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1. Introduction

Clifford analysis offers possibility of generalizing complex function theory to higher
dimensions. Several complex variables theory is applicable only for even dimensional
spaces but Clifford analysis is applicable for both even and odd dimensional spaces. It
considers Clifford algebra valued functions that are defined in open subsets of Rn for
arbitrary finite n ∈ N and that are solutions of higher dimensional Cauchy-Riemann
systems. These are often called Clifford holomorphic or monogenic functions.

Constales et al. ([1] and [2]) have studied the growth properties of entire monogenic
functions. They have established the explicit relationship between the order and type of
the maximum modulus and the Taylor’s series coefficients of entire monogenic functions.
Almeida and Krausshar [3] have obtained generalizations of Wiman-Valiron inequalities
for entire monogenic functions. Using these inequalities they have studied the asymptotic
growth of entire monogenic functions.

To refine the growth entities Srivastava and Kumar [4] have given the concept of gen-
eralized growth of entire monogenic functions. They have obtained the characterizations
of generalized order, generalized lower order and generalized type of entire monogenic
functions in terms of their Taylor’s series coefficients.

Abul-Ez and Constales [5] have obtained several results concerning order and type
of special monogenic functions. Recently, Abul-Ez and Almeida [6] have obtained the

Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.



252 Thai J. Math. Vol. 19 (2021) /S. Kumar

characterizations of growth of special monogenic functions in terms of their Taylor’s series
coefficients. Kumar [7] have refined the results of Abul-Ez and Almeida [6] by using the
concept of generalized growth of special monogenic functions.

Constales et al. [8] have given the concept of growth of monogenic functions having
finite convergence radius. They [8] have obtained the characterizations of growth of
monogenic functions having finite convergence radius in terms of their Taylor’s series
coefficients. Recently, Kumar and Bala [9] have refined the results of Constales et al. [8]
by using the concept of generalized growth and have obtained the characterizations of
generalized order and generalized type of monogenic functions having finite convergence
radius in terms of their Taylor’s series coefficients.

To the best of our knowledge, no one has studied the growth properties of special
monogenic functions having finite convergence radius. In the present paper we have given
the concept of growth of special monogenic functions having finite convergence radius. We
have obtained the characterizations of generalized order and generalized type of special
monogenic functions having finite convergence radius in terms of their Taylor’s series
coefficients.

In the preliminaries section we have given the definitions of generalized order and
generalized type of special monogenic functions having finite convergence radius. In the
main section we have obtained the characterizations of generalized order and generalized
type of special monogenic functions having finite convergence radius in terms of their
Taylor’s series coefficients.

2. Preliminaries

In order to make calculations more coincise we use following notations:

xm = xm1
1 ... xmnn , m! = m1! ... mn! , |m| = m1 + ...+mn ,

where m = (m1, ... ,mn) ∈ Nn0 be n− dimensional multi-index and x = (x1, ... , xn) ∈
Rn.

Following Almeida and Krausshar [3] and Constales et al. ([1] and [2]), we give some
definitions and associated properties.

By {e1, e2, ... , en} we denote the canonical basis of the Euclidean vector space Rn.
The associated real Clifford algebra Cl0n is the free algebra generated by Rn modulo
x2 = −||x||2e0, where e0 is the neutral element with respect to multiplication of the
Clifford algebra Cl0n. In the Clifford algebra Cl0n following multiplication rule holds:

eiej + ejei = −2δije0 , i, j = 1, 2, ... , n ,

where δij is Kronecker symbol. A basis for Clifford algebra Cl0n is given by the set
{eA : A ⊆ {1, 2, ... , n}} with eA = el1el2 ... elr , where 1 ≤ l1 < l2 < ... < lr ≤ n, eφ =
e0 = 1. Each a ∈ Cl0n can be written in the form a =

∑
A aAeA with aA ∈ R.

The conjugation in Clifford algebra Cl0n is defined by ā =
∑
A aA ēA , where eA =

ēlr ēlr−1
... ēl1 and ēj = −ej for j = 1, 2, ... n, ē0 = e0 = 1. The linear subspace

spanR{1, e1, ... , en} = R ⊕ Rn ⊂ Cl0n is the so called space of para vectors z =
x0 + x1e1 + x2e2 + ... + xnen which we simply identify with Rn+1. Here x0 = Sc(z)
is scalar part and x =x1e1 + x2e2 + ... + xnen = Vec(z) is vector part of para vector z.
The Clifford norm of an arbitrary a =

∑
A aA eA is given by
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||a|| =

(∑
A

|aA|2
)1/2

.

Also for b ∈ Cl0n, we have ‖ab‖ ≤ 2n/2 ‖a‖ ‖b‖ . Each para vector z ∈ Rn+1\{0} has an
inverse element in Rn+1 which can be represented in the form z−1 = z/||z||2. In order to
make calculations more coincise we use following notations:

km =

(
n+ |m| − 1
|m|

)
=

(n)m
m! ,

(n)m = n(n+ 1) ... (n+ |m| − 1).

The generalized Cauchy-Riemann operator in Rn+1 is given by

D ≡ ∂

∂x0
+

n∑
i=1

ei
∂

∂xi
.

If U ⊆ Rn+1 is an open set, then a function g : U → Cl0n is called monogenic at a point
z ∈ U if Dg(z) = 0. The functions which are monogenic in the whole space are called
entire monogenic functions.
Following Abul-Ez and Constales [10], we consider the class of monogenic polynomials
pm of degree |m| , defined as

pm(z) =

∞∑
i+j=|m|

(
n−1
2

)
i

i!

(
n+1
2

)
j

j!
(z)

i
zj . (2.1)

Let wn be n-dimensional surface area of (n + 1)-dimensional unit ball and Sn be
n−dimensional sphere. Then the class of monogenic polynomials described in (2.1) satisfy
([6], pp. 1259)

1

wm

∫
Sn
pm (z) pl (z) dSz = kmδ|m||l|.

Also following Abul-Ez and Almeida [6], we have

max
‖z‖=r

‖pm(z)‖ = kmr
m.

Now following Abul-Ez and Almeida [6], we give some definitions which shall be used
in next section.

Definition 2.1. Let g be a monogenic function in a ball ‖z‖ < R , R is finite real number.
Then g is called special monogenic function in ‖z‖ < R , if and only if its Taylor’s series
has the form

g(z) =

∞∑
|m|=0

pm(z) cm, cm ∈ Cl0n. (2.2)
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Proposition 2.2. (Cauchy’s Inequality). Let g : Rn+1 → Cl0n be a special monogenic
function in ‖z‖ < R whose Taylor’s series representation is given by (2.2). Then for
0 < r < R

‖cm‖ ≤
1√
km

M(r) r−m,

where M(r) = M(r, g) = max
‖z‖=r

‖g(z)‖ is the maximum modulus of g.

Definition 2.3. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R whose
Taylor’s series representation is given by (2.2). Then we define the order ρ of g as

ρ = lim sup
r→R

log+ log+M(r)

log [R/(R− r)]
, (2.3)

where

log+ x =

{
log x , x > 1
0 , x ≤ 1

.

Definition 2.4. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R whose
Taylor’s series representation is given by (2.2). Then we define the type σ of g having
non-zero finite order as

σ = lim sup
r→∞

log+M(r)

[R/(R− r)]ρ
. (2.4)

For generalization of the classical characterizations of growth of analytic functions,
Seremeta [11] introduced the concept of generalized order and generalized type with the
help of general growth functions as follows:
Let L0 denote the class of functions h(x) satisfying the following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and tends
to ∞ as x→∞,

(ii) lim
x→∞

h[{1+1/ψ(x)}x]
h(x) = 1 , for every function ψ(x) such that ψ(x) → ∞ as x → ∞.

The functions of the form f(x) = ax + b, 0 < a < ∞, 0 < b < ∞, are in class L0 ([12]
pp.420).

Let Λ denote the class of functions h(x) satisfying conditions (i) and

(iii) lim
x→∞

h(cx)
h(x) = 1 , for every c>0 , that is h(x) is slowly increasing. The functions of

the form f(x) = log (ax) , 0 < a <∞, are in class Λ ([12] pp.420).

Now following Kumar and Bala ([13], [12] and [9]) and Srivastava and Kumar ([14],
[15] and [4]), we give definitions of generalized order and generalized type of monogenic
functions.
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Definition 2.5. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R,
whose Taylor’s series representation is given by (2.2). Then for α, β ∈ Λ , we define the
generalized order ρ (α, β, g) of g as

ρ = ρ (α, β, g) = lim sup
r→R

α
[
log+M(r)

]
β [R/(R− r)]

. (2.5)

If in the above equation we put α(r) = log+ r and β(r) = log r, then we get definition of
order as defined by (2.3).

Definition 2.6. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R,
whose Taylor’s series representation is given by (2.2). Then for α, β, γ ∈ L0, we define
the generalized type σ (α, β, ρ, g) of g having non-zero finite generalized order as

σ (α, β, ρ, g) = lim sup
r→R

α
[
log+M(r)

]
β ([γ {R/(R− r)}]ρ)

. (2.6)

If in above equation we put α(r) = β(r) = γ(r) = r, then we get definition of type as
defined by (2.4).

3. Main Results

We now prove

Theorem 3.1. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R , whose
Taylor’s series representation is given by (2.2). For positive real numbers x and µ1 set
U (x, µ1) = β−1 {µ1 α (x)} . Assume that for sufficiently large value of x

U
(
x
/
U
(
x, µ−11

)
, µ−11

)
= c1 U

(
x, µ−11

)
, 0 < c1 <∞.

Then for α, β ∈ Λ, the generalized order ρ (α, β, g) of g is given by

ρ = ρ (α, β, g) = lim sup
|m|→∞

α (|m|)
β
{
|m|

/
log+

(
‖cm‖R|m|

)} . (3.1)

Proof. Write

η1 = lim sup
|m|→∞

α (|m|)
β
{
|m|

/
log+

(
‖cm‖R|m|

)} .
Now first we prove that η1 ≤ ρ. The coefficients of a monogenic Taylor’s series satisfy
Cauchy’s inequality, that is

‖cm‖ ≤
1√
km

M (r) r−|m|. (3.2)

Also from (2.5), for µ1 > ρ and r sufficiently close to R, we have

M(r) ≤ exp
[
α−1 (µ1 β [R/(R− r)])

]
.
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Now from inequality (3.2), we get

‖cm‖ ≤
1√
km

r−|m| exp
[
α−1 (µ1 β [R/(R− r)])

]
.

Following Abul-Ez and Constales ([5], pp. 148), we have

1√
km
≤ 1,

So the above inequality reduces to

‖cm‖ ≤ r−|m| exp
[
α−1 (µ1 β [R/(R− r)])

]
.

Hence for every r sufficiently close to R, we get

log+
(
‖cm‖ R|m|

)
≤ − |m| log+ (r/R) + α−1 (µ1 β [R/(R− r)]) .

Putting

r = R
[
1− 1

/
U
(
|m|

/
U
(
|m| , µ−11

)
, µ−11

)]
,

we get

log+
(
‖cm‖ R|m|

)
≤ − |m| log+

[
1− 1

/
U
(
|m|

/
U
(
|m| , µ−11

)
, µ−11

)]
+

+|m|
/
U
(
|m| , µ−11

)
.

Now using the properties of logarithm and assumptions of the theorem, we get for suffi-
ciently large value of |m|

log+
(
‖cm‖ R|m|

)
≤ C1

(
|m|

/
β−1

{
µ−11 α (|m|)

})
,

where C1 is a positive constant. Hence by using the properties of β, we get for sufficiently
large value of |m|

α (|m|)
β
{
|m|

/
log+

(
‖cm‖R|m|

)} ≤ µ1.

Proceeding to limits as |m| → ∞, we get η1 ≤ µ1. Since µ1 > ρ is arbitrary, we finally
get

η1 ≤ ρ. (3.3)

Now we will prove that ρ ≤ η1. If η1 = ∞, then there is nothing to prove. So let us
assume that 0 ≤ η1<∞. Therefore for a given ε >0 there exist n0 ∈ N such that for all
n>n0 , we have

0 ≤ α (|m|)
β
{
|m|

/
log+

(
‖cm‖R|m|

)} ≤ η1 + ε =η1

or
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‖cm‖R|m| ≤ exp
[
|m|

/
β−1

{
η1
−1 α (|m|)

}]
or

‖cm‖ r|m| ≤ r|m| R−|m| exp
[
|m|

/
β−1

{
η1
−1 α (|m|)

}]
.

Following Abul-Ez and Constales ([5], pp. 148), we have

M(r) ≤
∞∑
|m|=0

‖cm‖ km r|m|

or

M(r) ≤
∞∑
|m|=0

km r|m| R−|m| exp
[
|m|

/
β−1

{
η1
−1 α (|m|)

}]
.

On the lines of proof of the theorem given by Kumar and Bala ([9], Theorem 2.1, pp.
130), we get

ρ ≤ η1. (3.4)

Combining (3.3) and (3.4), we get (3.1). Hence Theorem 3.1 is proved.

Next we prove

Theorem 3.2. Let g : Rn+1 → Cl0n be a special monogenic function in ‖z‖ < R , whose
Taylor’s series representation is given by (2.2). For positive real numbers x, µ2 and ρ set

V (x, µ2, ρ) = γ−1
([
β−1 {µ2 α (x)}

]1/ρ)
.

Assume that for sufficiently large value of x

V
(

x (ρ+1)
ρ V (x/ρ, 1/µ2, ρ+1) ,

1
µ2
, ρ
)

= c2 V (x/ρ, 1/µ2, ρ+ 1) , 0 < c2 <∞.

Then for α, β, γ ∈ L0 the generalized type σ (α, β, ρ, g) of g having generalized order
ρ = ρ (α, β, g) (0 < ρ (α, β, g) <∞) is given by

σ (α, β, ρ, g)

= lim sup
|m|→∞

α(|m|/ρ)

β

{(
γ

[
(ρ+1)

{
ρ log+(‖cm‖R|m|)

1/|m|
}−1

])(ρ+1)
} . (3.5)

Proof. Write

η2
= lim sup
|m|→∞

α(|m|/ρ)

β

{(
γ

[
(ρ+1)

{
ρ log+(‖cm‖R|m|)

1/|m|
}−1

])(ρ+1)
} .
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Now first we prove that η2 ≤ σ. From (2.6), for µ2 > σ and r sufficiently close to R, we
have

M(r) ≤ exp
[
α−1 {µ2 β ([γ {R/(R− r)}]ρ)}

]
.

Now using (3.2), we get

‖cm‖ ≤
1√
km

r−|m| exp
[
α−1 {µ2 β ([γ {R/(R− r)}]ρ)}

]
.

Now as in the proof of Theorem 3.1, here we have

log+
(
‖cm‖R|m|

)
≤ − |m| log+(r/R)+

+α−1 {µ2 β ([γ {R/(R− r)}]ρ)} .
Putting

r = R

[
1−

{
V

(
|m| (ρ+ 1)

ρ V (|m| /ρ, 1/µ2, ρ+ 1)
,

1

µ2
, ρ

)}−1]
,

we get

log+
(
‖cm‖R|m|

)
≤ − |m| log+

[
1−

{
V
(

|m| (ρ+1)
ρ V (|m|/ρ, 1/µ2, ρ+1) ,

1
µ2
, ρ
)}−1]

+

+ |m| ρ+1
ρ

[
γ−1

([
β−1

{
µ−12 α (|m| /ρ)

}]1/(ρ+1)
)]−1

.

Now using the properties of logarithm and assumptions of theorem, we get for sufficiently
large value of |m|

log+
(
‖cm‖R|m|

)
≤ C2 |m| ρ+1

ρ ×

×
[
γ−1

([
β−1

{
µ−12 α (|m| /ρ)

}]1/(ρ+1)
)]−1

,

where C2 is a positive constant. Hence by using the properties of α, β and γ, we get for
sufficiently large value of |m|

α (|m| /ρ)

β

{(
γ

[
(ρ+ 1)

{
ρ log+

(
‖cm‖R|m|

)1/|m|}−1])(ρ+1)
} ≤ µ2 .

Proceeding to limits as |m| → ∞, we get η2 ≤ µ2 . Since µ2 > σ is arbitrary, we finally
get

η2 ≤ σ. (3.6)

Now we will prove that σ ≤ η2. If η2 = ∞, then there is nothing to prove. So let us
assume that 0 ≤ η2<∞. Therefore for a given ε >0 there exists n0 ∈ N such that for all
n>n0 , we have
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0 ≤ α(|m|/ρ)

β

{(
γ

[
(ρ+1)

{
ρ log+(‖cm‖R|m|)

1/|m|
}−1

])(ρ+1)
}

≤ η2 + ε =η2
or

‖cm‖R|m|

≤ exp

{
|m| ρ+1

ρ

[
γ−1

([
β−1

{
(η2)

−1
α (|m| /ρ)

}]1/(ρ+1)
)]−1}

or

‖cm‖ r|m| ≤ r|m| R−|m|×

× exp

{
|m| ρ+1

ρ

[
γ−1

([
β−1

{
(η2)

−1
α (|m| /ρ)

}]1/(ρ+1)
)]−1}

.

Following Abul-Ez and Constales ([5], pp. 148), we have

M(r) ≤
∞∑
|m|=0

‖cm‖ km r|m|

or

M(r) ≤
∑∞
|m|=0 km r|m| R−|m| exp

{
|m| ρ+1

ρ ×

×
[
γ−1

([
β−1

{
(η2)

−1
α (|m| /ρ)

}]1/(ρ+1)
)]−1}

On the lines of proof of the theorem given by Kumar and Bala ([9], Theorem 2.2, pp.
135), we get

σ ≤ η2. (3.7)

Combining (3.6) and (3.7), we get (3.5). Hence Theorem 3.2 is proved.

Acknowledgements

The author is very much indebted to the referees for their valuable comments which
helped in improving the paper.

References

[1] D. Constales, R.De. Almeida, R.S. Krausshar, On the growth type of entire mono-
genic functions, Arch. Math. 88 (2007) 153–163.

[2] D. Constales, R.De. Almeida, R.S. Krausshar, On the relation between the growth
and the Taylor coefficients of entire solutions to the higher dimensional Cauchy-
Riemann system in Rn+1, J. Math. Anal. App. 327 (2007) 763–775.



260 Thai J. Math. Vol. 19 (2021) /S. Kumar

[3] R.De. Almeida, R.S. Krausshar, On the asymptotic growth of entire monogenic func-
tions, Z. Anal. Anwendungen 24 (2005) 791–813.

[4] G.S. Srivastava, S. Kumar, On the generalized order and generalized type of entire
monogenic functions, Demon. Math. 46 (2013) 663–677.

[5] M.A. Abul-Ez, D. Constales, Linear substitution for basic sets of polynomials in
Clifford analysis, Portugaliae Math. 48 (1991) 143–154.

[6] M.A. Abul-Ez, R.De. Almeida, On the lower order and type of entire axially mono-
genic function, Results Math. 63 (2013) 1257–1275.

[7] S. Kumar, Generalized growth of special monogenic functions, Journal of Complex
Analysis 2014 (2014) 1–5.

[8] D. Constales, R.De. Almeida, R.S. Krausshar, Basics of generalized Wiman - Valiron
theory for monogenic Taylor series of finite convergence radius, Math. Z. 266 (2010)
665–681.

[9] S. Kumar, K. Bala, Generalized growth of monogenic Taylor series of finite conver-
gence radius, Ann. Univ. Ferrara 59 (2013) 127–140.

[10] M.A. Abul-Ez, D. Constales, Basic sets of polynomials in Clifford analysis, Complex
Var. Theory Appl. 14 (1990) 177–185.

[11] M.N. Seremeta, On the connection between the growth of a function analytic in a
disc and modulie of its Taylor series, Visnik L’viv Derzh Univ. Ser. Mekh. Mat. 2
(1965) 101–110.

[12] S. Kumar, K. Bala, Generalized order of entire monogenic functions of slow growth,
J. Nonlinear Sci. App. 5 (2012) 418–425.

[13] S. Kumar, K. Bala, Generalized type of entire monogenic functions of slow growth,
Trans. Journal Math. Mech. 3 (2011) 95–102.

[14] G.S. Srivastava, S. Kumar, On approximation and generalized type of analytic func-
tions of several complex variables, Anal. Theory Appl. 27 (2011) 101–108.

[15] G.S. Srivastava, S. Kumar, Generalized growth of solutions to a class of elliptic
partial differential equations, Acta Mathematica Vietnamica 37 (2012) 11–21.


	Introduction
	Preliminaries
	Main Results

