{-1}(x)\right| \leq 2$.
(2) If $x, y \in f(G)$ with $f^{-1}(x)=\{u\}$ and $f^{-1}(y)=\{v\}$, then $\{x, y\} \in E(G)$ if and only if $\{u, v\} \in E(G)$.
(3) If $x, y \in f(G)$ with $f^{-1}(x)=\left\{u_{1}, u_{2}\right\}$ and $f^{-1}(y)=\{v\}$, then $\{x, y\} \in E(G)$ if and only if $\left\{u_{i}, v\right\} \in E(G)$, for all $i=1,2$.

Lemma 1.6 ([7]). Let G be an ($n-3$)-regular graph of order n. Then the following statements are trues.
(1) $\operatorname{End}(G)=\operatorname{LEnd}(G)$.
(2) $\operatorname{End}(G) \neq Q \operatorname{End}(G)$ if and only if G contain induced subgraph \bar{C}_{4}.
(3) $Q \operatorname{End}(G) \neq \operatorname{SEnd}(G)$ if and only if G contain induced subgraph $\bar{C}_{2 r}, r>2$.
(4) $\operatorname{SEnd}(G) \neq \operatorname{Aut}(G)$ if and only if G contain induced subgraph \bar{C}_{3}.
(5) The Endotype G is division by 4.

2. The Endospectrum of $(n-3)$-Regular Graphs of Order n

Denote $\underset{s}{\oplus} \bar{C}_{t}$ by the joins of s complement of cycles which length t. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+$ $\underset{n_{4}}{\oplus} \bar{C}_{4}+\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}$, the ($n-3$)-regular graph of order n where $n=3 n_{3}+4 n_{4}+\cdots+$ $(2 k+1) n_{2 k+1}$. From Lemma 1.6(1), $\operatorname{End}(G)=\operatorname{LEnd}(G)$. In [16], Knauer and Nieporte found the result of strong endomorphism of graph.
Lemma 2.1 ([16]). Let G be a graph, $x_{1}, x_{2} \in V(G)$. There exists a strong endomorphism $f \in \operatorname{SEnd}(G)$ with $f\left(x_{1}\right)=f\left(x_{2}\right)$ if and only if $N\left(x_{1}\right)=N\left(x_{2}\right)$, by $N(x)$ for $x \in V(G)$ denote the neighborhood of $x \in G$.

Then we get the result of strong endomorphism of the $(n-3)$-regular graph of order n.

Lemma 2.2. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{4}}{\oplus} \bar{C}_{4}+\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}$ and $f \in \operatorname{End}(G)$. Then f is strong if and only if the mapping $\left.f\right|_{{ }_{n x}} \bar{C}_{x}$ is $1-1$, for all even integer $x ; x \geq 4$.

Proof. Let $x, y \in V(G)$. Then $N(x)=N(y)$ if and only if $x, y \in \bar{C}_{3}$. So, from Lemma 2.1, f is a strong endomorphism with $f(x)=f(y)$ if and only if $x, y \in \bar{C}_{3}$.

Next, the characterization of the quasi strong endomorphisms of G.
Lemma 2.3. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{4}}{\oplus} \bar{C}_{4}+\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}$ and $f \in \operatorname{End}(G)$. Then f is quasi strong if and only if the mapping $\left.f\right|_{n_{4}} \bar{C}_{4}$ is $1-1$.
Proof. Necessity. Suppose that $\left.f\right|_{\oplus_{4} \bar{C}_{4}}$ is not $1-1$ mapping. Then from Lemma 1.2(4), there exists some subgraph \bar{C}_{4} of G such that $f(1)=f(2)=x$ and $f(3)=f(4)=y$ (or $f(4)=f(1)=x$ and $f(2)=f(3)=y)$ with $\{x, y\} \in E(G)$, by Lemma 1.5(1), implies that $f^{-1}(x)=\{1,2\}$ and $f^{-1}(y)=\{3,4\}$. Since $\{1,4\},\{2,3\} \notin E(G), f$ is not quasi strong.

Sufficiency. Let $\left.f\right|_{\oplus_{n_{4}} \bar{C}_{4}}$ is an $1-1$ mapping. Thus for each $x, y \in V(G), f(x)=f(y)$ implies $x=y+1$ (or $x=y-1$) and $x, y \in V\left(\bar{C}_{2 m}\right)$ for some $m>2$.

Further, if $\left|f^{-1}(x)\right|=\left|f^{-1}(y)\right|=1$ or $\left|f^{-1}(x)\right|=2,\left|f^{-1}(y)\right|=1$, then $\{u, v\} \in E(G)$, for all $u \in f^{-1}(x)$ and $v \in f^{-1}(y)$, by Lemma 1.5(2) and (3).

Let $f^{-1}(x)=\left\{u_{1}, u_{2}\right\}$ and $f^{-1}(y)=\left\{v_{1}, v_{2}\right\}$, s'pose that $u_{1}<u_{2}<v_{1}<v_{2}, u_{2}=$ $u_{1}+1, v_{2}=v_{1}+1$ and belong to same complement of cycle $\bar{C}_{2 m}$. The mapping look like:

$$
f=\left(\begin{array}{ccccccc}
\ldots & u_{1} & u_{2} & \ldots & v_{1} & v_{2} & \ldots \\
\ldots & x & x & \ldots & y & y & \ldots
\end{array}\right) .
$$

If ether $u_{1} \neq 1$ nor $v_{2} \neq 2 m$, then $\left\{u_{1}, v_{1}\right\},\left\{u_{1}, v_{2}\right\} \in E(G)$. If $u_{1}=1$ and $v_{2}=2 m$, since $2 m>4,\left\{u_{2}, v_{1}\right\} \in E(G)$ implies that $\left\{u_{2}, v_{1}\right\},\left\{u_{2}, v_{2}\right\} \in E(G)$. This is show that $f \in \operatorname{QEnd}(G)$.

Next, we will compute the number of endomorphisms of $(n-3)$-regular graphs of order n. From Lemma 1.3, as following:
Lemma 2.4. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{4}}{\oplus} \bar{C}_{4}+\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}, n=3 n_{3}+4 n_{4}+\cdots+(2 k+1) n_{2 k+1}$, an ($n-3$)-regular graphs of order n. Then
(1) $\left.|\operatorname{End}(G)|=\mid \operatorname{End} \underset{n_{4}}{\oplus} \bar{C}_{4}+\underset{n_{6}}{\oplus} \bar{C}_{6}+\cdots+\underset{n_{2 k}}{\oplus} \bar{C}_{2 k}\right)\left|\times\left|\operatorname{End}\left(\underset{n_{3}}{\oplus} \bar{C}_{3}\right)\right| \times\left|\operatorname{End}\left(\underset{n_{5}}{\oplus} \bar{C}_{5}\right)\right| \times\right.$
$\left|\operatorname{End}\left(\underset{n_{7}}{\oplus} \bar{C}_{7}\right)\right| \times \ldots \times\left|\operatorname{End}\left(\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}\right)\right|$, where $\left|\operatorname{End}\left(\underset{n_{x}}{\oplus} \bar{C}_{x}\right)\right|=1$ if $n_{x}=0$,
(2) $\left|\operatorname{End}\left(\underset{n_{3}}{\oplus} \bar{C}_{3}\right)\right|=\left|S_{n_{3}} \times T_{3}\right|=9 n_{3}$!, if $n_{3} \neq 0$,
(3) $\left|\operatorname{Aut}\left(\underset{n_{3}}{\oplus} \bar{C}_{3}\right)\right|=\left|S_{n_{3}} \times D_{3}\right|=6 n_{3}$!, if $n_{3} \neq 0$,
(4) for each odd integer $x \geq 5$ such that $n_{x} \neq 0,\left|\operatorname{End}\left(\underset{n_{x}}{\oplus} \bar{C}_{x}\right)\right|=\left|\operatorname{Aut}\left(\underset{n_{x}}{\oplus} \bar{C}_{x}\right)\right|=$ $\left|S_{n_{x}} \times D_{x}\right|=2 x n_{x}!$, and
(5) for each even integer $x \geq 4$ such that $n_{x} \neq 0,\left|\operatorname{Aut}\left(\underset{n_{x}}{\oplus} \bar{C}_{x}\right)\right|=\left|S_{n_{x}} \times D_{x}\right|=$ $2 x n_{x}$!.

Lemma 2.5. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{5}}{\oplus} \bar{C}_{5}+\underset{n_{7}}{\oplus} \bar{C}_{7}+\ldots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}$. Then
(1) $|\operatorname{End}(G)|=|\operatorname{SEnd}(G)|=3 \cdot 2^{k-1} \prod_{i=1}^{k}\left[(2 i+1) n_{2 i+1}!\right]$,
(2) $|\operatorname{Aut}(G)|=2^{k} \prod_{i=1}^{k}\left[(2 i+1) n_{2 i+1}!\right]$.

Proof. (1) Clearly by Lemma 2.4(1)(2) and (4), the cardinality of $\mid \operatorname{End} \underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{5}}{\oplus} \bar{C}_{5}+$ $\left.\underset{n_{7}}{\oplus} \bar{C}_{7}+\ldots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}\right)\left|=\left|\operatorname{End}\left(\underset{n_{3}}{\oplus} \bar{C}_{3}\right)\right| \times\left|\operatorname{End}\left(\underset{n_{5}}{\oplus} \bar{C}_{5}\right)\right| \times\left|\operatorname{End}\left(\underset{n_{7}}{\oplus} \bar{C}_{7}\right)\right| \times \ldots \times\left|\operatorname{End}\left(\underset{n_{2 k+1}}{\oplus}{ }^{n_{5}} \bar{C}_{2 k+1}\right)\right|\right.$ $=9 n_{3}!(2)(5) n_{5}!(2)(7) n_{7}!\cdots(2)(2 k+1) n_{2 k+1}!=3 \cdot 2^{k-1} \prod_{i=1}^{k}\left[(2 i+1) n_{2 i+1}!\right]$.
(2) Clearly by Lemma 2.4(1)(3) and (4), the cardinality of \mid Aut $\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{5}}{\oplus} \bar{C}_{5}+\underset{n_{7}}{\oplus} \bar{C}_{7}+$ $\left.\ldots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}\right)\left|=\left|A u t\left(\underset{n_{3}}{\oplus} \bar{C}_{3}\right)\right| \times\left|A u t\left(\underset{n_{5}}{\oplus} \bar{C}_{5}\right)\right| \times\left|A u t\left(\underset{n_{7}}{\oplus} \bar{C}_{7}\right)\right| \times \ldots \times\left|A u t\left(\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}^{n_{7}}\right)\right|=\right.$ $6 n_{3}!(2)(5) n_{5}!(2)(7) n_{7}!\cdots(2)(2 k+1) n_{2 k+1}!=2^{k} \prod_{i=1}^{k}\left[(2 i+1) n_{2 i+1}!\right]$.

Consider the cardinality $\left|\operatorname{End}\left(\underset{n_{4}}{\oplus} \bar{C}_{4}+\underset{n_{6}}{\oplus} \bar{C}_{6}+\cdots+\underset{n_{2 k}}{\oplus} \bar{C}_{2 k}\right)\right|$.
Let $F\left(\left[n_{4}: r_{4}\right],\left[n_{6}: r_{6}\right], \ldots,\left[n_{2 k}: r_{2 k}\right]\right), 0 \leq r_{s} \leq n_{s}$, be the set of all endomorphisms $f \in \operatorname{End}\left(\underset{n_{4}}{\oplus} \bar{C}_{4}+\underset{n_{6}}{\oplus} \bar{C}_{6}+\cdots+\underset{n_{2 k}}{\oplus} \bar{C}_{2 k}\right)$ such that $\left.f\right|_{r_{s}} \bar{C}_{s}$ is the $1-1$ mapping from $\underset{r_{s}}{\oplus} \bar{C}_{s}$ embed in $\underset{n_{s}}{\oplus} \bar{C}_{s}$. Denote $P(n, r)=\frac{n!}{(n-r)!}$, the permutations of n elements r at a time.

Let $G=\underset{n_{4}}{\oplus} \bar{C}_{4}+\underset{n_{6}}{\oplus} \bar{C}_{6}+\cdots+\underset{n_{2 k}}{\oplus} \bar{C}_{2 k}$ and $f \in F\left(\left[\begin{array}{l}\left.\left.n_{4}: 0\right],\left[\begin{array}{lll}n_{6}: 0\end{array}\right], \ldots,\left[n_{2 k}: 0\right]\right) \text {, }, ~, ~\end{array}\right.\right.$ $f \in \operatorname{End}(G)$ with $\left|f^{-1}(x)\right|=2$ for all $x \in f(G)$. Using the same technique as in [15], we obtain Lemmas 2.6 and 2.7.

Lemma 2.6. Let ϱ_{f} be the congruence of the graph G when defining $x \varrho_{f} y \Leftrightarrow f(x)=f(y)$ which here means x, y are elements of same complement of cycle with $y=x+1$ or $y=x-1$. Denote by $G_{\varrho_{f}}$ the factor graph. Then for each induced subgraph $\bar{C}_{2 m}$ of G either $V\left(\left(\bar{C}_{2 m}\right)_{\varrho_{f}}\right)=\{\{1,2\}, \ldots\{2 m-1,2 m\}\}$ or $V\left(\left(\bar{C}_{2 m}\right)_{\varrho_{f}}\right)=\{\{2 m, 1\}, \ldots\{2(m-$ 1), $2 m-1\}\}$.

Lemma 2.7. Let $\hat{f}: V\left(G_{\varrho_{f}}\right) \rightarrow V(G)$ be defined by $\hat{f}\left(x_{\varrho_{f}}\right)=f(x)$. Then for each induced subgraph $\bar{C}_{2 m}$ of G, there exist subset C of $V(G)$ either $\hat{f}\left(C_{\varrho_{f}}\right)=\{1,3, \ldots, 2 m-1\}$ or $\hat{f}\left(C_{\varrho_{f}}\right)=\{2,4, \ldots, 2 m\}$.

From Lemmas 2.6 and 2.7, we can define the following classes of endomorphisms of $F\left(\left[n_{4}: 0\right],\left[n_{6}: 0\right], \ldots,\left[n_{2 k}: 0\right]\right)$ on G by ϱ_{f} and $\hat{f}\left(C_{\varrho_{f}}\right) \subseteq V\left(\bar{C}_{2 m}\right)$.
(1) $S_{m}^{o r}$, the class of all endomorphisms f of G where $\hat{f}\left(C_{\varrho_{f}}\right)$ are the odd integers and $\{1,2\} \in \varrho_{f}$,
(2) $S_{m}^{e r}$, the class of all endomorphisms f of G where $\hat{f}\left(C_{\varrho_{f}}\right)$ are the even integers and $\{1,2\} \in \varrho_{f}$,
(3) $S_{m}^{o l}$, the class of all endomorphisms f of G where $\hat{f}\left(C_{\varrho_{f}}\right)$ are the odd integers and $\{2 m, 1\} \in \varrho_{f}$, and
(4) $S_{m}^{e l}$, the class of all endomorphisms f of G where $\hat{f}\left(C_{\varrho_{f}}\right)$ are the even integers and $\{2 m, 1\} \in \varrho_{f}$.

Example 2.8. For the graph $\underset{2}{\oplus} \bar{C}_{6}=\bar{C}_{6}+\bar{C}_{6}$ with the set $F\left(\left[n_{4}: 0\right],\left[n_{6}: 0\right], \ldots,\left[n_{2 k}: 0\right]\right)$ such that $n_{6}=2$ and $n_{4}=n_{8}=\cdots=n_{2 k}=0$, we choose following $16\left(=4^{2}\right)$ notations at

$$
\begin{gathered}
S_{3_{1}}^{o r} \times S_{3_{2}}^{o r}, S_{3_{1}}^{o r} \times S_{3_{2}}^{e r}, S_{3_{1}}^{o r} \times S_{3_{2}}^{o l}, S_{3_{1}}^{o r} \times S_{3_{2}}^{e l}, S_{3_{1}}^{e r} \times S_{3_{2}}^{o r}, S_{3_{2}}^{e r} \times S_{3_{1}}^{e r}, S_{3_{2}}^{o l}, S_{3_{2}}^{e r} \times S_{3_{2}}^{e l}, \\
S_{3_{1}}^{o l} \times S_{3_{2}}^{o r}, S_{3_{1}}^{o l} \times S_{3_{2}}^{e r}, S_{3_{1}}^{o l} \times S_{3_{2}}^{o l}, S_{3_{1}}^{o l} \times S_{3_{2}}^{e l}, S_{3_{1}}^{e l} \times S_{3_{2}}^{o r}, S_{3_{1}}^{e l} \times S_{3_{2}}^{e r}, S_{3_{1}}^{e l} \times S_{3_{2}}^{o l}, S_{3_{1}}^{e l} \times S_{3_{2}}^{e l},
\end{gathered}
$$

and some elements as follow
and

Proposition 2.9. The sets $S_{2}^{s_{2}} \times \cdots \times S_{2}^{s_{2_{n_{4}}}} \times S_{3}^{s_{3_{1}}} \times \cdots \times S_{3}^{s_{3 n_{6}}} \times \cdots \times S_{k}^{s_{k_{1}}} \times \cdots \times S_{k}^{s_{k_{n_{2 k}}}}$, with $s_{x_{y}} \in\{o r, e r, o l, e l\}$ for all $x=2,3, \ldots, k$ and $y=n_{4}, n_{6}, \ldots, n_{2 k}$ form groups isomorphic to S_{m}, where $m=2 n_{4}+3 n_{6}+\cdots+k n_{2 k}=\sum_{i=2}^{k} i n_{2 i}$.

Theorem 2.10. $\left|F\left(\left[n_{4}: 0\right],\left[n_{6}: 0\right], \ldots,\left[n_{2 k}: 0\right]\right)\right|=4^{\sum_{i=2}^{k} n_{2 i}}\left[\sum_{i=2}^{k} i n_{2 i}\right]$!.
Proof. It follows directly from Proposition 2.9.

Remark 2.11. Since $F\left(\left[n_{4}: 0\right],\left[n_{6}: 0\right], \ldots,\left[n_{2 k}: 0\right]\right)$ form a (disjoint) union of groups, the $F\left(\left[n_{4}: 0\right],\left[n_{6}: 0\right], \ldots,\left[n_{2 k}: 0\right]\right)$ is a completely regular semigroup.

Theorem 2.12. $\left|F\left(\left[n_{4}: r_{4}\right],\left[n_{6}: r_{6}\right], \ldots,\left[n_{2 k}: r_{2 k}\right]\right)\right|=$

$$
\frac{4^{\sum_{i=2}^{k}\left(n_{2 i}-r_{2 i}\right)}\left[\sum_{i=2}^{k} i\left(n_{2 i}-r_{2 i}\right)\right]!\prod_{i=2}^{k}\left[(4 i) P\left(n_{2 i}, r_{2 i}\right)\right]}{\prod_{r_{2 i}=0} 4 i} \text {, where } 0 \leq r_{s} \leq n_{s}
$$

Proof. For each $1 \leq s \leq k$, assume that $r_{2 s}>0$. This is certainly that the mapping from $\underset{r_{2 s}}{\oplus} \bar{C}_{2 s}$ is embed to $\underset{n_{2 s}}{\oplus} \bar{C}_{2 s}$ is possible to $P\left(n_{s}, r_{s}\right)$ pattern. Since for each mapping is same to the dihedral group $D_{2 s}$, the mapping is possible to $2 s$. That initiate to remainder is $n_{2 s}-r_{2 s}$, the mapping is same Theorem 2.10.

If $r_{2 s}=0$, implies $(4 s) P\left(n_{2 s}, 0\right)=4 s$. In this case, we need division $(4 s) P\left(n_{2 s}, 0\right)$ by $4 s$.

From Lemma 1.6, Lemma 2.2, Lemma 2.3, Lemma 2.5 and Theorem 2.12, the cardinality of endomorphisms, half strong, locally strong, quasi strong, strong endomorphisms and automorphisms of $(n-3)$-regular graph of order n as following.

Theorem 2.13. Let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{4}}{\oplus} \bar{C}_{4}+\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}, n=3 n_{3}+4 n_{4}+\cdots+(2 k+$ 1) $n_{2 k+1}$, an $(n-3)$-regular graphs of order n. Then

$$
\begin{aligned}
\text { (1) }|\operatorname{End}(G)|= & |H E n d(G)|=|\operatorname{LEnd}(G)|=3 \cdot 2^{k-1} \prod_{i=1}^{k}(2 i+1) n_{2 i+1}! \\
& \times{ }_{r_{4}=0, r_{6}=0, \ldots, r_{2 k}=0}^{n_{4}, n_{6}, \ldots, n_{2 k}}\left|F\left(\left[n_{4}: r_{4}\right],\left[n_{6}: r_{6}\right], \ldots,\left[n_{2 k}: r_{2 k}\right]\right)\right|, \\
\text { (2) }|Q \operatorname{End}(G)|= & 3 \cdot 2^{k-1} \prod_{i=1}^{k}(2 i+1) n_{2 i+1}! \\
& \times \sum_{r_{6}=0, \ldots, r_{2 k}=0}^{n_{6}, \ldots, n_{2 k}}\left|F\left(\left[n_{4}: n_{4}\right],\left[n_{6}: r_{6}\right], \ldots,\left[n_{2 k}: r_{2 k}\right]\right)\right|, \\
\text { (3) }|\operatorname{SEnd}(G)|= & 3 \cdot 2^{k-1} \prod_{i=1}^{k}(2 i+1) n_{2 i+1}! \\
& \times\left|F\left(\left[n_{4}: n_{4}\right],\left[n_{6}: n_{6}\right], \ldots,\left[n_{2 k}: n_{2 k}\right]\right)\right|, \text { and } \\
\text { (4) }|\operatorname{Aut}(G)|= & 2^{k} \prod_{i=1}^{k}(2 i+1) n_{2 i+1}!\times\left|F\left(\left[n_{4}: n_{4}\right],\left[n_{6}: n_{6}\right], \ldots,\left[n_{2 k}: n_{2 k}\right]\right)\right| .
\end{aligned}
$$

Proposition 2.14. The Endospectrum of graph G as follow

$$
\text { Endspec } G=\left(x_{1}, x_{1}, x_{1}, x_{2}, x_{3}, x_{4}\right) \text {, }
$$

where x_{i} is the value of Theorem 2.13(i).
Remark 2.15. From Theorem 2.12, we found the equation 2.1,

$$
\begin{equation*}
\left|F\left(\left[n_{4}: n_{4}\right],\left[n_{6}: n_{6}\right], \ldots,\left[n_{2 k}: n_{2 k}\right]\right)\right|=2^{k-1} \prod_{i=2}^{k}\left(2 i n_{2 i}!\right) \tag{2.1}
\end{equation*}
$$

Furthermore, from Theorem 2.13(3)-(4) with the equation 2.1, let $G=\underset{n_{3}}{\oplus} \bar{C}_{3}+\underset{n_{4}}{\oplus} \bar{C}_{4}+$ $\cdots+\underset{n_{2 k+1}}{\oplus} \bar{C}_{2 k+1}$, then the following to the number of strong endomorphisms and automorphisms of graph G,

$$
\begin{aligned}
& \text { (1) }|\operatorname{SEnd}(G)|=3 \cdot 2^{2(k-1)}(2 k+1)!\prod_{i=2}^{2 k+1} n_{i}!\text {, and } \\
& \text { (2) } \mid \text { Aut }(G) \mid=2^{2 k-1}(2 k+1)!\prod_{i=2}^{2 k+1} n_{i}!
\end{aligned}
$$

Acknowledgements

The author would like to thank Professor Dr. Ulrich Knauer for the help and the encouragement that they provided in the preparation of this paper. The work was partially supported by the Research and Development Institute and the Faculty of Sciences and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, Thailand.

References

[1] M. Böttcher, U. Knauer, Endomorphism spectra of graphs, Discrete Math. 109 (1992) 45-57.
[2] M. BÖttcher, U. Knauer, Postscript: "Endomorphism spectra of graphs" [Discrete Mathematics 109 (1992) 45-57], Discrete Math. 270 (2003) 329-331.
[3] S. Fan, Endomorphism spectra of bipartite graphs with diameter three and girth six, Southeast Asian Bull. Math. 25 (2001) 217-221.
[4] H. Hou, Y. Luo, Z. Cheng, The endomorphism monoid of \bar{P}_{n} European J. Combin. 29 (2008) 1173-1185.
[5] H. Hou, X. Fan, Y. Luo, Endomorphism types of generalized polygons, Southeast Asian Bull. Math. 33 (2009) 433-441.
[6] W. Wang, H. Hou, The endomorphism monoid of N-prism, International Math. Forum 6 (50) (2011) 2461-2471.
[7] N. Pipattanajinda, The endotype of $(n-3)$-regular graphs of order n, Southeast Asian Bull. Math. 38 (2014) 535-541.
[8] Sr. Arworn, An algorithm for the numbers of endomorphisms on paths, Discrete Math. 309 (2009) 94-103.
[9] Sr. Arworn, P. Wojtylak, An algorithm for the number of path homomorphisms, Discrete Math. 309 (18) (2009) 5569-5573.
[10] N. Pipattanajinda, Finding the Numbers of Cycle Homomorphisms, MS Thesis, Chiang Mai University, Thailand, 2006.
[11] W. Li, Graphs with regular monoid, Discrete Math. 265 (2003) 105-118.
[12] N. Pipattanajinda, U. Knauer, Sr. Arworn, Endo-regularity of generalized wheel graphs, Chamchuri J. Math. 3 (2011) 45-57.
[13] Sr. Arworn, U. Knauer, S. Leeratanavalee, Locally strong endomorphisms of paths, Discrete Math. 308 (12) (2008) 2525-2532.
[14] N. Pipattanajinda, U. Knauer, B. Gyurov, S. Panma, The endomorphisms monoids of graphs of order n with a minimum degree $n-3$, Algebra Discrete Math. 18 (2) (2014) 274-294.
[15] N. Pipattanajinda, U. Knauer, B. Gyurov, S. Panma, The endomorphism monoids of ($n-3$)-regular graphs of order n, Algebra Discrete Math. 22 (2) (2016) 284-300.
[16] U. Knauer, M. Nieporte, Endomorphisms of graphs I. The monoid of strong endomorphisms, Arch. Math. 52 (1989) 607-614.

