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Abstract This paper deals with quasi approximate properly efficient solutions of multiobjective opti-

mization problems involving nonsmooth functions. In this case, some necessary and sufficient conditions

for these approximate solutions in the multiobjective are provided via max function. As a consequence,

we obtain Fritz-John type necessary conditions for approximate properly efficient solutions of the consid-

ered problem by exploiting the corresponding results of the approximate properly efficient solutions.
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1. Introduction

Interest in getting approximate solutions of optimization problems has spread greatly
during the past 30 years. This growing interest is essentially due to two reasons. First,
mathematical models are an approximation of practical situations. Second, the use of
an algorithm in a computer in order to solve an optimization problem often leads to an
approximation of the solution.

Particularly, the interest has been emphasized in multiobjective optimization because
this area studies decision models widely used in the practice. Moreover, the efficient set
of multiobjective optimization might be empty in a non-compact instance, while approxi-
mate efficient set might be nonempty under very weaker requirements. The first concepts
of approximate solution or ε-efficient solution in multiobjective optimization appear in
the works of Kutateladze [1]. Then, White [2] studied six kinds of ε-efficiency for multi-
objective optimization, and several researchers studied some properties of these concepts
and the relationships between them.

One of the most important notions in multiobjective optimization theory is proper ef-
ficiency, to eliminate the situations in which the trade-off between criteria is unbounded.
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Geffrion [3] has studied this problem in finite dimensions with the coordinate ordering
and has suggested a restriction to ”proper” efficient points which allows for a reasonable
characterization. Because of the importance of this concept, it is necessary to filter out
the ε-strongly efficient points with unbounded trade-off between criteria, through defining
ε-proper efficiency concept. Li and Wang [4] introduced the concept of ε-proper efficiency
at first, and obtained necessary conditions for ε-proper efficiency through scalarization
methods. Thereafter, Liu [5] derived a necessary and sufficient condition for ε-properly ef-
ficient solutions of convex multiobjective optimization. More definitions, generalizations,
and characterizations of ε-proper efficiency can be found.

Recently, Beldiman et al. [6] considered approximate quasi (weak, proper) efficiency in
multiobjective optimization and derived necessary conditions for these kinds of approxi-
mate solutions by using an alternative theorem. Their concepts, generalize definitions of
(weak, proper) efficiency as well as ε-(weak, proper) efficiency. Also, Panaitescu and Dog-
aru [7] derived two necessary conditions for ε-quasi proper efficient points as well as two
sufficient conditions for ε-quasi efficient solutions of a general multiobjective optimization.

The layout of the paper is as follows. Section 2 collects definitions, notations and
preliminary results that will be used later in the paper. Section 3 establishes necessary
conditions for approximate solution to two problems consist of unconstrained multiob-
jective optimization problem and constrain multiobjective optimizaton problem. Finally,
apply multiobjective optimization problems to linear multiobjective optimization prob-
lems in Section 4.

2. Preliminaries

Throughout the paper, we use the standard notation of variational analysis. Unless
otherwise specified, all spaces under consideration are Asplund spaces (i.e., Banach spaces
whose separable subspaces have separable duals) whose norms are always denoted by ‖ · ‖.
The canonical pairing between space X and its dual X∗ is denoted by 〈·, ·〉. The symbol
BX stands for the closed unit ball in X. As usual, the polar cone of Ω ⊂ X is the set

Ω◦ := {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0,∀x ∈ Ω}.

Also, we denote by Rm+ the nonnegative orthant of Rm where m ∈ N := {1, 2, . . .}.
Given a set-valued mapping F : X ⇒ X∗ between X and its dual X∗, we denote by

lim sup
x→x̄

F (x) :=

{
x∗ ∈ X∗

∣∣∣∣∣ ∃ sequences xn → x̄ and x∗n
w∗

−−→ x∗

with x∗n ∈ F (xn) for all n ∈ N

}
,

(2.1)

the sequential Painlevé-Kuratowski upper/outer limit of F as x → x̄. Here the symbol
w∗

−−→ indicates the convergence in the weak∗ topology of X∗.
A set Ω ⊂ X is called closed around x̄ ∈ Ω if there is a neighborhood U of x̄ such

that Ω ∩ clU is closed. We say that Ω is locally closed if Ω is closed around x for every
x ∈ Ω. Let Ω ⊂ X be closed around x̄ ∈ Ω.

The Fréchet/regular normal cone to Ω at x̄ ∈ Ω is defined by

N̂(x̄,Ω) :=

{
x∗ ∈ X∗

∣∣∣∣∣lim sup

x
Ω−→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0

}
, (2.2)
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where x
Ω−→ x̄ means that x→ x̄ with x ∈ Ω. If x /∈ Ω, we put N̂(x̄,Ω) := ∅.

The Mordukhovich/limiting normal cone N̂(x̄,Ω) to Ω at x̄ ∈ Ω is obtained from
regular normal cones by taking the sequential Painlevé-Kuratowski upper limits as:

N̂(x̄,Ω) := lim sup

x
Ω−→x̄

N̂(x; Ω). (2.3)

If x /∈ Ω, we put N(x; Ω) := ∅.
When X is a finite-dimensional space, the Mordukhovich normal cone enjoys the so-

called robustness property (see [8, Page 11]), that is,

N(x̄; Ω) = lim sup
x→x̄

N(x; Ω) ∀x̄ ∈ Ω. (2.4)

For an extended real-valued function ϕ : X → R̄ := [−∞,∞], we set

domϕ := {x ∈ X | ϕ(x) <∞}, epiϕ := {(x, µ) ∈ X × R | µ ≥ ϕ(x)}.
The Mordukhovich/limiting subdifferential of ϕ at x̄ ∈ X with |ϕ(x̄)| < ∞ is defined

by

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}. (2.5)

If |ϕ(x̄)| =∞, then one puts ∂ϕ(x̄) := ∅.
Considering the indicator function δ(·; Ω) defined by δ(x; Ω) = 0 for x ∈ Ω and by

δ(x; Ω) =∞ otherwise, we have (see [8, Proposition 1.79]):

N(x̄; Ω) = ∂δ(x̄; Ω) ∀x̄ ∈ Ω. (2.6)

The nonsmooth version of Fermat’s rule (see, [8, Proposition 1.114]) is formulated as
follows: If x̄ is a local minimizer for ϕ, then

0 ∈ ∂ϕ(x̄). (2.7)

For a function ϕ locally Lipschitz at x̄ with modulus ` > 0, it holds that (see [8,
Corollary 1.81])

‖x∗‖ ≤ ` ∀x∗ ∈ ∂ϕ(x̄). (2.8)

In what follows, we also use the limiting/Mordukhovich subdifferential sum rule.

Lemma 2.1. [8, Theorem 3.36] Let ϕi : X → R̄, be lower semicontinuous around x̄ ∈ X
for i = 1, 2, · · · , n, and n ≥ 2, and let all but one of these functions be Lipschitz continuous
around x̄. Then one has

∂(ϕ1 + ϕ2 + . . .+ ϕn)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄) + . . .+ ∂ϕn(x̄). (2.9)

Finally in this section, we recall the Ekeland variational principle (see [9]), which is
needed for our investigation.

Lemma 2.2. (Ekeland Variational Principle) Let (X, d) be a complete metric space and
ϕ : X → R̄ be a proper lower semicontinuous function bounded from below. Let ε > 0 and
x0 ∈ X be given such that ϕ(x0) ≤ infx∈X ϕ(x) + ε. Then for any λ > 0 there is x̄ ∈ X
satisfying

(i) ϕ(x̄) ≤ ϕ(x0),

(ii) d(x̄, x0) ≤ λ,

(iii) ϕ(x̄) < ϕ(x) +
ε

λ
d(x, x̄) for all x ∈ X\{x̄}.
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3. Necessary Conditions for Approximate Solutions

Let Ω be a nonempty closed subset of X, and let K := {1, 2, . . . ,m}, and I :=
{1, 2, . . . , p} be index sets. Suppose that f := (fk), k ∈ K and g := (gi), i ∈ I are
locally Lipschitz functions on X.

3.1. Unconstrained Multiobjective Optimization Problem

We consider the unconstrained multiobjective optimization problem:

min{f(x) | x ∈ X}. (3.1)

In what follows, we deal with approximate efficient solutions of problem (3.1)(see
[10, 11]). The interested reader is referred to [6, 12] for various characterizations of
weak/proper approximate efficient solutions via scalarization methods.

Definition 3.1. [5, 6] Let ε := (ε1, . . . , εm) ∈ Rm+ .

1. We say that x̄ ∈ X is an ε-weakly efficient solution of problem (3.1) if there is
no x ∈ X such that

fk(x) + εk < fk(x̄), k ∈ K. (3.2)

2. We say that x̄ ∈ X is an ε-efficient solution of problem (3.1) if there is no
x ∈ C such that

fk(x) + εk ≤ fk(x̄), k ∈ K, (3.3)

with at least one strict inequality.
3. A point x̄ ∈ X is called an ε-quasi-weakly efficient solution of problem (3.1) if
there is no x ∈ X such that

fk(x) + εk‖x− x̄‖ < fk(x̄), k ∈ K. (3.4)

4. A point x̄ ∈ C is called an ε-quasi-efficient solution of problem (3.1) if there is
no x ∈ X such that

fk(x) + εk‖x− x̄‖ ≤ fk(x̄), k ∈ K, (3.5)

with at least one strict inequality.

Definition 3.2. [5] A point x̄ ∈ X is called an ε-properly efficient solution of problem
(3.1) if it is an ε-efficient solution and there is a real positive number M > 0 such that for
each k ∈ K and x ∈ X satisfying fk(x) + εk < fk(x̄), there exists at least one an index
j ∈ K such that fj(x̄) < fj(x) + εj and

fk(x̄)− fk(x)− εk
fj(x)− fj(x̄) + εj

≤M.

Definition 3.3. [6] A point x̄ ∈ X is called an ε-quasi-properly efficient solution of
problem (3.1) if it is an ε-quasi-efficient solution and there is a real positive number
M > 0 such that for each k ∈ K and x ∈ X satisfying fk(x) + εk‖x− x̄‖ < fk(x̄), there
exists at least one an index j ∈ K such that fj(x̄) < fj(x) + εj‖x− x̄‖ and

fk(x̄)− fk(x)− εk‖x− x̄‖
fj(x)− fj(x̄) + εj‖x− x̄‖

≤M.
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Remark 3.4.
1. ε-proper efficiency ⇒ ε-efficiency ⇒ ε-weak efficiency;
2. ε-quasi-proper efficiency ⇒ ε-quasi-efficiency ⇒ ε-quasi-weak efficiency;
3. when ε = 0, an ε-(properly, weakly) efficient solution of problem (3.10) is a (properly,
weakly) efficient solution see e.g., [13–15];

4. when ε = 0, an ε-quasi-(properly, weakly) efficient solution of problem (3.10) is aquasi-
(properly, weakly) efficient solution.

Hence the case of ε 6= 0 is often of interest when dealing with approximate efficient
solutions. For this reason, we always assume here after that ε ∈ Rm+ \ {0}.

Let φ : X → R, θ be a given positive number and the scalar optimization problem:

min{φ(x) | x ∈ X} (3.6)

Definition 3.5. [4]

1. A point x̄ ∈ X is called an θ-optimal solution of (3.6) if φ(x) ≥ φ(x̄) − θ for
any x ∈ X.

2. A point x̄ ∈ X is called an θ-quasi optimal solution of (3.6) if φ(x)+θ‖x−x̄‖ ≥
φ(x̄) for any x ∈ X.

To prove our main results, we quote an alternative theorem for nonconvex functions
as follows:

Lemma 3.6. [16, Theorem 3.1] One and only one of the following alternatives holds:

1. there exists some x ∈ X such that

fk(x) < 0, ∀k ∈ K;

2. for any k ∈ K, and negative numbers δk, there exist positive numbers λk = δ−1
k ,

such that

max
k∈K

λk[fk(x)− δk] ≥ 1, ∀x ∈ X.

Lemma 3.7. [4] If x̄ ∈ X is an ε-properly efficient solution of (3.1), then the system

αkfk(x) + ρef(x) < αkfk(x̄) + ρef(x̄)− αkεk − ρeε, ∀k ∈ K

admits no solution x ∈ X, for some ρ > 0, where αk > 0, k ∈ K and e := (1, 1, . . . , 1)T ∈
Rm.

From Lemmas 3.6 and 3.7, we get the following necessary condition for a feasible
solution to be an ε-properly efficient solution.

Theorem 3.8. [4] Any ε-properly efficient solution x̄ of (3.1), is an ε0-optimal solution
to the scalar optimization problem

min

{
max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] | x ∈ X
}

(3.7)

for some ρ > 0, where ε0 = maxk∈K λk(εk+ρeε), λk = [(fk(x̄)−y∗k)+ρe(f(x̄)−y∗)]−1, y∗k
is any number such that λk > 0, k ∈ K and y∗ := (y∗1 , y

∗
2 , . . . , y

∗
m).

Since [4] has lemma for x̄ ∈ X is ε-properly efficient solution of (3.1), we will prove
lemma for x̄ ∈ X is ε-quasi-properly efficient solution of (3.1) as follows.
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Lemma 3.9. If x̄ ∈ X is ε-quasi-properly efficient solution of (3.1), then the system

αkfk(x) + ρef(x) < αkfk(x̄) + ρef(x̄)− αkεk‖x− x̄‖ − ρeε‖x− x̄‖,∀k ∈ K,

admits no solution x ∈ X for some ρ > 0, where αk > 0, k ∈ K and e = (1, 1, . . . , 1)T ∈
Rm.

Proof. Suppose that x̄ ∈ X, is an ε-quasi-properly efficient solution of (3.1). Thus x̄ is
also an ε-quasi efficient solution of (3.1). By the ε-quasi efficiency of x̄, the system

fk(x) < fk(x̄)− εk‖x− x̄‖,∀k ∈ K,

has no solution x in X. Hence, for any αk > 0, k ∈ K, the system

αkfk(x) < αkfk(x̄)− αkεk‖x− x̄‖, (3.8)

has no solution x in X. Let x̂ ∈ X be fixed. We discuss in the following two cases.

Case I: We prove that if ef(x̄)− eε‖x̂− x̄‖ ≤ ef(x̂), then the system of k inequalities

αkfk(x̂) + ρef(x̂) < αkfk(x̄) + ρef(x̄)− αkεk‖x̂− x̄‖ − ρeε‖x̂− x̄‖,∀k ∈ K,

is inconsistent for any ρ > 0. This is because if it was not the case, we would
have

αkfk(x̄)− αkfk(x̂)− αkεk‖x̂− x̄‖ > ρef(x̂)− ρef(x̄) + ρeε‖x̂− x̄‖ ≥ 0,∀k ∈ K,

which is a contradiction to (3.8).
Case II: If ef(x̄)− eε‖x̂− x̄‖ > ef(x̂), then

K̄ := {k ∈ K | fk(x̄)− εk‖x̂− x̄‖ > fk(x̂)} 6= ∅.

Since x̄ ∈ X is an ε-quasi-properly efficient solution of (3.1) and by Remark 3.4, x̄
is an ε-quasi efficient solution of (3.1). There exists some k̄ ∈ K such that fk̄(x̂) >
fk̄(x̄)−εk̄‖x̂−x̄‖. Let fl(x̂)−fl(x̄)+εl‖x̂−x̄‖ = maxk∈K{fk(x̂)−fk(x̄)+εk‖x̂−x̄‖}.
Thus fl(x̂) − fl(x̄) + εl‖x̂ − x̄‖ > 0. Since x̄ ∈ X is an ε-quasi-properly efficient
solution of (3.1), there exists an M > 0 such that for any k ∈ K, there exists an
j ∈ K satisfying fj(x̂) > fj(x̄)− εj‖x̂− x̄‖ and

fk(x̄)− fk(x̂)− εk‖x̂− x̄‖
fj(x̂)− fj(x̄) + εj‖x̂− x̄‖

≤M.

Thus for any k ∈ K,

fk(x̄)− fk(x̂)− εk‖x̂− x̄‖ ≤M [fj(x̂)− fj(x̄) + εj‖x̂− x̄‖]
≤M [fl(x̂)− fl(x̄) + εl‖x̂− x̄‖],

and hence

[fl(x̂)− fl(x̄) + εl‖x̂− x̄‖]−1
∑
k∈K

[fk(x̄)− fk(x̂)− εk‖x̂− x̄‖] ≤Mm.

Since

0 < ef(x̄)− ef(x̂)− eε‖x̂− x̄‖ ≤
∑
k∈K

[fk(x̄)− fk(x̂)− εk‖x̂− x̄‖],

we have

[fl(x̂)− fl(x̄) + εl‖x̂− x̄‖]−1[ef(x̄)− ef(x̂)− eε‖x̂− x̄‖] ≤Mm.
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Let ρ ≤ mink∈K αk(Mm)−1. Then

ρ ≤ αl(Mm)−1

≤ αl[fl(x̂)− fl(x̄) + εl‖x̂− x̄‖]
ef(x̄)− ef(x̂)− eε‖x̂− x̄‖

,

i.e.,

ρef(x̄)− ρef(x̂)− ρeε‖x̂− x̄‖ ≤ αl[fl(x̂)− fl(x̄) + εl‖x̂− x̄‖].

Hence

αlfl(x̄) + ρef(x̄)− αlεl‖x̂− x̄‖ − ρeε‖x̂− x̄‖ ≤ αlfl(x̂) + ρef(x̂).

Therefore, the system of k inequalities

αkfk(x̂) + ρef(x̂) < αkfk(x̄) + ρef(x̄)− αkεk‖x̂− x̄‖ − ρeε‖x̂− x̄‖,∀k ∈ K,

is inconsistent.

Noting that x̂ can be any element of X, we conclude that the system

αkfk(x)+ρef(x) < αkfk(x̄)+ρef(x̄)−αkεk‖x− x̄‖−ρeε‖x− x̄‖,∀k ∈ K,x ∈ X,

has no solution for some ρ > 0. This completes the proof.

Theorem 3.10. Any ε-quasi-properly efficient solution x̄ of (3.1) is an ε0-quasi optimal
solution to the scalar optimization problem

min

{
max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] | x ∈ X
}

(3.9)

for some ρ > 0, where λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1, y∗k is any number such that
λk > 0, k ∈ K and ε0 = maxk∈K λk(εk + ρeε).

Proof. By Lemma 3.9, let αk = 1, k ∈ K, there exists a ρ > 0 such that

fk(x) + ρef(x) < fk(x̄) + ρef(x̄)− εk‖x− x̄‖ − ρeε‖x− x̄‖,∀k ∈ K,

has no solution. By Lemma 3.6, for any k ∈ K, and negative numbers δk, there exist
positive numbers λk = −δ−1

k > 0, such that

1 ≤ max
k∈K

λk[(fk(x)−fk(x̄)+εk‖x− x̄‖)+ρe(f(x)−f(x̄)+ε‖x− x̄‖)−δk],∀x ∈ X.

Let y∗k be a number such that δk = (y∗k−fk(x̄))+ρe(y∗−f(x̄)) < 0, for all k ∈ K. Denote
λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1. For any x ∈ X,

1 ≤ max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗) + (εk + ρeε)‖x− x̄‖]

≤ max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] + max
k∈K

(εk + ρeε)‖x− x̄‖

= max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] + ε0‖x− x̄‖.

Since

1 = max
k∈K

(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)
(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)

= max
k∈K

λk[(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)],
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we have for any x ∈ X,

max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] + ε0‖x− x̄‖

≥ max
k∈K

λk[(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)].

The proof is completed.

3.2. Constrain Multiobjective Optimizaton Problem

The main results in this section are two necessary conditions for a feasible solution to
be ε-properly efficient solutions and ε-quasi-properly efficient solutions of this following
problem.

We focus on the constrained multiobjective optimization problem :

min{f(x) | x ∈ C}, (3.10)

where C is the feasible set given by

C := {x ∈ Ω | gi(x) ≤ 0, i ∈ I}. (3.11)

To simplify the statements concerning problem (3.10), for fixed x̄ ∈ X and ε-properly
efficient solution, we define a real-valued function ψ on X as follows:

ψ(x) := max
k∈K,i∈I

{λk[(fk(x)− y∗k + εk) + ρe(f(x)− y∗ + ε)], gi(x)} , x ∈ X,

(3.12)

for some ρ > 0, where λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1 and y∗k is any number such
that λk > 0, k ∈ K, which motivated by Theorem 3.8.

Note that since e := (1, 1, . . . , 1)T ∈ Rm, ε := (ε1, ε2, . . . , εm) ∈ Rm+ and f :=

(f1, f2, . . . , fm), we can see that eε = (1, 1, . . . , 1)T (ε1, ε2, . . . , εm) =
∑
l∈K εl and ef =

(1, 1, . . . , 1)T (f1, f2, . . . , fm) =
∑
l∈K fl where l ∈ K := {1, 2, . . . ,m}.

The following theorem provides a Fritz-John type necessary condition in a fuzzy form
for ε-properly efficient solutions of problem (3.10).

Theorem 3.11. Let x̄ be ε-properly efficient solution of (3.10). For any ν > 0, there
exist xν ∈ Ω, ρ > 0, ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I with Σk∈Kηk + Σi∈Iµi = 1, such that
‖xν − x̄‖ ≤ ν and

0 ∈
∑
k∈K

ηkλk

(
∂fk(xν) + ρ

∑
l∈K

∂fl(xυ)

)
+
∑
i∈I

µi∂gi(xν) +
ε0 + 1

ν
BX∗ +N(xν ; Ω),

ηkλk

[
(fk(xυ)− y∗k + εk) + ρ

(∑
l∈K

fl(xυ)−
∑
l∈K

y∗l +
∑
l∈K

εl

)
− ψ(xυ)

]
= 0, k ∈ K,

µi [gi(xν)− ψ(xν)] = 0, i ∈ I,

where ε0 = maxk∈K λk(εk + ρeε), λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1, y∗k is any number
such that λk > 0 and the function ψ was defined in (3.12).

Proof. Let x̄ be an ε-properly efficient solution of (3.10). Then x̄ is an ε-efficient solution
and there is a real positive number M > 0 such that for each k ∈ K and x ∈ X satisfying
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fk(x) + εk < fk(x̄), there exists at least one an index j ∈ K such that fj(x̄) < fj(x) + εj
and

fk(x̄)− fk(x)− εk
fj(x)− fj(x̄) + εj

≤M.

Let us consider the function ψ defined in (3.12),

ψ(x) := max
k∈K,i∈I

{λk[(fk(x)− y∗k + εk) + ρe(f(x)− y∗ + ε)], gi(x)} , x ∈ X,

for some ρ > 0, where λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1 and y∗k is any number such
that λk > 0, k ∈ K. If x ∈ C, then gi(x) ≤ 0,∀i ∈ I. If x /∈ C but x ∈ Ω, then there
exists ī ∈ I such that gī(x) > 0. Since x̄ ∈ Ω, x̄ is an ε-properly efficient solution and by
Lemma 3.7, we obtain that there are ρ > 0, αk > 0 and there is no x ∈ Ω such that

αkfk(x) + ρef(x) < αkfk(x̄) + ρef(x̄)− αkεk − ρeε, ∀k ∈ K.

This implies that there is no x ∈ Ω such that

(fk(x)− fk(x̄) + εk) + ρe(f(x)− f(x̄) + ε) < 0, ∀k ∈ K.

Thus there exists k̂ ∈ K such that for each x ∈ Ω,

0 ≤ (fk̂(x)− fk̂(x̄) + εk̂) + ρe(f(x)− f(x̄) + ε)

≤ [(fk̂(x)− y∗
k̂
)− (fk̂(x̄)− y∗

k̂
) + εk̂] + ρe[(f(x)− y∗)− (f(x̄)− y∗) + ε],

it follows that

(fk̂(x̄)− y∗
k̂
) + ρe(f(x̄)− y∗) ≤ [(fk̂(x)− y∗

k̂
) + εk̂] + ρe[(f(x)− y∗) + ε],

so

0 ≤
(fk̂(x)− fk̂(x̄) + εk̂) + ρe(f(x)− f(x̄) + ε)

(fk̂(x̄)− y∗
k̂
) + ρe(f(x̄)− y∗)

= λk̂
[
(fk̂(x)− fk̂(x̄) + εk̂) + ρe(f(x)− f(x̄) + ε)

]
,

where λk̂ = [(fk̂(x̄)− y∗
k̂
) + ρe(f(x̄)− y∗)]−1, y∗

k̂
is any number such that λk̂ > 0. Thus

0 ≤ ψ(x) ∀x ∈ Ω, (3.13)

which infers that ψ is bounded from below on Ω. This implies that infx∈Ω ψ(x) exists,
which infx∈Ω ψ(x) ≥ 0.

In addition, due to x̄ ∈ C, we obtain that gi(x̄) ≤ 0,∀i ∈ I. We consider

ψ(x̄) = max
k∈K,i∈I

{λk[(fk(x̄)− y∗k + εk) + ρe(f(x̄)− y∗ + ε)], gi(x̄)}

= max
k∈K,i∈I

{λk(εk + ρeε) + 1, gi(x̄)}

= max
k∈K
{λk(εk + ρeε) + 1}

= ε0 + 1,

where ε0 := maxk∈K λk(εk + ρeε). This implies that

ψ(x̄) ≤ inf
x∈Ω

ψ(x) + ε0 + 1.
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For any υ > 0, applying the Ekeland variational principle Lemma 2.2, there exists xυ ∈ Ω
such that ‖xυ − x̄‖ ≤ υ and

ψ(xυ) < ψ(x) +
ε0 + 1

υ
‖x− xυ‖, ∀x ∈ Ω.

This means that xυ is a minimizer to the scalar optimization problem

min
x∈Ω

ϕ(x),

where

ϕ(x) := ψ(x) +
ε0 + 1

υ
‖x− xυ‖, x ∈ Ω. (3.14)

Thus xυ is a minimizer to the unconstrained scalar optimization problem

min
x∈X

ϕ(x) + δ(x; Ω). (3.15)

Applying the nonsmooth version of Fermat’s rule (2.7) to the unconstrained scalar opti-
mization problem (3.15), we obtain

0 ∈ ∂ (ϕ+ δ(·; Ω)) (xυ). (3.16)

Since the function ϕ is Lipschitz continuous around xυ and the function δ(·; Ω) is lower
semicontinuous around xυ, it follows from the sum rule (2.9) applied to (3.16) and from
the relation in (2.6) that

0 ∈ ∂ϕ(xυ) +N(xυ; Ω). (3.17)

Note that from evaluated the subdifferential of norm in Banach space [18, Example 4,
Page 198],

∂(‖ · −xυ‖)(xυ) = BX∗ .

Applying again the sum rule (2.9) to ϕ defined in (3.14), we get (3.17) that

0 ∈ ∂ψ(xυ) +
ε0 + 1

υ
BX∗ +N(xυ; Ω). (3.18)

Now, invoking the formula for the Mordukhovich/limiting subdifferential of maximum
functions (see [8, Theorem 3.46(ii)]) and the sum rule (2.9) applied to ψ in (3.4) we have

∂ψ(xυ) ⊂
∑
k∈K

ηkλk (∂fk(xυ) + ρ∂(ef)(xυ)) +
∑
i∈I

µi∂gi(xυ), (3.19)

where

ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I,∑
k∈K

ηk +
∑
i∈I

µi = 1,

ηkλk [(fk(xυ)− y∗k + εk) + ρe (f(xυ)− y∗ + ε)− ψ(xυ)] = 0, k ∈ K,
µi[gi(xυ)− ψ(xυ)] = 0, i ∈ I.

This implies that

0 ∈
∑
k∈K

ηkλk

(
∂fk(xυ) + ρ

∑
l∈K

∂fl(xυ)

)
+
∑
i∈I

µi∂gi(xυ)+
ε0 + 1

υ
BX∗ +N(xυ; Ω),

(3.20)
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where

ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I,∑
k∈K

ηk +
∑
i∈I

µi = 1,

ηkλk

[
(fk(xυ)− y∗k + εk) + ρ

(∑
l∈K

fl(xυ)−
∑
l∈K

y∗l +
∑
l∈K

εl

)
− ψ(xυ)

]
= 0, k ∈ K,

µi[gi(xυ)− ψ(xυ)] = 0, i ∈ I.

To simplify the statements concerning problem (3.10), for fixed x̄ is ε-quasi-properly
efficient solution, we define a real-valued function Φ on X as follows:

Φ(x) := max
k∈K,i∈I

{λk[(fk(x)− y∗k + εk‖x− x̄‖) + ρe(f(x)− y∗ + ε‖x− x̄‖)], gi(x)} .

(3.21)

for some ρ > 0, where λk = [(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]−1 and y∗k is any number such
that λk > 0, k ∈ K which motivated by Theorem 3.10 with x̄ is an ε0-quasi optimal
solution of (3.9).

The following theorem provides a Fritz-John type necessary condition in a fuzzy form
for ε-quasi-properly efficient solutions of problem (3.10).

Theorem 3.12. Let x̄ be an ε-quasi-properly efficient solution of (3.10). Then there
exist ρ > 0, ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I with Σk∈Kηk + Σi∈Iµi = 1 such that

0∈
∑
k∈K

ηkλk

(
∂fk(x̄)+ρ

∑
l∈K

∂fl(x̄) +

(
εk+ρ

∑
l∈K

εl

)
BX∗

)
+
∑
i∈I

µigi(x̄)+N(x̄; Ω),

µigi(x̄) = 0, i ∈ I. (3.22)

Proof. Let x̄ be an ε-quasi-properly efficient solution of (3.10).
By Theorem 3.10, there exists ρ > 0 such that x̄ is an ε0-quasi optimal solution to the

scalar optimization problem (3.9), that is

min

{
max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] | x ∈ X
}
,

where λk = [(fk(x̄)−y∗k)+ρe(f(x̄)−y∗)]−1 which y∗k is any number such that λk > 0, k ∈ K
and ε0 = maxk∈K λk(εk + ρeε). Let us consider for any x ∈ Ω and the function Φ defined
in (3.21), that is

Φ(x) := max
k∈K,i∈I

{λk[(fk(x)− y∗k) + ρe(f(x)− y∗) + (εk + ρeε)‖x− x̄‖], gi(x)} .

If x ∈ C, then gi(x) ≤ 0,∀i ∈ I. If x /∈ C but x ∈ Ω, then there exists î ∈ I such
that gî(x) > 0. Since x̄ is an ε0-quasi optimal solution to the scalar optimization problem
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(3.9), we obtain that for each x ∈ Ω,

1 = max
k∈K

λk[(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)]

≤ max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] + ε0‖x− x̄‖

= max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗)] + max
k∈K

λk(εk + ρeε)‖x− x̄‖

= max
k∈K

λk[(fk(x)− y∗k) + ρe(f(x)− y∗) + (εk + ρeε)‖x− x̄‖].

Since x̄ ∈ C, we obtain that gi(x̄) ≤ 0, for all i ∈ I, so we can consider

Φ(x̄)

= max
k∈K,i∈I

{λk[(fk(x̄)− y∗k) + ρe(f(x̄)− y∗) + (εk + ρeε)‖x̄− x̄‖], gi(x̄)}

= max
k∈K,i∈I

{λk[(fk(x̄)− y∗k) + ρe(f(x̄)− y∗)], gi(x̄)}

≤ max
k∈K,i∈I

{λk[(fk(x)− y∗k) + ρe(f(x)− y∗) + (εk + ρeε)‖x− x̄‖], gi(x)}

= Φ(x),∀x ∈ Ω.

This means that x̄ is a minimizer to the scalar optimization problem

min
x∈Ω

Φ(x).

Thus x̄ is a minimizer to the unconstrained scalar optimization problem

min
x∈X

Φ(x) + δ(x; Ω). (3.23)

Applying the nonsmooth version of Fermat’s rule (2.7) to the unconstrained scalar opti-
mization problem (3.23), we obtain

0 ∈ ∂ (Φ + δ(·; Ω)) (x̄). (3.24)

Since the function Φ is Lipschitz continuous around x̄ and the function δ(·; Ω) is lower
semicontinuous around x̄, it follows from the sum rule (2.9) applied to (3.24) and from
the relation in (2.6) that

0 ∈ ∂Φ(x̄) +N(x̄; Ω). (3.25)

Next consider for each x ∈ X,

Φ(x) = max
k∈K,i∈I

{λk[(fk(x)− y∗k) + ρe(f(x)− y∗) + (εk + ρeε)‖x− x̄‖], gi(x)} ,

by evaluated the subdifferential of norm in Banach space [18, Example 4, Page 198],

∂(‖ · −x̄‖)(x̄) = BX∗ .
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Now, invoking the formula for the Mordukhovich/limiting subdifferential of maximum
functions (see [8, Theorem 3.46(ii)]) and the sum rule (2.9) applied to Φ in (3.21) we have

∂Φ(x̄) = ∂

[
max

k∈K,i∈I
{λk[(fk(·)− y∗k) + ρe(f(·)− y∗) + (εk + ρeε)‖ · −x̄‖], gi(·)}

]
(x̄)

⊆ ∂

[∑
k∈K

ηkλk[(fk(·)− y∗k) + ρe(f(·)− y∗) + (εk + ρeε)‖ · −x̄‖] +
∑
i∈I

µigi(·)

]
(x̄)

⊆
∑
k∈K

ηkλk [∂fk(x̄) + ρ∂(ef)(x̄) + (εk + ρeε)∂‖ · −x̄‖(x̄)] +
∑
i∈I

µigi(x̄)

=
∑
k∈K

ηkλk [∂fk(x̄) + ρ∂(ef)(x̄) + (εk + ρeε)BX∗ ] +
∑
i∈I

µigi(x̄)

where

ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I,∑
k∈K

ηk +
∑
i∈I

µi = 1,

µigi(x̄) = 0, i ∈ I.
This implies that

0 ∈
∑
k∈K

ηkλk

(
∂fk(x̄) + ρ

∑
l∈K

∂fl(x̄) +

(
εk + ρ

∑
l∈K

εl

)
BX∗

)
+
∑
i∈I

µigi(x̄) +N(x̄; Ω),

where

ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I,∑
k∈K

ηk +
∑
i∈I

µi = 1,

µigi(x̄) = 0, i ∈ I.

4. Applications to Necessary Conditions for Approximate
Solutions of Linear Optimization Problem

Now we apply multiobjective optimization problems to linear multiobjective optimiza-
tion problems. Let Ω′ be a nonempty closed subset of Rn, and let K := {1, 2, . . . ,m},
and I := {1, 2, . . . , p} be index sets.

4.1. Unconstrained Linear Multiobjective Optimization Problem

First of all, we considered the unconstrained linear multiobjective optimization prob-
lem:

min{(cT1 x, . . . , cTmx) | x ∈ Rn} (4.1)

where ck, x ∈ Rn and the superscript T stands for transposition.
We start with definitions of efficiency and proper efficiency with refer to [19–22]. Let

x̄k denote a feasible solution where the k-th objective function is minimized. Mostly, the
single-objective maximum solutions x̄1, . . . , x̄m do not coincide so that we are forced to
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find a compromise in an efficient solution. By definition, a feasible solution x̄ is referred
to as an efficient solution if there is no feasible solution x such that

cTk x ≤ cTk x̄, k ∈ K,

with at least one an index j ∈ K such that

cTj x < cTj x̄. (4.2)

Moreover, the feasible solution x̄ is weakly efficient if there is no feasible solution x such
that

cTk x < cTk x̄, k ∈ K. (4.3)

The specification of approximate efficient solutions in Definition 3.1 to problem (4.1) is
as follows:

Definition 4.1. Let ε := (ε1, . . . , εm) ∈ Rm+ .

1. We say that x̄ ∈ Rn is an ε-weakly efficient solution of problem (4.1) if there
is no x ∈ Rn such that

cTk x+ εk < cTk x̄, k ∈ K. (4.4)

2. We say that x̄ ∈ Rn is an ε-efficient solution of problem (4.1) if there is no
x ∈ Rn such that

cTk x+ εk ≤ cTk x̄, k ∈ K, (4.5)

with at least one strict inequality.
3. A point x̄ ∈ Rn is called an ε-quasi-weakly efficient solution of problem (4.1)
if there is no x ∈ Rn such that

cTk x+ εk‖x− x̄‖ < cTk x̄, k ∈ K. (4.6)

4. A point x̄ ∈ Rn is called an ε-quasi-efficient solution of problem (4.1) if there
is no x ∈ Rn such that

cTk x+ εk‖x− x̄‖ ≤ cTk x̄, k ∈ K, (4.7)

with at least one strict inequality.

Definition 4.2. A point x̄ ∈ Rn is called an ε-properly efficient solution of problem (4.1)
if it is an ε-efficient solution and there is a real positive number M > 0 such that for each
k ∈ K and x ∈ Rn satisfying cTk x + εk < cTk x̄, there exists at least one an index j ∈ K
such that cTj x̄ < cTj x+ εj and

cTk x̄− cTk x− εk
cTj x− cTj x̄+ εj

≤M.

Definition 4.3. A point x̄ ∈ Rn is called an ε-quasi-properly efficient solution of problem
(4.1) if it is an ε-quasi-efficient solution and there is a real positive number M > 0 such
that for each k ∈ K and x ∈ Rn satisfying cTk x + εk‖x − x̄‖ < cTk x̄, there exists at least
one an index j ∈ K such that cTj x̄ < cTj x+ εj‖x− x̄‖ and

cTk x̄− cTk x− εk‖x− x̄‖
cTj x− cTj x̄+ εj‖x− x̄‖

≤M.
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The following Lemma and Theorem show that Lemma and Theorem in section 3.1
can apply to linear multiobjective optimization problems by taking fk(x) = cTk x. So
ef(x) = eC̄x.

Lemma 4.4. If x̄ ∈ Rn is an ε-properly efficient solution of (4.1), then the system

αkc
T
k x+ ρeC̄x < αkc

T
k x̄+ ρeC̄x̄− αkεk − ρeε, ∀k ∈ K, (4.8)

admits no solution x ∈ Rn for some ρ > 0, where αk > 0, k ∈ K and e = (1, 1, . . . , 1)T ∈
Rm.

Theorem 4.5. Any ε-properly efficient solution x̄ of (4.1), is an ε0-optimal solution to
the scalar linear optimization problem

min

{
max
k∈K

λk
[
(cTk x− y∗k) + ρe(C̄x− y∗)

]
| x ∈ Rn

}
,

for some ρ > 0, where ε0 = maxk∈K λk(εk + ρeε), λk = [(cTk x̄− y∗k) + ρe(C̄x̄− y∗)]−1 and
y∗k is any number such that λk > 0, k ∈ K.

Lemma 4.6. If x̄ ∈ Rn is an ε-quasi-properly efficient solution of (4.1), then the system

αkc
T
k x+ ρeC̄x < αkc

T
k x̄+ ρeC̄x̄− αkεk‖x− x̄‖ − ρeε‖x− x̄‖,∀k ∈ K, (4.9)

admits no solution x ∈ Rn for some ρ > 0, where αk > 0, k ∈ K and e = (1, 1, . . . , 1)T ∈
Rm.

Theorem 4.7. Any ε-quasi-properly efficient solution x̄ of (4.1) is an ε0-optimal solution
to the scalar optimization problem

min

{
max
k∈K

λk[(cTk x− y∗k) + ρe(C̄x− y∗)] + ε0‖x− x̄‖ | x ∈ X
}
, (4.10)

for some ρ > 0, where λk = [(cTk x̄ − y∗k) + ρe(C̄x̄ − y∗)]−1, y∗k is any number such that
λk > 0, k ∈ K ε0 = maxk∈K λk(εk + ρeε).

4.2. Constrained Linear Multiobjective Optimization Problem

We consider the following constrained linear multiobjective optimization problem

min{(cT1 x, . . . , cTmx) | x ∈ C ′}, (4.11)

which C ′ is the feasible set given by

C ′ := {x ∈ Ω′ | aTi x ≥ bi, i ∈ I}, (4.12)

where ck, ai, x ∈ Rn and bi ∈ R, where k ∈ K = {1, . . . ,m}, i ∈ I = {1, . . . , p} and
C̄ = (c1, . . . , cm)T is m× n matrix. The superscript T stands for transposition.

The following Theorem show that Theorem in section 3.2 can apply to linear mul-
tiobjective optimization problems by taking fk(x) = cTk x and gi(x) = bi − aTi x. So
ef(x) = eC̄x.

Let x̄ ∈ Rn and be an ε-properly efficient solution of (4.11), we define a real-valued
function ψ̄ on Rn as follows:

ψ̄(x) := max
k∈K,i∈I

{
λk[(cTk x− y∗k + εk) + ρe(C̄x− y∗ + ε)], bi − aTi x

}
, x ∈ Rn,

(4.13)
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for some ρ > 0, where λk = [(cTk x̄− y∗k) + ρe(C̄x̄− y∗)]−1 and y∗k is any number such that
λk > 0, k ∈ K.

The following theorem provides a Fritz-John type necessary condition in a fuzzy form
for ε-properly efficient solutions of problem (4.11).

Theorem 4.8. Let x̄ be an ε-properly efficient solution of (4.11). For any ν > 0, there
exist xν ∈ Ω, ρ > 0, ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I with Σk∈Kηk + Σi∈Iµi = 1, such that
‖xν − x̄‖ ≤ ν and

0 ∈
∑
k∈K

ηkλk

(
ck + ρ

∑
l∈K

cl

)
+
∑
i∈I

µiai +
ε0 + 1

ν
B +N(xν ; Ω),

ηkλk[(cTk xυ − y∗k + εk) + ρe(C̄xυ − y∗ + ε)− ψ̄(xυ)] = 0, k ∈ K,
µi
[
aTi xν − ψ̄(xν)

]
= 0, i ∈ I,

where λk = [(cTk x̄− y∗k) + ρe(C̄x̄− y∗)]−1, and y∗k is any number such that λk > 0.

Let x̄ be an ε-quasi-properly efficient solution of (4.11), we define a real-valued function
Φ̄ on Rn as follows:

Φ̄(x) := max
k∈K,i∈I

{
λk[(cTk x− y∗k + εk‖x− x̄‖) + ρe(C̄x− y∗ + ε‖x− x̄‖)], bi − aTi x

}
,

(4.14)

for some ρ > 0, where λk = [(cTk x̄− y∗k) + ρe(C̄x̄− y∗)]−1 and y∗k is any number such that
λk > 0, k ∈ K.

The following theorem provides a Fritz-John type necessary condition in a fuzzy form
for an ε-quasi-properly efficient solutions of problem (4.11).

Theorem 4.9. Let x̄ be an ε-quasi-properly efficient solution of (4.11). Then there exist
ρ > 0, ηk ≥ 0, k ∈ K,µi ≥ 0, i ∈ I with Σk∈Kηk + Σi∈Iµi = 1, such that

0 ∈
∑
k∈K

ηkλk

[
ck + ρ

∑
l∈K

cl +

(
εk + ρ

∑
l∈K

εl

)
B

]
−
∑
i∈I

µiai +N(x̄; Ω),

µibi − µiaTi x̄ = 0, i ∈ I. (4.15)
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[17] C. Gutiérrez, B. Jiménez, V. Novo, ε-Pareto optimality conditions for convex mul-
tiobjective programming via max function, Numer. Funct. Anal. Optim. 27 (2006)
57–70.

[18] A.D. Ioffe, V.M. Tihomirov, Theory of Extremal Problems, North-Holland Publish-
ing Co., Amsterdam-New York, 1979.

[19] M. Zeleny, Linear Multiobjective Programming, Springer-Verlag, Berlin, 1974.

[20] H. Isermann, The enumeration of the set of all efficient solutions for a linear multiple
objective program, Operational Research Quarterly 28 (1977) 711–725.

[21] J.L. Cohn, Multiobjective Programming and Planning, Academic Press, New York,
1978.

[22] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application,
John Wiley and Sons, New York, 1986.

[23] M. Karimi, B. Karimi, Linear and conic scalarizations for obtaining properly efficient
solutions in multiobjective optimization, Math. Sci. 11 (2017) 319–325.


	Introduction
	Preliminaries
	Necessary Conditions for Approximate Solutions
	Unconstrained multiobjective optimization problem
	Constrain multiobjective optimizaton problem

	Applications to Necessary Conditions for Approximate Solutions of Linear Optimization Problem 
	Unconstrained Linear multiobjective optimization problem
	Constrained linear multiobjective optimization problem


