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Abstract In this research, we introduce an accelerated fixed point algorithm for solving a common fixed

point of a countable family of nonexpansive operators and analyze convergence behavior of the proposed

method. We prove weak convergence of the proposed algorithm under some suitable conditions. We

also apply our main result for solving a convex minimization problem. As an application, we apply our

main result to solve image restoration problems and compare its convergence behavior with the existing

well-known algorithms. We find that our algorithm outperforms than the others in the literature.
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1. Introduction

A recently emerging technique used in signal and image processing is compressive
sensing (CS). An important brance of image/signal processing is image restoration which
is one of the most popular classical inverse problems. Such problem has been extensively
studied in various applications such as image debluring, astronomical imaging, remote
sensing, radar imaging, digital photography, microscopic imaging. The image restoration
problem can be explained in one dimensional vector by the following model:

Ax = b+ w, (1.1)

where x ∈ Rn×1 is an original image, b ∈ Rm×1 is the observed image, w is additive
noise and A ∈ Rm×n is the blurring operation. In order to solve problem (1.1), we aim
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to approximate the original image, vector x, by minimizing the additive noise, which is
known as the least squares (LS) problem, by the following model:

min
x
‖Ax− b‖22, (1.2)

where ‖·‖2 is l2-norm defined by ‖x‖2 =
∑n
i=1 |xi|2. The solution of (1.2) can be estimated

by many iterations such as Richardson iteration, see [1] for more detail. However, the
number of unknown variables is much more than the observations which causes (1.2)
to be ill-posed problem because of a huge norm result which is thus meaningless, see
[2] and [3]. Therefore, in order to improve ill-conditioned least squares problem, several
regularization methods were introduced. One of the most popular regularization methods
is Tikhonov regularization suggested by Tikhonov, see [4]. It is defined to solve the
following minimization problem:

min
x
‖Ax− b‖22 + λ‖Lx‖22, (1.3)

where λ > 0, is called regularization parameter, and L ∈ Rm×n, is called Tikhonov
matrix. In the standard form, L is set to be the identity. In statistics, (1.3) is known
as ridge regression. For improving the original LS (1.2) and classical regularization such
as subset selection and ridge regression (1.3), a new method for estimation a solution of
(1.1) called least absolute shrinkage and selection operator (LASSO), was proposed and
discussed by Tibshirani [5] as follows:

min
x
‖Ax− b‖22 + λ‖x‖1, (1.4)

where ‖ ·‖1 is l1-norm defined by ‖x1‖ =
∑n
i=1 |xi|. Moreover, the LASSO can be applied

to regression problems [5], image restoration problems [6], etc. In general,(1.2)-(1.4) can
be formulated in a general form by estimating the minimizer of sum of two functions as
follows:

min
x
F (x) := f(x) + g(x), (1.5)

where g is a convex smooth (or possible non-smooth) function and f is a smooth convex
loss function with gradient having Lipschitz constant L. By using Fermats rule, Theorem
16.3 of [7], the solution of (1.5) can be characterized as follows: x minimizing (f + g) if
and only if 0 ∈ ∂g(x̄) + ∇f(x̄) where ∂g(x̄) and ∇f(x̄) refer to the subdifferential and
gradient of g and f respectively. Moreover, Parikh and Boyd [8] showed that problem
(1.5) can also be interpreted as a fixed point problem: x̄ minimizing (f + g) if and only if

x̄ = proxcg(I − c∇f)(x̄) = Jc∂g(I − c∇f)(x̄), (1.6)

where proxg(x) = argminy∈H(g(y) + 1
2‖x− y‖

2), c > 0, I is an identity operator, proxcg
is the proximity operator of cg ,and J∂g is the resolvent of ∂g defined by J∂g = (I+∂g)−1.
For convenience, (1.6) can be rewritten as:

x̄ = T x̄, (1.7)

where T := proxcg(I − c∇f) which is called forward-backward operator. It is observed
that a solution of (1.7) is a fixed point of T and T is a nonexpansive mapping when
c ∈ (0, 2

L ). The existence of a fixed point of nonexpansive mappings was guaranteed by
Browders theorem, see [9] for more detail. In order to find a point x̄ satisfying (1.7),
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many researchers proposed various methods for finding the approximate solution. One of
most popular iterative methods, called Picard iteration process, was defined by:

xn+1 = Txn, (1.8)

where initial point x1 is chosen randomly. In addition, other iterative methods for im-
proving picard iteration process have been studied extensively such as follows.
Mann iteration process [10] is defined by:

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.9)

where initial point x1 is chosen randomly and {αn} is a sequence in [0, 1].

Ishikawa iteration process [11] is defined by:{
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1,
(1.10)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1].
S-iteration process [12] is defined by:{

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, n ≥ 1,
(1.11)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1]. In
2017, Agqrwal, ORegan and Sahu [9] proved that this iteration process is independent of
Mann and Ishikawa iteration process and converges faster than both of them. However,
the processes mentioned above have a badly convergence rate. Thus, to give a better
convergence behavior and improve speed, the technique enhanced with inertial step was
introduced firstly by Polyak [13]. The following classical iterative method for finding a
zero of sum of two operators, i.e. find x∗ ∈ H such that x∗ ∈ zer(∇f +∂g) can be viewed
as Mann interation and it is known as the forward-backward algorithm (FBA) is defined
by: {

yn = xn − γ∇fxn,
xn+1 = xn + αn(Jγ∂gyn − xn), n ≥ 1,

(1.12)

where x0 ∈ H, L is a Lipschitz constant of ∇f , γ ∈ (0, 2
L ), δ = 2 − γL

2 and a sequence
{αn} in [0, δ] such that

∑
n∈N αn(δ − αn) = +∞ . The following iterative method with

inertial step can be used for improving performance of Forward-backward algorithm.
A fast iterative shrinkage-thresholding algorithm (FISTA) [6] is defined by:

yn = Txn,

tn+1 =
1+
√

1+4t2n
2 ,

θn = tn−1
tn+1

,

xn+1 = yn + θn(yn − yn−1), n ≥ 1,

(1.13)

where x1 = y0 ∈ Rn, t1 = 1, T := prox 1
L g

(I − 1
L∇f) and θn is called inertial step

size. FISTA was suggested by Beck and Teboulle. They proved that rate of convergence
of FISTA is better than that of iterative shrinkage-thresholding algorithms (ISTA) and
applied FISTA to image deblurring problems [6]. The inertial step size θn of FISTA
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was firstly introduced by Nesterov [14]. A new accelerated proximal gradient algorithm
(NAGA) [15] was defined by:{

yn = xn + θn(xn − xn−1),

xn+1 = Tn[(1− αn)yn + αnTnyn], n ≥ 1,
(1.14)

where {θn}, {αn} are sequences in (0, 1) and ‖xn−xn−1‖2
θn

→ 0. The NAGA was suggested

by Verma and Shukla [15]. They proved a convergence theorem of NAGA and applied this
method for solving the non-smooth convex minimization problem with sparsityinducing
regularizers for the multitask learning framework. There are also recent works for modified
forward-backward algorithms, see [16–20] for instance.

Motivated by the previous works mentioned above, we aim to introduce a new accel-
erated fixed point algorithm for finding a common fixed point of a countable family of
nonexpansive mapping in a real Hilbert space. Then we analyze and compare convergence
behavior of our method with the other for deblurring the image.

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and C be a
nonempty closed convex subset of H.

Definition 2.1. A mapping T : C → C is said to be

(i) Lipschitzian if there exists τ ≥ 0 such that

‖Tx− Ty‖ ≤ τ‖x− y‖, ∀x, y ∈ C;

(ii) contraction if T is Lipschitzian with the coefficient τ ∈ [0, 1);
(iii) nonexpansive if T is Lipschitzian with the coefficient τ = 1.

Let T : C → C be a mapping. We say that an element x ∈ C is a fixed point of T if
x = Tx. The set of all fixed points of T is denoted by F (T ) := {x ∈ C : Tx = x} and is
called the fixed point set of T . Let {Tn} and Ω be families of nonexpansive operators of
C into C such that ∅ 6= F (Ω) ⊂ Γ :=

⋂∞
n=1 F (Tn), where F (Ω) is the set of all common

fixed points of each T ∈ Ω, and let ωw(xn) denote the set of all weak-cluster point of a
bounded sequence {xn} in C. A sequence {Tn} is said to satisfy the NST-condition(I)
with Ω [21], if for every bounded sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0 ∀T ∈ Ω.

If Ω is singleton, i.e., Ω = {T}, then {Tn} is siad to satisfy the NST-condition(I) with T .
After that, Nakajo et al. [22] presented the NST∗-condition which is more general than
that of NST-condition. A sequence {Tn} is siad to satisfy the NST*-condition if for every
bounded sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = lim
n→∞

‖xn − xn+1‖ = 0 implies ωw(xn) ⊂ Γ.

Lemma 2.2 ([23]). For a real Hilbert speace H, let g : H → R∪{∞} be proper convex and
lower semi-continuous function, and f : H → R be convex differentiable with gradient ∇f
being L-Lipschitz constant for some L > 0. If {Tn} is the forward-backward operator of f
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and h with respect to cn ∈ (0, 2/L) such that cn converges to c, then {Tn} satisfies NST-
condition(I) with T, where T is the forward-backward operator of f and h with respect to
c ∈ (0, 2/L).

Lemma 2.3 ([24]). Let H be a real Hilbert space. Then the following results hold:

(i) for all t ∈ [0, 1] and x, y ∈ H,

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2;

(ii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2 ∀x, y ∈ H.

Lemma 2.4 ([25]). Let {an}, {bn} and {γn} be sequences of nonnegative real numbers
such that

an+1 ≤ (1 + γn)an + bn, n ∈ N.

If
∑∞
n=1 γn <∞ and

∑∞
n=1 bn <∞, then limn→∞ an exists.

Lemma 2.5 ([26] Opial’s Lemma). Let H be a Hilbert space and {xn} be a sequence in
H such that there exists a nonempty set Γ ⊂ H satisfying

(i) for every p ∈ Γ, limn→∞ ‖xn − p‖ exists;
(ii) each weak-cluster point of the sequence {xn} is in Γ.

Then, there exists x∗ ∈ Γ such that {xn} weakly converges to x∗.

Lemma 2.6 ([27]). Let {an} and {θn} be sequences of nonnegative real numbers such
that

an+1 ≤ (1 + θn)an + θnan−1, n ∈ N.

Then the following holds

an+1 ≤ K ·
n∏
j=1

(1 + 2θj),

where K = max{a1, a2}. Moreover, if
∑∞
n=1 θn <∞, then {an} is bounded.

3. Main Result

In this section, we introduce a new accelerated fixed point algorithm for finding a
common fixed point of a countable family of nonexpansive operators and then we prove
a weak convergence result of proposed method under some suitable conditions. We also
apply the obtained result to solving a convex optimization problem.

Theorem 3.1. Let {Tn} be a family of nonexpansive operators of H into itself such that
{Tn} satisfies NST∗-condition. Supppose that ∅ 6= Γ = ∩∞n=1F (Tn) and let {xn} be a se-
quence in H defined by Algorithm 1. Then the following hold:

(i) ‖xn+1 − x∗‖ ≤ K ·Πn
j=1(1 + 2θj), where K = max{‖x1 − x∗‖, ‖x2 − x∗‖} and x∗ ∈ Γ.

(ii) {xn} converges weakly to a point in ∩∞n=1F (Tn).
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Algorithm 1

1: Initialization. Take x0, x1 ∈ H are arbitary and n = 1, γn ∈ [a1, b1] ⊂ (0, 1),
βn ∈ [0, 1], αn ∈ [0, b2] ⊂ [0, 1), θn ≥ 0 and

∑∞
n=1 θn <∞.

2: Iterative Step. Compute ωn, zn, yn and xn+1 using
ωn = xn + θn(xn − xn−1),

zn = (1− γn)ωn + γnTnωn,

yn = (1− βn)zn + βnTnzn,

xn+1 = (1− αn)Tnzn + αnTnyn, n ≥ 1.

Then update n := n+ 1 and go to Iterative Step.

Proof. Let x∗ ∈ ∩∞n=1F (Tn). From Algorithm 1, we have

‖ωn − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1‖, (3.1)

‖zn − x∗‖ ≤ (1− γn)‖ωn − x∗‖+ γn‖Tnωn − x∗‖
= (1− γn)‖ωn − x∗‖+ γn‖Tnγn − Tnx∗‖
≤ ‖ωn − x∗‖ (3.2)

and

‖yn − x∗‖ = ‖(1− βn)zn + βnTnzn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖Tnzn − x∗‖
≤ (1− βn)‖zn − x∗‖+ βn‖zn − x∗‖
≤ ‖zn − x∗‖
≤ ‖ωn − x∗‖. (3.3)

These imply that

‖xn+1 − x∗‖ = ‖(1− αn)(Tnzn − x∗) + α(Tnyn − x∗)‖
≤ (1− αn)‖Tnzn − x∗‖+ αn‖Tnyn − Tnx∗‖
≤ (1− αn)‖zn − x∗‖+ α‖yn − x∗‖
≤ ‖ωn − x∗‖. (3.4)

From Algorithm 1 and (3.4), we get

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1‖. (3.5)

This impiles

‖xn+1 − x∗‖ ≤ (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖. (3.6)

Apply Lemma 2.6, we get ‖xn+1 − x∗‖ ≤ K ·Πn
j=1(1 + 2θj), where

K = max{‖x1 − x∗‖, ‖x2 − x∗‖}.

So (i) is obtained.
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Since
∑∞
n=1 θn <∞, we obtain {xn} is bounded. Thus

∞∑
n=1

θn‖xn − xn−1‖ <∞. (3.7)

By (3.6) and Lemma 2.4, we get limn→∞ ‖xn − x∗‖ exists. By Lemma 2.3(ii), we obtain

‖ωn − x∗‖2 ≤ ‖xn − x∗‖2 + θ2n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖. (3.8)

By Lemma 2.3(i), we have

‖zn − x∗‖2 = ‖(1− γn)(ωn − x∗) + γn(Tnωn − x∗)‖
= (1− γn)‖ωn − x∗‖2 + γn‖Tnγn − x∗‖2 − γn(1− γn)‖ωn − Tnωn‖2

≤ ‖ωn − x∗‖2 − γn(1− γn)‖ωn − Tnωn‖2. (3.9)

Using Lemma 2.3(i) again together with (3.3), (3.8) and (3.9), we get

‖xn+1 − x∗‖2 = ‖(1− αn)(Tnzn − x∗) + αn(Tnyn − x∗)‖2

= (1− αn)‖Tnzn − x∗‖2 + αn||Tnyn − x∗‖2

− αn(1− αn)‖Tnzn − Tnyn‖2

≤ (1− αn)‖Tnzn − x∗‖2 + αn||Tnyn − x∗‖2

≤ (1− αn)‖zn − x∗‖2 + αn||yn − x∗‖2

≤ (1− αn)
(
‖ωn − x∗‖2 − γn(1− γn)‖ωn − Tnωn‖2

)
+ αn‖ωn − x∗‖2

= (1− αn)‖ωn − x∗‖2 − (1− αn)γn(1− γn)‖ωn − Tnωn‖2

+ αn‖ωn − x∗‖2

= ‖ωn − x∗‖2 − (1− αn)γn(1− γn)‖ωn − Tnωn‖2

≤ ‖xn − x∗‖2 + θ2n‖xn − xn−1‖+ 2θn‖xn − x∗‖‖xn − xn−1‖
− (1− αn)γn(1− γn)‖ωn − Tnωn‖2. (3.10)

Since (3.7) and limn→∞ ‖xn − x∗‖ exists, we obtain limn→∞ ‖ωn − Tnωn‖ = 0.
Note that

‖xn − Tnxn‖ ≤ ‖xn − ωn‖+ ‖ωn − Tnωn‖+ ‖Tnωn − Tnxn‖
≤ 2‖xn − ωn‖+ ‖ωn − Tnωn‖. (3.11)

From ‖xn − ωn‖ = θn‖xn − xn−1‖ → 0, it follows from above inequality that

lim
n→∞

‖xn − Tnxn‖ = 0.

Consider

‖yn − zn‖ ≤ ‖yn − ωn‖+ ‖ωn − zn‖
= ‖(1− βn)zn + βnTnzn − ωn‖+ ‖ωn − zn‖
≤ ‖zn − ωn‖+ βn‖Tnzn − zn‖+ ‖ωn − zn‖
≤ 2‖ωn − zn‖+ βn(‖Tnzn − Tnωn‖+ ‖Tnωn − ωn‖+ ‖ωn − zn‖)
≤ 2‖ωn − zn‖+ βn(2‖ωn − zn‖+ ‖Tnωn − ωn‖). (3.12)
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These imply by Algorithm 1 that limx→∞ ‖xn − Tnxn‖ = 0 and limx→∞ ‖yn − zn‖ = 0.
By the nonexpansiveness of Tn, we have

‖xn+1 − xn‖ ≤ ‖Tnzn − xn‖+ αn‖Tnyn − Tnzn‖
≤ ‖Tnzn − Tnxn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖
≤ ‖zn − xn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖
≤ ‖zn − ωn‖+ ‖ωn − xn‖+ ‖Tnxn − xn‖+ αn‖yn − zn‖. (3.13)

From (3.13) and ‖zn−ωn‖ = γn‖Tnωn−ωn‖ → 0, we get limn→∞ ‖xn−xn−1‖ = 0. Since
{Tn} satisfies the NST∗-condition, we obtain ωw(xn) ⊂ Γ := ∩∞n=1F (Tn). By Lemma 2.5,
we can conclude that {xn} converges weakly to a point in ∩∞n=1F (Tn). This completes
the proof.

4. Application on Convex Minimization Problems

Let f, g : Rn → (−∞,∞]. Consider the following problem:
Find x∗ ∈ Rn such that

x∗ ∈ ArgminF (x) : f(x) + g(x), (4.1)

where g is a convex smooth (or possible non-smooth) function and f is a smooth convex
loss function with gradient having Lipschitz constant L.

Note that the subdifferential operator ∂g is a maximal monotone (see [28] for more
details) and the solution of (4.1) is a fixed point of the following operator:

x∗ ∈ Argmin(f + g)⇔ x∗ = proxcg(I − c∇f)(x∗), (4.2)

where proxg(x) = Argminy∈H(g(y) + 1
2‖x − y‖

2), c > 0. For convenience, (4.2) can be
rewritten as:

x∗ = Tx∗, (4.3)

where T := proxcg(I − c∇f) which is called forward-backward operator. It is observed
that a solution of (4.3) is a fixed point of T and T is a nonexpansive mapping when
c ∈ (0, 2

L ).

Theorem 4.1. Let {xn} be a sequence generated by:

ωn = xn + θn(xn − xn−1)

zn = (1− γn)ωn + γnproxcng(I − cn∇f)ωn

yn = (1− βn)zn + βnproxcng(I − cn∇f)zn

xn+1 = (1− αn)proxcng(I − cn∇f)zn + αnproxcng(I − cn∇f)yn, n ≥ 1,

where x0, x1 ∈ Rn, γn, βn, αn ,θn are the same as in Theorem 3.1, and cn ∈ (0, 2/L)
such that {cn} converges to c and f, g : Rn → (−∞,+∞] are such that g is a convex
function and f is smooth convex function with gradient having Lipschitz constant L. Then
the following hold:

(i) ‖xn+1 − x∗‖ ≤ K · Πn
j=1(1 + 2θj), where K = max{‖x1 − x∗‖, ‖x2 − x∗‖} and x∗ ∈

Argmin(f + g).

(ii) {xn} converges weakly to a point in Argmin(f + g).
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Proof. Let T be the forward-backward operator of f and g with respect to c, and Tn be
the forward-backward operator of f and g with respect to cn, that is T := proxcg(I−∇f)
and Tn := proxcng(I − cn∇f). Then T and {Tn} are nonexpansive operators for all n
and F (T ) = ∩∞n=1F (Tn) = Argmin(f + g); see Proposition 26.1 in [7]. By Lemma 2.2,
we have that {Tn} satisfies the NST∗-condition. Therefore, we obtain the required result
directly by Theorem 3.1.

5. Simulated Results for the Image Restoration Problem

In this section, we apply Algorithm 1 to solving the image restoration problem (1.4)
and compare the deblurring efficiency of the Algorithm 1 with FISTA [6] and NAGA
[15]. Our programs were written in Matlab and all algorithms ran on a laptop, Intel
core i5, 4.00 GB RAM . All algorithms were applied to solving problem (1.4), where
f(y) = ‖Ay − a‖22, g(y) = λ‖y‖1, A is the blurring operator, a is the observed image and
λ is the regularization parameter. In this experiment, two gray-scale images, Lenna and
Cameraman of size 2562 are considered the original images. The images went through a
Gaussian blur of size 92 and standard deviation σ = 4. We use the peak signal-to-noise
ratio (PSNR) [29] to measure the performance our the algorithms where PSNR(xn) is
defined by:

PSNR(xn) = 10log10

(
2552

MSE

)
,

where MSE = 1
M ‖xn−x̄‖

2
2 M is the number of image samples and x̄ is the original image.

For these experiments, the regularization parameter was chosen to be λ = 5× 10−5 , and
the initial image was the blurred image. The Lipschitz constant L, was computed by the
maximum eigenvalues of the matrix ATA. We set parameters as follows:

cn =
n

L(n+ 1)
and c =

1

L
,

for NAGA, θn = 0.99 and for FISTA, θn = tn−1
tn+1

, 1 ≤ n < N ,

where tn is a sequence defined by t1 = 1 and tn+1 =
1+
√

1+4t2n
2 , and N is a number of

iterations that we use to stop, for Algorithm 1, αn = 0.99

θn =

{
0.99, 1 ≤ n < N
1
2n , otherwise.

The results of deblurring image of Cameraman and Lenna with 500th iteration of the
studied algorithms are shown in Tables 1, 2, 3 and Figures 1, 2, 3, 4.

Table 1. Comparison of image restorations of the studied methods.

Lenna Cameraman
Algorithms PSNR PSNR
Algorithm 1 36.523148 34.202795
FISTA 34.326150 32.007629
NAGA 29.640613 27.353732
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Table 2. The values of PSNR at x1, x5, x10, x25, x50, x100, x250, x500 (Lenna).

No. Iterations Algorithm 1 FISTA algorithm NAGA algorithm
1 24.483376 24.151658 24.427685
5 26.076036 25.144785 25.344547
10 27.293600 25.830097 25.828445
25 28.405658 27.286514 26.632544
50 29.715964 28.547210 27.336996
100 31.524497 29.879153 28.039350
250 34.443226 32.151290 28.938490
500 36.523148 34.326150 29.640613

Figure 1. The graphs of peak signal-to-noise ratio (PSNR) for Lenna.

Table 3. The values of PSNR at x1, x5, x10, x25, x50, x100, x250, x500 (Cameraman).

No. Iterations Algorithm 1 FISTA algorithm NAGA algorithm
1 21.789949 21.56719 21.751774
5 23.221470 22.271305 22.445619
10 24.701898 22.916905 22.920312
25 25.832694 24.620232 23.828038
50 27.157767 26.155117 24.677890
100 29.066243 27.603217 25.537534
250 32.079542 29.873896 26.592485
500 34.202795 32.007629 27.353732
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Figure 2. The graphs of peak signal-to-noise ratio (PSNR) for Cameraman.

Figure 3. Results for deblurring of the Lenna.
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Figure 4. Results for deblurring of the Cameraman.

From Table 2, Table 3 and the graph of PSNR in Figure 1, Figure 2 , we see that
Algorithm 1 gives a higher PSNR than the other algorithms, so the performance of the
image restoration of Algorithm 1 is better than those of FISTA and NAGA. We also see
that after 500 iterations, Algorithm 1 gives a better result of deblurring for Lenna and
Cameraman, as shown in Figure 3 and Figure 4.

The results of deblurring image of Lenna and Cameraman for the 500th iteration of
the Algorithm 1 under different parameters θn are shown in Table 4, where θn is defined
by:

θn =

{
µn, 1 ≤ n < N
1
2n , otherwise,

where µn is a sequence of nonnegative real numbers and N is a number of iterations
that we want to stop. We observe that the inertial parameter µn using by Algorithm
1 plays an important role in improving quality of deblurring image. It is noted that if
{θn} is nondecreasing and tends to 1, the values of PSNR increase, as shown in Table
4. However, we can see the result of the deblurring image of Algorithm 1 with different
inertial parameters θn (six cases), as shown in Table 4. We also observe from Table 4
that the parameter µn = n

n+1 gives a higher PSNR than the others.
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Table 4. Effective parameters of our method for image restoration.

Lenna Cameraman
case parameter PSNR PSNR

1 µn=
1
2n 29.803179 27.522892

2 µn=
500
n2 29.934126 27.531330

3 µn=0.5 30.575956 28.31232

4 µn=0.99 36.523148 34.202795

5 µn=
n

n+1 36.849454 34.557969

6 µn=1 32.494240 30.138879

Acknowledgement

We would like to thank the referees for their comments and suggestions on the manu-
script and Chiang Mai University for the financial support.

References

[1] C.R. Vogel, Computational Methods for Inverse Problems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002.

[2] L. Eldén, Algorithms for the regularization of ill-conditioned least squares problems,
BIT Numerical Mathematics, 17 (2) (1997) 134–145.

[3] P.C. Hansen, J.G. Nagy, D.P.O. Leary, Deblurring Images: Matrices, Spectra, and
Filtering (Fundamentals of Algorithms 3), Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 2006.

[4] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, W.H. Winston, 1977.

[5] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal
Statistical Society, Series B (Methodological) 58 (1) (1996) 267–288.

[6] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM Journal on Imaging Sciences 2 (1) (2009) 183–202.

[7] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, Springer Publishing Company, Incorporated, 2nd Edition, 2017.

[8] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (2014) 127–
239.

[9] R. Agarwal, D. O’Regan, D. Sahu, Fixed Point Theory for Lipschitzian-Type Map-
pings with Applications, Topological Fixed Point Theory and Its Applications,
Springer, New York, 2009.

[10] W.R. Mann, Mean value methods in iteration, Proceedings of the American Mathe-
matical Society 4 (1953) 506–510.



338 Thai J. Math. Vol. 19 (2021) /K. Janngam and S. Suantai

[11] S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American
Mathematical Society 44 (1974) 147–150.

[12] R.P. Agarwal, D. O’Regan, D.R. Sahu, Iterative construction of fixed point of nearly
asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1) (2007) 61–
79.

[13] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR
Computational Mathematics and Mathematical Physics 4 (5) (1964) 1–17.

[14] Y. Nesterov, A method for solving the convex programming problem with conver-
gence rate o(1\k2), Dokl. Akad. Nauk SSSR. 269 (3) (1983) 543–547.

[15] M. Verma, K. Shukla, A new accelerated proximal gradient technique for regularized
multitask learning framework, Pattern Recognition Letters 95 (2017) 98–103.

[16] K. Buranakorn, S. Plubtieng, T. Yuying, New forward backward splitting methods
for solving pseudomonotone variational inequalities, Thai Journal of Mathematics 16
(2) (2018) 489–502.

[17] K. Kankam, N. Pholasa, P. Cholamjiak, Hybrid forward-backward algorithms using
linesearch rule for minimization problem, Thai Journal of Mathematics 17 (3) (2019)
607–625.

[18] S. Suantai, P. Jailoka, A. Hanjing, An accelerated viscosity forward-backward split-
ting algorithm with the linesearch process for convex minimization problems, Journal
of Inequalities and Applications 2021 (2021) Article No. 42.

[19] A. Hanjing, P. Jailoka, S. Suantai, An accelerated forward-backward algorithm with
a new linesearch for convex minimization problems and its applications, AIMS Math-
ematics 6 (6) (2021) 6180–6200.

[20] P. Jailoka, S. Suantai, A. Hanjing, A fast viscosity forward-backward algorithm for
convex minimization problems with an application in image recovery, Carpathian
Journal of Mathematics 37 (3) (2021).

[21] K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence to common fixed points
of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal.
8 (2007) 11–34.

[22] K. Nakajo, K. Shimoji, W. Takahashi, On strong convergencde by the hybrid method
for families of mappings in Hilbert spaces, Nonlinear Analysis, Theory, Methods and
Applications 71 (1–2) (2009) 112–119.

[23] L. Bussaban, S. Suantai, A. Kaewkhao, A parallel inertial S-iteration forward-
backward algorithm for regression and classification problems, Carpathian Jornal
of Mathematics 36 (2020) 35–44.

[24] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publish-
ers, Yokohama, 2009.

[25] K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the
Ishikawa iteration process, J. Math. Anal. Appl. 178 (2) (1993) 301–308.

[26] A. Moudafi, E. Al-Shemas, Simultaneous iterative methods for split equality problem,
Trans. Math. Program. Appl. 1 (2013) 1–11.

[27] A. Hanjing S. Suantai, A fast image restoration algorithm based on a fixed point and
optimization method, Mathematics 8 (3) (2020) 378.



An Accelerated Forward-Backward Algorithm ... 339

[28] R.S. Burachik, A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone
Operator, Springer Science Business Media, New York, USA, 2007.

[29] K. Thung, P. Raveendran, A survey of image quality measures, In Proceedings of the
International Conference for Technical Postgraduates (TECHPOS), Kuala Lumpur,
Malaysia, 14–15 December 2009.


	Introduction
	Preliminaries
	Main Result
	Application on Convex Minimization Problems
	Simulated Results for the Image Restoration Problem

