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Abstract The purpose of this paper is to introduce and study the existence theorem of solutions for

generalized scalar quasi-equilibrium problems involving two bifunctions on complete metric spaces. We

show the uniqueness of its solution which is also a fixed point of some mappings. We also get new

minimax theorem involving two bifunctions on complete metric spaces. Our results can be viewed as a

general form and some extensions of some previously existing results.
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1. Introduction

Let X be a nonempty closed convex subset of a topological space E, let f : X×X → R
be a bifunction such that f(x, x) = 0 for all x ∈ X. The scalar equilibrium problem is
the problem of

(EP) finding x ∈ X such that f(x, y) ≥ 0 for all y ∈ X.

This problem includes fixed point problems, optimization problems, variational in-
equality problems, Nash equilibrium, minimax inequalities, and saddle point problems as
special cases (see [1]).
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Recently, extensions of the equilibrium problem for vector-valued or vector set-valued
maps were introduced (see [2–10]) and references therein.

Let (X, d) be a complete metric space, f : X×X → R be a bifunction, and T : X → X
be a mapping. Chuang and Lin [11, 12] provided some existence theorems for the scalar
quasi-equilibrium problems on complete metric spaces.

(QEP1) Find x̄ ∈ X such that T x̄ = x̄ and f(z, x̄) ≤ 0 for all z ∈ X.
(QEP2) Find x̄ ∈ X such that T x̄ = x̄ and f(x̄, z) ≥ 0 for all z ∈ X \ {x̄}.
They presented new existence theorem of solutions for scalar quasi-equilibrium prob-

lems, show that the uniqueness of its solution which is also fixed point of some mappings,
and get new minimax theorem (MI) on complete metric spaces.

(MI) Find x̄ ∈ X such that

sup
y∈X

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈X

f(x, y) = f(x̄, x̄) = 0.

Furthermore, the solution of problem (QEP1), [resp. (QEP2)] can be obtained by the
Picard iteration.

On the other hand, in this paper, we are interested in studying the new problem called
generalized scalar quasi-equilibrium problems (GQEP) on complete metric spaces involv-
ing two bifunctions as follows:

(GQEP) Find x̄ ∈ X such that

T x̄ = x̄, g(x̄, x̄) = f(x̄, x̄) ≤ 0 and (f + g)(z, x̄) ≤ 0 ≤ (f + g)(x̄, z) for all z ∈ X
where f , g : X ×X → R.

Furthermore, we can get a new minimax theorem on complete metric spaces by the
existence theorem of problem (GQEP) as follows:

(GMI) Find x̄ ∈ X such that

sup
x∈X

inf
y∈X

(f + g)(x, y) = inf
y∈X

sup
x∈X

(f + g)(x, y) = (f + g)(x̄, x̄) = 0.

The solution of (GQEP) and (GMI) can be obtained by Picard’s iteration method.
The obtained results can be reviewed as some generalizations of the previously existing
results.

2. Preliminaries

Let l∞ be the Banach space of bounded sequences with the supremum norm. A linear
functional µ on l∞ is called a mean if µ(e) = ‖µ‖ = 1, where e = (1, 1, 1, ...). For
x = (x1, x2, ...), the value µ(x) is also denoted by µn(xn). A mean µ on l∞ is called a
Banach limit if it satisfies µn(xn) = µn(xn+1). If µ is a Banach limit on l∞, then for
x = (x1, x2, x3, ...) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if x = (x1, x2, x3, ...) ∈ l∞ and xn → a ∈ R, then we have µ(x) = µn(xn) =
a. For details, we can refer [13].
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Lemma 2.1 ([14, Lemma 3.1]). Let (X, d) be a metric space, let {xn} be a bounded
sequence in X and let µ be a mean on l∞. If g : X → R is defined by

g(y) = µnd(xn, y) for all y ∈ X,
then g is a continuous function on X.

Lemma 2.2 ([11, Lemma 2.2]). Let (X, d) be a metric space, let {xn} be a bounded
sequence in X and let µ be a mean on l∞. If g : X → R is defined by

g(z) = µnd(xn, z) for each z ∈ X,
then g(x) = g(y) = 0 implies x = y.

Definition 2.3 ([15, Definition 1.7.10]). Let (X, d) be a metric space. A sequence {xn} in
X is called a Cauchy sequence if for any ε > 0, there is an nε ∈ N such that d(xm, xn) < ε
for any m ≥ nε, n ≥ nε.

Lemma 2.4 ([11, Lemma 2.3]). Let (X, d) be a metric space and let {xn} be a bounded
sequence in X and let µ be a mean on l∞. Suppose that {yn} is a sequence in X with
lim
m→∞

µnd(xn, ym) = 0. Then {yn} is a Cauchy sequence.

Definition 2.5 ([13]). Let X be a topological space and let f be a function of X into R.
(i) f is called lower semicontinuous on X if for any real number a, the set {x ∈
X : f(x) ≤ a} is closed in X.

(ii) f is called upper semicontinuous on X if for any real number a, the set {x ∈
X : f(x) ≥ a} is closed in X.

(iii) f is continuous on X if and only if f is lower semicontinuous and upper semi-
continuous on X.

Remark 2.6. f is lower semicontinuous on X if and only if −f is upper semicontinuous
on X.

Lemma 2.7 ([13, Theorem 1.3.2]). Let X be a topological space and let f be a function
of X into (−∞,∞]. Then f is lower semicontinuous on X if and only if for any x0 ∈ X,
xα → x0 ⇒ f(x0) ≤ lim inf

α
f(xα).

Lemma 2.8. Let X be a topological space and let f be a function of X into [−∞,∞).
Then f is upper semicontinuous on X if and only if for any x0 ∈ X, xα → x0 ⇒
lim sup

α
f(xα) ≤ f(x0).

Proof. By employing Remark 2.6 and Lemma 2.7, we have the desired result.

Definition 2.9 ([13]). Let X be a topological space and let f be a function of X into
[−∞,∞]. f is called bounded above if there exists a real number M such that f(x) ≤M
for all x ∈ X.

3. Main Results

In this section, we provide and study the existence theorem for generalized scalar quasi-
equilibrium problems involving two bifunctions on complete metric spaces. The obtained
results can be viewed as the tool for finding solutions (a unique solution) not only of
(QEP1) but also of (OEP2) as follows:
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Theorem 3.1. Let r ∈ [0, 1], (X, d) be a complete metric space, T : X → X be a mapping,
and f, g : X ×X → R be bifunctions. Let µ be a mean on l∞ and let {xn} be a bounded
sequence. Assume that :

(i) there exists x̂ ∈ X such that
(a) y → f(x̂, y) is lower semicontinuous and bounded above function;
(b) f(x̂, y)− f(z, y) + g(y, z) ≤ f(x̂, z) for each y, z ∈ X;

(ii) f(x, y) + f(y, x) ≤ 0 for each x, y ∈ X;
(iii) if d(x, Tx) ≤ (1 + r)d(x, y), then µnd(xn, Ty) ≤ f(x, y) + g(x, y). Then there

exists x̄ ∈ X such that
(a) µnd(xn, x̄) = 0;
(b) lim

n→∞
Tnx = x̄ for each x ∈ X;

(c) g(x̄, x̄) ≤ f(x̄, x̄) ≤ 0 and (f + g)(z, x̄) ≤ 0 for each z ∈ X.
Furthermore, if d(Tx, T 2x) ≤ (1 + r)d(x, Tx) for each x ∈ X, then

(d) x̄ is the unique fixed point of T ;
(e) x̄ is the unique solution of problem (GQEP ).

Proof. Start with any x ∈ X. It is clear that d(x, Tx) ≤ (1 + r)d(x, Tx). By using (iii),
(i)(b) and f(x, y) + f(y, x) ≤ 0 for each x, y ∈ X, we have that

µnd(xn, T
2x) ≤ f(x, Tx) + g(x, Tx) ≤ g(x, Tx)− f(Tx, x) ≤ f(x̂, Tx)− f(x̂, x).

Repeating this process, we obtain

0 ≤ µnd(xn, T
k+1x) ≤ g(T k−1x, T kx)− f(T kx, T k−1x)

≤ f(x̂, T kx)− f(x̂, T k−1x) (3.1)

for each k ∈ N. So, {f(x̂, T kx)} is a nondecreasing sequence. It follows from (i)(a) that
lim
k→∞

f(x̂, T kx) exists. By virtue of (3.1), it implies that

lim
k→∞

µnd(xn, T
k+1x) = 0. (3.2)

So, by Lemma 2.4, {T kx} is a Cauchy sequence. Since X is a complete metric space,
there exists x̄ ∈ X such that T kx→ x̄ as k →∞. By (3.2) and Lemma 2.1, we obtain
that

µnd(xn, x̄) = 0. (3.3)

Thus for any u ∈ X, there exists ū ∈ X such that lim
k→∞

T ku = ū and µnd(xn, ū) = 0. By

Lemma 2.2, ū = x̄. Therefore, we have that x̄ = lim
k→∞

T kz for all z ∈ X.
For each k ∈ N ∪ {0}, let uk = T kx. Take any z ∈ X \ {x̄} and let z be fixed. Since

x̄ 6= z and uk → x̄ as k →∞, there exists N ∈ N such that for each k ≥ N , we have

1

1 + r
d(uk, uk+1) ≤ d(uk, uk+1) ≤ d(uk, z). (3.4)

By (3.4), (iii), f(x, y)+f(y, x) ≤ 0 for each x, y ∈ X, (i)(b), and for k ≥ N , we have that

µnd(xn, T z) ≤ f(uk, z) + g(uk, z) ≤ g(uk, z)− f(z, uk)

≤ f(x̂, z)− f(x̂, uk). (3.5)
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By employing (i)(a) and (3.5), we obtain that

µnd(xn, T z) + f(x̂, x̄) ≤ µnd(xn, T z) + lim inf
k→∞

f(x̂, uk)

≤ lim inf
k→∞

[µnd(xn, T z) + f(x̂, uk)]

≤ lim sup
k→∞

[µnd(xn, T z) + f(x̂, uk)]

≤ f(x̂, z). (3.6)

It implies by (3.6) and (i)(b) that

µnd(xn, T z) ≤ f(x̂, z)− f(x̂, x̄) ≤ f(x̄, z)− g(z, x̄). (3.7)

Thus (3.7) gives us for the following result

g(z, x̄) ≤ g(z, x̄) + µnd(xn, T z) ≤ f(x̄, z) for each z ∈ X \ {x̄}.

On the other hand, it is easy for checking from (i)(b) that g(x̄, x̄) ≤ f(x̄, x̄). Therefore,
we have the desired result as follows

g(z, x̄) ≤ f(x̄, z) for all z ∈ X. (3.8)

By virtue of f(x, y) + f(y, x) ≤ 0 for each x, y ∈ X and it follows from (3.8), we get that
g(z, x̄) ≤ −f(z, x̄) for all z ∈ X. It implies that

(f + g)(z, x̄) ≤ 0 for all z ∈ X. (3.9)

Also, by f(x, y) + f(y, x) ≤ 0 for each x, y ∈ X, we get that f(x̄, x̄) ≤ 0.

Furthermore, if d(Tx, T 2x) ≤ (1 + r)d(x, Tx) for each x ∈ X, then we have

d(T x̄, T (T x̄)) ≤ (1 + r)d(T x̄, x̄).

By (iii) and f(x, y) + f(y, x) ≤ 0 for each x, y ∈ X, we have the consequence that

µnd(xn, T x̄) + f(x̄, T x̄) ≤ g(T x̄, x̄). (3.10)

It follows from (3.8) and (3.10) that

f(x̄, T x̄) ≤ g(T x̄, x̄) ≤ f(x̄, T x̄).

Thus f(x̄, T x̄) = g(T x̄, x̄). By using (3.10) again, we obtain that

0 ≤ µnd(xn, T x̄) ≤ g(T x̄, x̄)− f(x̄, T x̄) = 0.

That is

µnd(xn, T x̄) = 0. (3.11)

By using (3.3), (3.11) and Lemma 2.2, we obtain that T x̄ = x̄. Consequently, g(x̄, x̄) =
f(x̄, x̄) ≤ 0.

Let ȳ be an arbitrary fixed point of T . Then lim
k→∞

T kȳ = lim
k→∞

ȳ = ȳ and by using the

conclusion below (3.3), it is not hard to verify that ȳ = x̄. So, x̄ is the unique fixed point
of T .

We next show that 0 ≤ (f + g)(x̄, z) for all z ∈ X. For x̄ is a fixed point of T , we have
d(x̄, T x̄) ≤ (1 + r)d(x̄, x̄) ≤ (1 + r)d(x̄, z). By (iii), we have that

0 ≤ µnd(xn, T z) ≤ f(x̄, z) + g(x̄, z).
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That is

0 ≤ (f + g)(x̄, z) for all z ∈ X. (3.12)

It follows from (3.9) and (3.12), we have that

(f + g)(z, x̄) ≤ 0 ≤ (f + g)(x̄, z) for all z ∈ X.
For each y ∈ X, following the above proof, we know that there exists z̄ ∈ X such that
lim
k→∞

T ky = z̄, T z̄ = z̄, and (f + g)(z, z̄) ≤ 0 ≤ (f + g)(z̄, z) for all z ∈ X. Since x̄ is the

unique fixed point of T , x̄ = z̄. The proof is completed.

The following corollary is some applications and consequences of Theorem 3.1. It can
been seen that Theorem 3.1 is the tool for finding solutions (a unique solution) not only
of (QEP1) but also of (OEP2) as follows:

Corollary 3.2 ([11, Theorem 3.1]). Let r ∈ [0, 1], (X, d) be a complete metric space,
T : X → X be a mapping, and f : X ×X → R be a function. Let µ be a mean on l∞ and
let {xn} be a bounded sequence. Assume that :

(i) there exists x̂ ∈ X such that
(a) y → f(x̂, y) is a lower semicontinuous and bounded above function;
(b) f(x̂, y) + f(y, z) ≤ f(x̂, z) for each y, z ∈ X;

(ii) if d(x, Tx) ≤ (1 + r)d(x, y), then µnd(xn, Ty) ≤ f(x, y).
Then there exists x̄ ∈ X such that

(a) µnd(xn, x̄) = 0;
(b) lim

n→∞
Tnx = x̄ for each x ∈ X;

(c) f(z, x̄) ≤ 0 for each z ∈ X.
Furthermore, if d(Tx, T 2x) ≤ (1 + r)d(x, Tx) for each x ∈ X, then

(d) x̄ is the unique fixed point of T ;
(e) x̄ is the unique solution of problem (QEP1) and (QEP2).

Proof. By (i)(b), we have that

f(y, z) ≤ f(x̂, z)− f(x̂, y) and f(z, y) ≤ f(x̂, y)− f(x̂, z)

for all y, z ∈ X. Combining the above two inequalities, we get that

f(y, z) + f(z, y) ≤ 0 for all y, z ∈ X. (3.13)

Therefore, the condition (ii) of the mapping f in Theorem 3.1 is satisfied. In the particular
case where g is the zero mapping and by using (3.13), the condition (i)(b) of Theorem 3.1
holds, that is,

f(x̂, y)− f(z, y) + g(y, z) ≤ f(x̂, z) ⇔ f(x̂, y) + f(y, z) ≤ f(x̂, z)

for all y, z ∈ X where g is the zero mapping. Under the assumption d(Tx, T 2x) ≤
(1 + r)d(x, Tx) for each x ∈ X and by applying Theorem 3.1, we have that there exists
x̄ is the unique fixed point of T such that

f(z, x̄) ≤ 0 ≤ f(x̄, z) for all z ∈ X.
Therefore, x̄ is the unique solution of (QEP1) and (QEP2). The proof is completed.

Motivated by [11, Example 3.1], the following example is established for supporting
the main result.
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Example 3.3. LetX =
{
zn : zn = 1

2n , n ∈ N ∪ {0}
}
∪{0} with the usual metric d(x, y) =

|x− y|. Let r = 0, T : X → X, and f, g : X ×X → R be defined by Tx = 1,

f(x, y) =

{
0 if x = 1 or y = 1,

−1 others,

and

g(x, y) =

{
0 if x = 1 or y = 1,

−2 others.

Let x̂ = 1. For each n ∈ N, let xn := 1. Then f(x̂, y) = 0 and g(x̂, y) = 0 for each y ∈ X.
Then by definition of f and g, we get that the condition (i), (ii) of Theorem 3.1 hold.
Hence, we only need to consider the condition (iii) of Theorem 3.1.

(1) If x = 0 and d(0, T0) ≤ d(0, y), then y = 1. And this implies that

µnd(xn, T1) = 0 ≤ f(0, 1) + g(0, 1) = 0 + 0 = 0.

(2) If x = 1 and d(1, T1) ≤ d(1, y), then y is any point of X. And this implies that

µnd(xn, Ty) = 0 ≤ f(1, y) + g(1, y) = 0 + 0 = 0.

(3) if x = zn, n ∈ N, and d(zn, T zn) ≤ d(zn, y), then y = 1. And this implies that

µnd(xn, Ty) = µnd(xn, T1) = 0 ≤ f(zn, 1) + g(zn, 1) = 0 + 0 = 0.

By Theorem 3.1, there exists x̄ ∈ X such that f(x̄, x̄) ≤ 0 and g(z, x̄) ≤ f(x̄, z) for each
z ∈ X. Indeed, x̄ = 1. Furthermore, d(Tx, T 2x) ≤ d(x, Tx) for each x ∈ X and x̄ is a
fixed point of T.

By application of Theorem 3.1, we can provide the minimax theorem involving two
bifunctions on complete metric spaces as follows:

Theorem 3.4. Assume that all assumptions are the same as in Theorem 3.1. Let x̄ be
solution of (GQEP) and f(x̄, x̄) = 0. Then

sup
x∈X

inf
y∈X

(f + g)(x, y) = inf
y∈X

sup
x∈X

(f + g)(x, y) = (f + g)(x̄, x̄) = 0.

Proof. Let x̄ be a solution of (GQEP). By Theorem 3.1, we get that x̄ is the unique fixed
point of T , g(x̄, x̄) = f(x̄, x̄) ≤ 0, and

(f + g)(z, x̄) ≤ 0 ≤ (f + g)(x̄, z)

for each z ∈ X. Then, if f(x̄, x̄) = 0, we have (f + g)(x̄, x̄) = 0. So, we get that

max
x∈X

(f + g)(x, x̄) ≤ (f + g)(x̄, x̄) ≤ min
y∈X

(f + g)(x̄, y). (3.14)

By using (3.14), we have that

inf
y∈X

sup
x∈X

(f + g)(x, y) ≤ (f + g)(x̄, x̄) ≤ sup
x∈X

inf
y∈X

(f + g)(x, y). (3.15)

Besides, we have that

sup
x∈X

inf
y∈X

(f + g)(x, y) ≤ inf
y∈X

sup
x∈X

(f + g)(x, y). (3.16)

By using (3.15) and (3.16), we have that

sup
x∈X

inf
y∈X

(f + g)(x, y) = inf
y∈X

sup
x∈X

(f + g)(x, y) = (f + g)(x̄, x̄) = 0.



218 Thai J. Math. Vol. 19 (2021) /N. Puturong and K. Ungchittrakool

Therefore, the proof is completed.

Remark 3.5. It follows from Example 3.3, solution of (GMI) is x̄ = 1.

4. Conclusion

In the present paper, we study the existence theorem of solutions for generalized scalar
quasi-equilibrium problems involving two bifunctions on complete metric spaces. The
obtained results can be applied to minimax theorem involving two bifunctions on complete
metric spaces. Our results can be viewed as a general form and some extensions of some
previously existing results.
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