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1. Introduction and Preliminaries

The endomorphism spectrum and the endomorphism type of graph was defined by
Knauer and Böttcher. In 1992 and resp. 2003 [1, 2], Knauer and Böttcher, proved
that there is graph G with Endotype G = x, when given x;x ∈ {0, . . . , 31} \ {1, 17}.
Furthermore, on the sufficiency, who found the results of endospectrum and endotype
of some family of graph as following. In 2001 [3], Fan found the results on bipartite
graph with diameter 3 and girth 6. In 2008 [4], Hou, Luo and Cheng found the results
on complement of path. In 2009 [5], Hou, Fan and Luo found the results on generalized
polygons. In 2011 [6], Wang and Hou found the results on n-prism graph. In 2014 [7],
Pipattanajinda found the endotype of (n − 3)-regular graphs of order n. The results
for the number of endomorphisms of path, cycle, cycle complement, generalized wheel
graphs, and the number of locally strong endomorphisms of paths, see [8–12] and [13],
respectively. Further, see [14], the result of the endomorphisms monoids of graphs of
order n with a minimum degree n − 3. The results of the endomorphisms monoids and
the endotype in [7, 14, 15], gives the interesting to make the absoluteness of the results
of endospectrum on the (n− 3)-regular graphs of order n.

Consider finite simple graphs G with vertex set V (G) and edge set E(G). Let f :
V (G) → V (G) be a mapping. We recall the 6 types of endomorphisms of a graph G.
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First, the mapping f is said to be an endomorphism if f preserves edges, i.e. {u, v} ∈
E(G) implies {f(u), f(v)} ∈ E(G). Further, the endomorphism f is said to be a half
strong endomorphism if {f(u), f(v)} ∈ E(G) implies that there exists x ∈ f−1(f(u)), the
preimages of f(u), and y ∈ f−1(f(v)), the preimages of f(v), such that {x, y} ∈ E(G).
The endomorphism f is said to be a locally strong endomorphism if {f(u), f(v)} ∈ E(G)
implies for each x ∈ f−1(f(u)) that there exists y ∈ f−1(f(v)) such that {x, y} ∈ E(G),
and analogously for each y ∈ f−1(f(v)). The endomorphism f is said to be a quasi
strong endomorphism if {f(u), f(v)} ∈ E(G) implies that there exists x ∈ f−1(f(u))
such that {x, y} ∈ E(G) for all y ∈ f−1(f(v)), and analogously for preimages of f(v).
The endomorphism f is said to be a strong endomorphism if {f(u), f(v)} ∈ E(G) implies
{x, y} ∈ E(G), for all x ∈ f−1(f(u)) and y ∈ f−1(f(v)). Finally, the endomorphism f is
said to be an automorphism if f is bijective and f−1 is an endomorphism.

In this paper we use the following notations:

• End(G), the set of all endomorphisms of G,
• HEnd(G), the set of all half strong endomorphisms of G,
• LEnd(G), the set of all locally strong endomorphisms of G,
• QEnd(G), the set of all quasi strong endomorphisms of G,
• SEnd(G), the set of all strong endomorphisms of G, and
• Aut(G), the set of all automorphisms of G.

It is clear that, End(G) ⊇ HEnd(G) ⊇ LEnd(G) ⊇ QEnd(G) ⊇ SEnd(G) ⊇ Aut(G).
With this sequence, we associate the sequence of respective cardinalities by

Endspec G = (|End(G)|, |HEnd(G)|, |LEnd(G)|, |QEnd(G)|, |SEnd(G)|, |Aut(G)|)

and call this 6-tuple the endomorphism spectrum or endospectrum of G.
We associate with the above sequence a 5-tuple (s1, s2, s3, s4, s5) with si ∈ {0, 1}, i =

1, 2, 3, 4, 5, where 1 stands for 6= and 0 stands for = at the respective position in the above

sequence, i.e. s1 = 1 indicates that End(G) 6= HEnd(G) etc. The integer
5∑

i=1

si2
i−1 is

called the endomorphism type or endotype of graph G and is denoted by Endotype G.
Let G be a graph. The number of vertices of G is often called the order of G. The

degree of a vertex u in a graph G is the number of vertices adjacent to u and is denoted
by dG(u) or simply by d(u) if the graph G is clear from the context. If d(u) = r for every
vertex u of G, where 0 ≤ r ≤ n− 1, then G is called a r-regular. The complement (graph)
G of G is a graph such that V (G) = V (G) and {u, v} ∈ E(G) if and only if {u, v} /∈ E(G)
for any u, v ∈ V (G), u 6= v. A subgraph H of G is called an induced subgraph, if for any
u, v ∈ V (H), {u, v} ∈ E(G) implies {u, v} ∈ E(H). Let G and H be two graphs. The
join of G and H, denoted by G+H, is a graph such that V (G+H) = V (G)∪V (H) and
E(G + H) = E(G) ∪ E(H) ∪ {{u, v}|u ∈ V (G), v ∈ V (H)}. The graph with vertex set
{1, . . . , n}, such that n ≥ 3, and edge set {{i, i+ 1}|i = 1, . . . , n} ∪ {1, n} is called a cycle
Cn.

Some results on the (n− 3)-regular graph of order n.
In [15], N. Pipattanajinda, U. Knauer, B. Gyurov and S. Panma investigated (n− 3)-

regular graph of order n.

Lemma 1.1 ([15]). Let G be a graph of order n ≥ 3. Then G is an (n− 3)-regular graph

if and only if G =
s
+
i=1

Cni
where n = n1 + . . . + ns and s ≥ 1. In particular s > 1 implies

n ≥ 6.
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Let G = C(2m1)1 + . . . + C(2ms)s be an (n − 3)-regular graph of order n. Sets Oi =
{1i, 3i, . . . , (2mi−1)i} and Ei = {2i, 4i, . . . , (2mi)i}. Denote by SX1,X2,··· ,Xs

= X1∪X2∪
. . . ∪Xs where Xi ∈ {Oi, Ei}, 1 ≤ i ≤ s. Further, let f ∈ End(G) and G1 is an induced
subgraph of G. Denote the set of all elements f(x) where x ∈ V (G1) by f(G1), and the
restriction of f on G1 by f |G1 .

Lemma 1.2 ([15]). Let G = C(2m1)1 + . . . + C(2ms)s and f : V (G) → V (G). Then
f ∈ End(G) if and only if f satisfies:

(1) If f(xi) = f(yi) for some two different elements xi, yi ∈ V (Cni
), then yi =

(x− 1)i or yi = (x + 1)i.
(2) f(SO1,··· ,Os

) = X1 ∪ . . . ∪Xs and f(SE1,··· ,Es
) = Y1 ∪ . . . ∪ Ys where Xi, Yi ∈

{Oi, Ei}, 1 ≤ i ≤ s.
(3) If Oi, Ei ∈ f(G) for some 1 ≤ i ≤ s, then f(C(2mj)j ) = C(2mi)i and mj = mi

for some 1 ≤ j ≤ s such that f |C(2mj)j
is an isomorphism from C(2mj)j to C(2mi)i .

(4) If f(xi) = f((x + 1)i) for some xi ∈ V (C2mi
), then

(4.1) f(1i) = f(2i), f(3i) = f(4i), . . . , f((2mi − 1)i) = f((2mi)i), if x is odd,
or

(4.2) f((2mi)i) = f(1i), f(2i) = f(3i), . . . , f((2mi − 2)i) = f((2mi − 1)i), if x
is even.

Lemma 1.3 ([15]). Let G be an (n− 3)-regular graph of order n. Denote by Gx and GE

set of all induced subgraphs Cx and C2m of G, respectively (note that Gx = ∅, if G does
not contain an induced subgraph Cx). Then

(1) |End(G)| = |End(GE)|× |End(G3)|× |End(G5)|× |End(G7)|× . . ., if Gx 6= ∅,
for all x = 3, 5, 7, . . .,

(2) End(G3) ∼= Sm1
× T3, where |G3| = m1, and

(3) for each odd integer x ≥ 5, End(Gx) = Aut(Gx) ∼= Sm2×Dx, where |Gx| = m2.

Example 1.4. Let G = C41 + C42 + C63 , the 11-regular graph of order 14, and f :
V (G)→ V (G) such that

f =

(
11 21 31 41 12 22 32 42 13 23 33 43 53 63
32 32 43 43 31 21 11 41 63 12 12 23 23 63

)
.

Since for each x, y ∈ V (G), {x, y} ∈ E(G) implies {f(x), f(y)} ∈ E(G), f is an endomor-
phism.

Furthermore, from Lemma 1.2, f satisfies (1), since if f(x) = f(y) then y = x − 1 or
y = x + 1.

f satisfies (2), because SO1,O2,O3 = {11, 31, 12, 32, 13, 33, 53} and
SE1,E2,E3

= {21, 41, 22, 42, 23, 43, 63} such that f(SO1,O2,O3
) = {32, 43, 31, 11, 63, 12, 23} =

O1 ∪O2 ∪ E3 and f(SE1,E2,E3
) = {32, 43, 21, 41, 12, 23, 63} = E1 ∪O2 ∪ E3.

f satisfies (3), because O1, E1 ∈ f(G) and there exists C42 such that f(C42) = C41

and f |C42
is an isomorphism from C42 to C41 .

Finally, f satisfies (4), because f(11) = f(21), f(31) = f(41) and f(63) = f(13), f(23) =
f(33), f(43) = f(53), when f(11) = f(21) and f(23) = f(33), respectively.

In [7], N. Pipattanajinda found the results of the endomorphism of an (n− 3)-regular
graph of order n as following.
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Lemma 1.5 ([7]). Let G be an (n− 3)-regular graph of order n and f ∈ End(G).

(1) If x ∈ f(G), then 1 ≤ |f−1(x)| ≤ 2.
(2) If x, y ∈ f(G) with f−1(x) = {u} and f−1(y) = {v}, then {x, y} ∈ E(G) if

and only if {u, v} ∈ E(G).
(3) If x, y ∈ f(G) with f−1(x) = {u1, u2} and f−1(y) = {v}, then {x, y} ∈ E(G)

if and only if {ui, v} ∈ E(G), for all i = 1, 2.

Lemma 1.6 ([7]). Let G be an (n − 3)-regular graph of order n. Then the following
statements are trues.

(1) End(G) = LEnd(G).
(2) End(G) 6= QEnd(G) if and only if G contain induced subgraph C4.
(3) QEnd(G) 6= SEnd(G) if and only if G contain induced subgraph C2r, r > 2.
(4) SEnd(G) 6= Aut(G) if and only if G contain induced subgraph C3.
(5) The Endotype G is division by 4.

2. The Endospectrum of (n− 3)-Regular Graphs of Order n

Denote ⊕
s
Ct by the joins of s complement of cycles which length t. Let G = ⊕

n3

C3 +

⊕
n4

C4 + · · ·+ ⊕
n2k+1

C2k+1, the (n− 3)-regular graph of order n where n = 3n3 + 4n4 + · · ·+

(2k + 1)n2k+1. From Lemma 1.6(1), End(G) = LEnd(G). In [16], Knauer and Nieporte
found the result of strong endomorphism of graph.

Lemma 2.1 ([16]). Let G be a graph, x1, x2 ∈ V (G). There exists a strong endomorphism
f ∈ SEnd(G) with f(x1) = f(x2) if and only if N(x1) = N(x2), by N(x) for x ∈ V (G)
denote the neighborhood of x ∈ G.

Then we get the result of strong endomorphism of the (n − 3)-regular graph of order
n.

Lemma 2.2. Let G = ⊕
n3

C3 +⊕
n4

C4 + · · ·+ ⊕
n2k+1

C2k+1 and f ∈ End(G). Then f is strong

if and only if the mapping f |⊕
nx

Cx
is 1− 1, for all even integer x;x ≥ 4.

Proof. Let x, y ∈ V (G). Then N(x) = N(y) if and only if x, y ∈ C3. So, from Lemma
2.1, f is a strong endomorphism with f(x) = f(y) if and only if x, y ∈ C3.

Next, the characterization of the quasi strong endomorphisms of G.

Lemma 2.3. Let G = ⊕
n3

C3 +⊕
n4

C4 + · · ·+ ⊕
n2k+1

C2k+1 and f ∈ End(G). Then f is quasi

strong if and only if the mapping f |⊕
n4

C4
is 1− 1.

Proof. Necessity. Suppose that f |⊕
n4

C4
is not 1 − 1 mapping. Then from Lemma 1.2(4),

there exists some subgraph C4 of G such that f(1) = f(2) = x and f(3) = f(4) = y (or
f(4) = f(1) = x and f(2) = f(3) = y) with {x, y} ∈ E(G), by Lemma 1.5(1), implies
that f−1(x) = {1, 2} and f−1(y) = {3, 4}. Since {1, 4}, {2, 3} /∈ E(G), f is not quasi
strong.
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Sufficiency. Let f |⊕
n4

C4
is an 1 − 1 mapping. Thus for each x, y ∈ V (G), f(x) = f(y)

implies x = y + 1 (or x = y − 1) and x, y ∈ V (C2m) for some m > 2.
Further, if |f−1(x)| = |f−1(y)| = 1 or |f−1(x)| = 2, |f−1(y)| = 1, then {u, v} ∈ E(G),

for all u ∈ f−1(x) and v ∈ f−1(y), by Lemma 1.5(2) and (3).
Let f−1(x) = {u1, u2} and f−1(y) = {v1, v2}, s’pose that u1 < u2 < v1 < v2, u2 =

u1 + 1, v2 = v1 + 1 and belong to same complement of cycle C2m. The mapping look like:

f =

(
. . . u1 u2 . . . v1 v2 . . .
. . . x x . . . y y . . .

)
.

If ether u1 6= 1 nor v2 6= 2m, then {u1, v1}, {u1, v2} ∈ E(G). If u1 = 1 and v2 = 2m,
since 2m > 4, {u2, v1} ∈ E(G) implies that {u2, v1}, {u2, v2} ∈ E(G). This is show that
f ∈ QEnd(G).

Next, we will compute the number of endomorphisms of (n−3)-regular graphs of order
n. From Lemma 1.3, as following:

Lemma 2.4. Let G = ⊕
n3

C3+⊕
n4

C4+· · ·+ ⊕
n2k+1

C2k+1, n = 3n3+4n4+· · ·+(2k+1)n2k+1,

an (n− 3)-regular graphs of order n. Then

(1) |End(G)| = |End(⊕
n4

C4 +⊕
n6

C6 + · · ·+ ⊕
n2k

C2k)|× |End(⊕
n3

C3)|× |End(⊕
n5

C5)|×

|End(⊕
n7

C7)| × . . .× |End( ⊕
n2k+1

C2k+1)|, where |End(⊕
nx

Cx)| = 1 if nx = 0,

(2) |End(⊕
n3

C3)| = |Sn3
× T3| = 9n3!, if n3 6= 0,

(3) |Aut(⊕
n3

C3)| = |Sn3 ×D3| = 6n3!, if n3 6= 0,

(4) for each odd integer x ≥ 5 such that nx 6= 0, |End(⊕
nx

Cx)| = |Aut(⊕
nx

Cx)| =

|Snx
×Dx| = 2xnx!, and

(5) for each even integer x ≥ 4 such that nx 6= 0, |Aut(⊕
nx

Cx)| = |Snx
× Dx| =

2xnx!.

Lemma 2.5. Let G = ⊕
n3

C3 + ⊕
n5

C5 + ⊕
n7

C7 + . . . + ⊕
n2k+1

C2k+1. Then

(1) |End(G)| = |SEnd(G)| = 3 · 2k−1
k∏

i=1

[(2i + 1)n2i+1!],

(2) |Aut(G)| = 2k
k∏

i=1

[(2i + 1)n2i+1!].

Proof. (1) Clearly by Lemma 2.4(1)(2) and (4), the cardinality of |End(⊕
n3

C3 + ⊕
n5

C5+

⊕
n7

C7+. . .+ ⊕
n2k+1

C2k+1)|= |End(⊕
n3

C3)|×|End(⊕
n5

C5)|×|End(⊕
n7

C7)|×. . .×|End( ⊕
n2k+1

C2k+1)|

= 9n3!(2)(5)n5!(2)(7)n7! · · · (2)(2k + 1)n2k+1! = 3 · 2k−1
k∏

i=1

[(2i + 1)n2i+1!].

(2) Clearly by Lemma 2.4(1)(3) and (4), the cardinality of |Aut(⊕
n3

C3 +⊕
n5

C5 +⊕
n7

C7 +

. . .+ ⊕
n2k+1

C2k+1)| = |Aut(⊕
n3

C3)|× |Aut(⊕
n5

C5)|× |Aut(⊕
n7

C7)|× . . .×|Aut( ⊕
n2k+1

C2k+1)| =

6n3!(2)(5)n5!(2)(7)n7! · · · (2)(2k + 1)n2k+1! = 2k
k∏

i=1

[(2i + 1)n2i+1!].
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Consider the cardinality |End(⊕
n4

C4 + ⊕
n6

C6 + · · ·+ ⊕
n2k

C2k)|.

Let F ([n4 : r4], [n6 : r6], . . . , [n2k : r2k]), 0 ≤ rs ≤ ns, be the set of all endomorphisms
f ∈ End(⊕

n4

C4 + ⊕
n6

C6 + · · · + ⊕
n2k

C2k) such that f |⊕
rs

Cs
is the 1 − 1 mapping from ⊕

rs
Cs

embed in ⊕
ns

Cs. Denote P (n, r) = n!
(n−r)! , the permutations of n elements r at a time.

Let G = ⊕
n4

C4 + ⊕
n6

C6 + · · · + ⊕
n2k

C2k and f ∈ F ([n4 : 0], [n6 : 0], . . . , [n2k : 0]),

f ∈ End(G) with |f−1(x)| = 2 for all x ∈ f(G). Using the same technique as in [15], we
obtain Lemmas 2.6 and 2.7.

Lemma 2.6. Let %f be the congruence of the graph G when defining x%fy ⇔ f(x) = f(y)
which here means x, y are elements of same complement of cycle with y = x + 1 or
y = x − 1. Denote by G%f

the factor graph. Then for each induced subgraph C2m of G

either V ((C2m)%f
) = {{1, 2}, . . . {2m − 1, 2m}} or V ((C2m)%f

) = {{2m, 1}, . . . {2(m −
1), 2m− 1}}.

Lemma 2.7. Let f̂ : V (G%f
)→ V (G) be defined by f̂(x%f

) = f(x). Then for each induced

subgraph C2m of G, there exist subset C of V (G) either f̂(C%f
) = {1, 3, . . . , 2m − 1} or

f̂(C%f
) = {2, 4, . . . , 2m}.

From Lemmas 2.6 and 2.7, we can define the following classes of endomorphisms of

F ([n4 : 0], [n6 : 0], . . . , [n2k : 0]) on G by %f and f̂(C%f
) ⊆ V (C2m).

(1) Sor
m , the class of all endomorphisms f of G where f̂(C%f

) are the odd integers
and {1, 2} ∈ %f ,

(2) Ser
m , the class of all endomorphisms f of G where f̂(C%f

) are the even integers
and {1, 2} ∈ %f ,

(3) Sol
m, the class of all endomorphisms f of G where f̂(C%f

) are the odd integers
and {2m, 1} ∈ %f , and

(4) Sel
m, the class of all endomorphisms f of G where f̂(C%f

) are the even integers
and {2m, 1} ∈ %f .

Example 2.8. For the graph ⊕
2
C6 = C6+C6 with the set F ([n4 : 0], [n6 : 0], . . . , [n2k : 0])

such that n6 = 2 and n4 = n8 = · · · = n2k = 0, we choose following 16 (= 42) notations
at

Sor
31 × Sor

32 , S
or
31 × Ser

32 , S
or
31 × Sol

32 , S
or
31 × Sel

32 , S
er
31 × Sor

32 , S
er
31 × Ser

32 , S
er
31 × Sol

32 , S
er
31 × Sel

32 ,

Sol
31 × Sor

32 , S
ol
31 × Ser

32 , S
ol
31 × Sol

32 , S
ol
31 × Sel

32 , S
el
31 × Sor

32 , S
el
31 × Ser

32 , S
el
31 × Sol

32 , S
el
31 × Sel

32 ,

and some elements as follow(
11 21 31 41 51 61 12 22 32 42 52 62
11 11 31 31 51 51 12 12 32 32 52 52

)
,

(
11 21 31 41 51 61 12 22 32 42 52 62
31 31 32 32 51 51 11 11 12 12 52 52

)
∈ Sor

31 × Sor
32

and(
11 21 31 41 51 61 12 22 32 42 52 62
11 11 31 31 51 51 62 22 22 42 42 62

)
,

(
11 21 31 41 51 61 12 22 32 42 52 62
62 62 11 11 42 42 31 22 22 51 51 31

)
∈ Sor

31 × Sel
32 .
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Proposition 2.9. The sets S
s21
2 ×· · ·×S

s2n4
2 ×Ss31

3 ×· · ·×S
s3n6
3 ×· · ·×Ssk1

k ×· · ·×S
skn2k

k ,
with sxy

∈ {or, er, ol, el} for all x = 2, 3, . . . , k and y = n4, n6, . . . , n2k form groups

isomorphic to Sm, where m = 2n4 + 3n6 + · · ·+ kn2k =
k∑

i=2

in2i.

Theorem 2.10. |F ([n4 : 0], [n6 : 0], . . . , [n2k : 0])| = 4

k∑
i=2

n2i

[
k∑

i=2

in2i]!.

Proof. It follows directly from Proposition 2.9.

Remark 2.11. Since F ([n4 : 0], [n6 : 0], . . . , [n2k : 0]) form a (disjoint) union of groups,
the F ([n4 : 0], [n6 : 0], . . . , [n2k : 0]) is a completely regular semigroup.

Theorem 2.12. |F ([n4 : r4], [n6 : r6], . . . , [n2k : r2k])| =

4

k∑
i=2

(n2i−r2i)
[

k∑
i=2

i(n2i − r2i)]!
k∏

i=2

[(4i)P (n2i, r2i)]∏
r2i=0

4i
, where 0 ≤ rs ≤ ns.

Proof. For each 1 ≤ s ≤ k, assume that r2s > 0. This is certainly that the mapping from
⊕
r2s

C2s is embed to ⊕
n2s

C2s is possible to P (ns, rs) pattern. Since for each mapping is same

to the dihedral group D2s, the mapping is possible to 2s. That initiate to remainder is
n2s − r2s, the mapping is same Theorem 2.10.

If r2s = 0, implies (4s)P (n2s, 0) = 4s. In this case, we need division (4s)P (n2s, 0) by
4s.

From Lemma 1.6, Lemma 2.2, Lemma 2.3, Lemma 2.5 and Theorem 2.12, the cardi-
nality of endomorphisms, half strong, locally strong, quasi strong, strong endomorphisms
and automorphisms of (n− 3)-regular graph of order n as following.

Theorem 2.13. Let G = ⊕
n3

C3 + ⊕
n4

C4 + · · ·+ ⊕
n2k+1

C2k+1, n = 3n3 + 4n4 + · · ·+ (2k +

1)n2k+1, an (n− 3)-regular graphs of order n. Then

(1) |End(G)| = |HEnd(G)| = |LEnd(G)| = 3 · 2k−1
k∏

i=1

(2i + 1)n2i+1!

×
n4,n6,...,n2k∑

r4=0,r6=0,...,r2k=0
|F ([n4 : r4], [n6 : r6], . . . , [n2k : r2k])|,

(2) |QEnd(G)| = 3 · 2k−1
k∏

i=1

(2i + 1)n2i+1!

×
n6,...,n2k∑

r6=0,...,r2k=0
|F ([n4 : n4], [n6 : r6], . . . , [n2k : r2k])|,

(3) |SEnd(G)| = 3 · 2k−1
k∏

i=1

(2i + 1)n2i+1!

×|F ([n4 : n4], [n6 : n6], . . . , [n2k : n2k])|, and

(4) |Aut(G)| = 2k
k∏

i=1

(2i + 1)n2i+1!× |F ([n4 : n4], [n6 : n6], . . . , [n2k : n2k])|.
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Proposition 2.14. The Endospectrum of graph G as follow

Endspec G = (x1, x1, x1, x2, x3, x4),

where xi is the value of Theorem 2.13(i).

Remark 2.15. From Theorem 2.12, we found the equation 2.1,

|F ([n4 : n4], [n6 : n6], . . . , [n2k : n2k])| = 2k−1
k∏

i=2

(2in2i!). (2.1)

Furthermore, from Theorem 2.13(3)-(4) with the equation 2.1, let G = ⊕
n3

C3 + ⊕
n4

C4 +

· · · + ⊕
n2k+1

C2k+1, then the following to the number of strong endomorphisms and auto-

morphisms of graph G,

(1) |SEnd(G)| = 3 · 22(k−1)(2k + 1)!
2k+1∏
i=2

ni!, and

(2) |Aut(G)| = 22k−1(2k + 1)!
2k+1∏
i=2

ni!.
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