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Abstract In this paper, we apply an numerical technique to solve a solution of linear Volterra Integro-
Differential Equations. The numerical technique originally developed by Huabsomboon et al. [P. Huab-
somboon, B. Novaprateep, H. Kaneko, On Taylor-series expansion techniques for the second kind integral
equations, J. Comput. Appl. Math. 234 (2010) 1446-1472] bases on Taylor-series expansion. Our results

shown that the technique is simple and efficient.
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1. INTRODUCTION

Many problems arising in applied mathematics or mathematical physics, can be formu-
lated in two distinct ways; i.e, as differential equations or as integral equations. Integral
equations are used as mathematical models for many and varied physical situations. More-
over, integral equations occur as reformulations of other mathematical problems. Many
researchers use Galerkin, collocation or quadrature technique to numerically solve the in-
tegral equations. In general, these numerical techniques transform the integral equation
to a linear system of algebraic equations that can be solved using direct techniques or
iterative techniques. However, in many instances, matrices of the linear system is large
and dense. As a result, the computational costs are expensive, and numerical solution
is very difficult to obtain. On the other hand, an alternative method of approximating
a solution was proposed [1]. The new procedure transforms the integral equation to a
linear ordinary differential equation that can be solved easily. However,this alternative
technique requires boundary conditions. In practical applications, boundary conditions
may be difficult to obtain, as most often they must be found from experiments. One of
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alternative approaches is to use a Taylor-series expansion proposed by Y. Ren et al. [1].
In this new approach, boundary conditions are not required.

K. Maleknejad et al. [2], presented a Taylor-series expansion for a class of Volterra
integral equations of second kind in form.

x(s) — )\/OS k(s,t)z(t)dt = f(s), 0<s<1. (1.1)

and a system of the second kind Volterra integral equations [3].
Their technique used the Taylor series expansion to expand z(t) defined as follows

z(t) ~x(s) +2'(s)(t —s) + ... + %x”(t —s)". (1.2)

They used equation (1.2) to approximate x(s) by x(t).

Huabsomboon et al. [1] applied their method in [6] to obtaining a solution of the
second kind Volterra integral equation and solution of a system of the second kind Volterra
integral equations. Their method performed on the examples in [2] and [3].They showed
two examples that are taken from [2]. Numerical results came from their method are
consistently better than those results in [2].

In this paper we use modified Taylor-series expansion technique based on Huabsomboon
et al’s technique [1] in the new approach for solving the first order linear volterra integro-
differential equation of the form

2'(s) — /OS k(s,t)z(t)dt = f(s), z(0)==xzp, 0<s<T (1.3)

where the functions f(s) and the kernel k(s,t) are known. Also, Throughout the paper,
we assume that k € C™([0,1] x [0,1]), f € C™[0,1] and the following condition to hold.

2. LEIBNITZ RULE FOR DIFFERENTIAL OF INTEGRALS

Let f(x,t) be a continuous function, and % be continuous in the domain of the z — ¢
plane that includes the rectangle a <z < b,ty <t < t1, and let

h(z)

F(zx) :/ f(z, t)dt. (2.1)
g9(z)

Then the differentiation of the integral in (2.1) exists and is given by

_4F _
-2 =

dh(x) dg(z) (" 0f(x.1)
x, h(z — flz,g(x —— 2 dt. 2.2
e ) G~ fg@) G0+ [ (22)

F'(x)

If g(z) = a and h(xz) = b where a and b are constants, then the Leibnitz rule (2.2) reduces
to
_dF (" 0f(x,1)

G (2.3)

/ —_
Flz) = dz o Oz

which means that the differentiation and integration can be interchanged.
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3. REDUCING DOUBLE INTEGRALS TO SINGLE INTEGRALS

We will show that the double integral can be reduced to a single integral by using this
formula

T T T
/ / F(t)dtda, = / (x — 1) F(1)dt. (3.1)
o Jo 0
This can be done by first setting
x
Glz) = / (x — DF(t)dt, (3.2)
0
where G(0) = 0. Differentiating both sides of (2.5) using the reduced Leibnitz rule gives
(@) = / Ft)dt. (3.3)
0
Now by integrating both sides of (3.3) from 0 to z yields
xr Xy
- / / Ft)dtdas. (3.4)
o Jo

Since the right side of two equations (3.2) and (3.4) are equivalent, to obtain (3.1).

4. NUMERICAL TECHNIQUE

We first substitute (1.2) for z(¢) in the integral in (1.3) , gives
/0 k(s,t)dtz(s) + [1 —/0 k:(s,t)dt} z'(s) (4.1)
e s 00— | 2™ (s) ~ (s
o [ re = o] a0 = 160

n!

Integrate (1.3) with respect to s, gives

— X —/ / k’ 81, dtdSl / f 81 d81 (42)

Substitute (1.2) for z(¢) in the integral in (4.2), gives

{1—/ / (s1,t dtdsl} [/ / (s1,t t—s)dtdsl} '(s)
N [;' /0 /O k(sl,t)(t—s)”dtdsl} x(")(s)z/osf(sl)dsl+xo. (4.3)

Differentiate (1.3) (n — 1) times, we get

2" (s) — k(s,s)x(s) — /s kL(s,t)dt = f'(s).

0

2" (s) — k(s,s)x'(s) — 2k.(s, s)x(s) — /OS k! (s)(s,t)z(t)dt = f"(s).
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006) < (5,022 0) = ("] )9 (M et

B (Z B ;) k=2 (s, 8)a(s) — / RO (s, ()t = £ (s). (4.4)

0

(n) _ Ok(s,t)
where ks’ = Son

Substitute (1.2) for each z(t) in the integral (4.3), we get

—{k(s,s)+/08k;(s,t)dt}a:(s)—/osk;(s,t)(t s)dta'( [1_/ K (s,)(t—s } ()~ f'(s).

- [3k;(s,s) + /OS k;’(s,t)dt} z(s) — {k(s,s) + /OS K (s, t)(t — s)dt} x'(s)
—;/0 K (s,0)(t — )2dta(s) + {1—/ K (s,1) (t—s)3dt] 2(s) ~ f(s).

()R [ s e o) - [(Z s+
/ Skﬁ”1><s,t><t—s>dt]x'<s>— () retssse g [ D -9
| (M R+ g S(s,tw -2 a2 -
Ks.6) 4 gy [ R - o2t a2
oy 0 9 e s

[1—;' /O EO=D) (s, ) (t — )”dt} 2™ (s) ~ fO1(s). (4.5)

From the equation (4.1), (4.3) and (4.5), we solve the following system of linear equations
for (s), 2'(s), ...,z (s).

Jo k(s t)dt 1— f k(s,t)(t—s)dt — --- ,fQ (s,t)(t—s)"dt
1—fdg (flk(sl,t)dtdsl fo k(si,t)(t—s)dtdsy - —=5 fo Jo E(s1,t)(t—s)"dtds,
fk(s,s)—fosk;(s,t)dt ffo K.(s,t)(t—s)dt .- 0

. X
(DR s, <2‘é)k<"*>< S I o R (s ) (s

JEED (s, t)at [ RS (s,) (t—s)dt
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2(s) 1)
z'(s) _ fo f(s1)dsy + xo
)(s) F1(s)

By solving the above system, we show that this technique generates the excellent approx-
imation for solving the linear integro-differential equation.

5. NUMERICAL RESULTS

In this section, we consider four examples. These examples are the linear volterra
integro-differential equations given in [5, 7, 8]. We shown the approximate solutions and
absolute errors with the exact solution.

Example 5.1. Consider the Volterra integro-differential equation in [5]
z'(s) —|—/ z(t)dt =1, s€]0,1, z(0)=0 (5.1)
0

which has the exact solution z(s) = sin(s). The numerical approximations for n = 3, 4
and 5 are shown in table 1 and the numerical errors are shown in table 2. In Fig.1 also
show the exact and approximate solution for n = 4.

TABLE 1. The numerical approximate solutions by using Taylor-series
expansion with n = 3, 4 and 5.

s n=3 n=4 n==5 Exact solutions
0 0 0 0 0

0.1 | 9.9833x1072 | 9.9833%x1072 | 9.9833 x10~2 | 9.9833x10~2
0.2 | 1.9867x10~1 | 1.9867x10~" | 1.9867x10~"* | 1.9867x10~"
0.3 ] 2.9552x101 | 2.9552x10~! | 2.9552x10~1 | 2.9552x10~!
0.4 | 3.8943x107! | 3.8942x107" | 3.8942x10~" | 3.8942x107!
0.5 | 4.7947x1071 | 4.7942x 107" | 4.7942x107" | 4.7942x107!
0.6 | 5.6479%x10~1 | 5.6464x10~! | 5.6472x10~ | 5.6464x107!
0.7 | 6.4464x1071 | 6.4422x10! | 6.4442x10~! | 6.4422x10~!
0.8 | 7.1840x10~1 | 7.1736x10~" | 7.1778x10~" | 7.1736x10~"
0.9 | 7.8562x10~1 | 7.8333%x107" | 7.8408x10~" | 7.8333x10!
1.0 | 8.4607x107" | 8.4147x10~" | 8.4262x107! | 8.4147x10~*
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TABLE 2. The absolute error solutions between Taylor-series expansion

with n = 3,4 and 5

S

n=3

n=4

n=>5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
5.7x10710
7.30x108

1.2334x10~6

9.0974x10~6
4.2515%x107°
1.4863x10*
4.2467x10~*

1.0456 %1073

2.2959x1073

4.6023%x1073

0
1.2x10710
1.49x10~8

2.492x10°7

1.8028x 1076

8.2145x 106

2.7807x107°

7.6341x10°

1.7899% 104

3.7020x10*

6.8986x 104

0
4.4x10710
5.35%x 108
8.683x10~7

6.0291x 106

2.5985x107°

8.1836x107°
2.0484x10*
4.2676x10~4
7.5760x10~*
1.1521x1073

0.4+

0.3 1

0.24

0.1 1

0.6

0.8 1

exact|

FI1GURE 1. Result for Example 1 with n = 4.

Example 5.2. Consider the Volterra integro-differential equation in [5]

() /Osx(t)dt_ “sin(s), se [0, g} ., 2(0) =1L

which has the exact solution z(s) = cos(s). The numerical approximations for n = 3, 4
and 5 are shown in table 3 and the numerical error solutions in table 4. In Fig.2 also
shows the exact and approximate solution for n = 6.

(5.2)
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TABLE 3. The numerical approximate solutions by using Taylor-series
expansion with n = 3, 4, 5 and 6 .

s n=3 n=4 n=2> n=06 Exact
solutions

0 1 1 1 1 1

Z | 9.8078x107" | 9.8078x10~" | 9.8078x10™" | 9.8078x10~" | 9.8078x 10"
T | 9.2385x107" | 9.2388x107" | 9.2388x107" | 9.2388x 107" | 9.2388x10"
2% | 8.3120x107" | 8.3145x107" | 8.3147x107" | 8.3147x10™" | 8.3147x107"
= | 7.0574x107" | 7.0696x10”" | 7.0713x107" | 7.0711x10"" | 7.0711x10""
5% 1 5.5094x107" | 5.5471x107" | 5.5568x10™" | 5.5559x10~" | 5.5557x 107"
3% | 3.7113x107" | 3.7090x107" | 3.8307x107" | 3.8278x10 " | 3.8268x10"
T 1.7829x107" | 1.8270x107" | 1.9607x107" | 1.9544x107" | 1.9509%x10~"
Z | -3.1563x10% | -3.5850x10"* | 1.6536x10~° | 1.6677x10~° 0

TABLE 4. The absolute error solutions between Taylor-series expansion
with n = 3,4,5 and 6.

S n=3 n=4 n=>5 n=6
0 0 0 0 0
7| 3.941x1077 | 1.4x107° 4x1071° 4x1071°
T |24466x107° | 5.737x1077 | 9.40x107° 1.5x1077
27 1 2.6419x107" | 1.4632x107° | 2.2776x107° | 9.82x107®
7 | 1.3677x107° | 1.4520x107" | 2.0833x107° | 1.7299x107°
5% | 4.6248x107° | 8.5780x107* | 1.0904x10™* | 1.5988x 107
2% 1 1.1558x 1077 | 3.6487x10% | 3.8655x10~* | 9.7827x10~°
1 2.2198x1072 | 1.2389x107° | 9.8078x10™* | 4.4924x10~*
Z | 3.1563x107° | 3.5850x107% | 1.6536x10™* | 1.6677x 10~
14
0.8
0.6
0.4 4
0.2 4
0 T T T T T T 1
& = 3% =® 5% 3% 7mx =
16 8 16 4 16 8 16 2
L3
| approx - - - exact|

FIGURE 2. Result for Example 2 with n = 6.
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Example 5.3. Consider the Volterra integro-differential equation in [7].

2'(s) — /Os(s —tzt)dt=1+s, se€][0,1], z(0)

which has the exact solution x(s) = e®. The numerical approximations for n = 4,5,6 and
7 are shown in table 5 and the numerical error solutions are shown in table 6.In Fig.3

also shows the exact and approximate solution for n = 7.

TABLE 5. The numerical approximate solutions by using Taylor-series

expansion with n =4, 5, 6 and 7.

1.

s |n=4|n=5|n=6| n=7 | Exact solutions
0 1 1 1 1 1
0.1 ] 1.1052 | 1.1052 | 1.1052 | 1.1052 1.1052
0.2 | 1.2214 | 1.2214 | 1.2214 | 1.2214 1.2214
0.3 | 1.3498 | 1.3498 | 1.3498 | 1.3498 1.3498
0.4 | 1.4916 | 1.4916 | 1.4916 | 1.4918 1.4918
0.5 ] 1.6479 | 1.6479 | 1.6479 | 1.16487 1.6487
0.6 | 1.8198 | 1.8198 | 1.8198 | 1.8221 1.8221
0.7 | 2.0079 | 2.0079 | 2.0079 | 2.0138 2.0137
0.8 | 2.2125 | 2.2123 | 2.2124 | 2.2259 2.2255
0.9 | 2.4331 | 2.4328 | 2.4328 | 2.4607 2.4596
1.0 | 2.6684 | 2.6676 | 2.6678 | 2.7211 2.7183

TABLE 6. The absolute error solutions between Taylor-series expansion
with n =4, 5, 6 and 7.

n=4

n=2>5

n==~06

n=717

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0
5x10~8

3.1980x 106
3.6426x 107>
2.0459x104
7.8018x10~*
2.3288x1073
5.8708x103
1.3079x10~2
2.6512x10~2
4.9893 %1072

0
5x10~8
3.2x1076
3.6463x 107>
2.0497x107*
7.8250x 104
2.3394x1073
5.9092x 1073
1.3198x10~2
2.6840x 1072
5.0706x 102

0
5x10~8
3.2x1076
3.6461x107°
2.0494x10~*
7.8225x 104
2.3379x1073
5.9029% 1073
1.3175%x10~2
2.6766x1072
5.0497x 1072

0
5x10~8
3x107?

9.2x1078

1.0180% 10~

6.7200x 106

3.1976x10~°

1.2152x10~4

3.9189x 104

1.1154x1073

2.8782x103
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2.6

2.4

2.2

0 0.2 0.4 0.6 08 1

[— approx----- exact |

FI1GURE 3. Result for Example 3 with n = 7.

Example 5.4. Consider the Volterra integro-differential equation in [3].

z'(s) — /OS Mg (t)dt = —se® —e™*, s€[0,1], x(0)=1. (5.4)

which has the exact solution z(s) = e~*. The numerical approximations and the numer-
ical error solutions for n = 3 are shown in table 7.In Fig.4 also shows the exact and
approximate solution for n = 3.

TABLE 7. The numerical approximate solutions by using Taylor-series
expansion with n =3.

s | n = 3 | Exact solutions | Absolute Error Solutions
0 1 1 0

0.1 | 0.9048 0.9048 9.7x107°
0.2 | 0.8187 0.8187 4.352x1077
0.3 | 0.7408 0.7408 4.977x10~6
0.4 | 0.6702 0.6703 2.805x10¢
0.5 | 0.6064 0.6065 1.076x1075
0.6 | 0.5484 0.5488 3.206x10~°
0.7 | 0.4958 0.4965 7.785x107°
0.8 | 0.4478 0.4493 1.521x10%
0.9 | 0.4042 0.4065 2.228 %104
1 |0.3652 0.3678 2.619x10~*




270

Thai J. Math. Vol. 19 (2021) /I. Navarasuchitr et al.

104,
L

0.2

06 B
0.5 4 e

0.4

FIGURE 4. Result for Example 4 with n = 3.

6. CONCLUSION

In this study, we apply a new Taylor series technique based on Huabsomboon and
his coworker to solve the linear Volterra Integro-Differential Equations. We have found
that, this technique is easy to use and yield the accurate solution in a few terms between
another method.
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