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Abstract In this research, numerical water-quality model calculations are proposed within a uniform flow

stream. The governing equation, which is an equation of advection-diffusion-reaction, is approximated

by using a technique of finite differences. The upwind-implicit scheme is used at all times on an uniform

flow stream to approximate the pollutant concentration at each point. The accuracy of the proposed

computing technique is compared with the analytical, and the examples show approximate solutions.
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1. Introduction

Mathematical simulation is an important method of detecting the assumption of water
quality in consideration of location. The methodology of numerical solution is a finite dif-
ferential approach that can be easily extended to mathematical simulation flow and mod-
elling of transport. Many people use the numerical scheme to approximate the direction of
advection-diffusion-reaction equation using the method of finite difference [1–6]. The nu-
merical techniques for solving the uniform flow of stream water quality model, especially
the one-dimensional-advection diffusion reaction equation, are presented in [7–11]. In [12]
presented the water quality model in a non-uniform flow of stream for one-dimensional
hydrodynamic advection-diffusion-reaction equations by using the fully implicit schemes
are propose. In [13] developed a new scheme that guaranteed the positivity of the so-
lutions for a one advection-diffusion-reaction equation in one spatial dimension. In [14]
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presented a numerical simulation of a one-dimensional advection-diffusion-reaction equa-
tion with boundary condition functions by using the Saulyev finite difference technique.
The numerical result was dependable. In the recent year, [15] propose a simple advection-
diffusion-reaction numerical simulation by using the Saulyev schemes.

The computational methodology suggested allows use of an unconditionally stable
system. The numerical experiments give a rational approximation of the calculated ef-
fects. In this work, the finite difference technique for approximating the concentration
of pollutants on a uniform flow stream using an implicit upwind scheme and modified
Siemieniuch-Gladwell scheme is used to measure the concentration of pollutants on a
uniform flow stream at all times at each point.

2. The Governing Equation

A one-dimensional water quality model is described the mass transport and diffusion
processes. It can be modeled in the advection-diffusion-reaction equations (ADREs).

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
−Kc, 0 < x < L , 0 < t ≤ T. (2.1)

where c (x, t) is the pollutant concentration (kg/m3) of water at the displacement x (m)
and time t (s) for all (x, t) ∈ (0, L) × (0, T ), u (x, t) is the velocity in x direction (m/s),
D is the diffusion coefficient (m2/s) and K is the mass decaying rate (s−1) with the
potential pollutant concentration as the initial condition,

c (x, 0) = f (x) , 0 ≤ x ≤ L, (2.2)

and the released pollutant concentration on the left boundary and the right boundary

(0, t) = g (t) , 0 < t ≤ T, (2.3)

(L, t) = h (t) , 0 < t ≤ T, (2.4)

the initial condition and the boundary conditions are illustrated in Fig. 1.

Figure 1. The initial condition and boundary conditions.

3. Numerical Techniques

We consider both implicit and explicit methods to approximate the solution of the
advection-diffusion-reaction equations (ADREs).
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3.1. A Third-Order Finite Difference Schemes

The solution domain of the problem is covered by a mesh of grid point x (xi, tn) by
xi = i∆x, i = 0, 1, 2, ...,M , and tn = n∆t, n = 0, 1, 2, ..., N , where xi and tn are parallel
to the space and time coordinate axes. We can approximate c (xi, tn) by cni , value of the
difference approximation of c(x, t). The constant spatial and time increment grid-spacing
are ∆x = L/M and ∆t = T/N . From [16], we get the following discretization, the time
derivative t = n∆t by using forward-difference,

∂c

∂t
≈ cn+1

i − cni
∆t

, (3.1)

to approximate the advective term in the advection-diffusion-reaction equation which
incorporate temporal weight parameter (φ), near the left boundary, for i = 2,

u
∂c

∂x
≈ u

6∆t
[φ(−11cn+1

i + 18cn+1
i+1 − 9cn+1

i+2 + 2cn+1
i+3 )

+(1− φ)(−11cni + 18cni+1 − 9cni+2 + 2cni+3)], (3.2)

interior nodes of the solution domain, for i = 3, ...,M − 2,

u
∂c

∂x
≈ u

6∆t
[φ(cn+1

i−2 − 6cn+1
i−1 + 3cn+1

i + 2cn+1
i+1 )

+(1− φ)(cni−2 − 6cni−1 + 3cni + 2cni+1)], (3.3)

near right boundary, for i = M − 1

u
∂c

∂x
≈ u

6∆t
[φ(−2cn+1

i−3 + 9cn+1
i−2 − 18cn+1

i−1 + 11cn+1
i )

+(1− φ)(−2cni−3 + 9cni−2 − 18cni−1 + 11cni )], (3.4)

and to approximate the diffusive term by using central-difference scheme,

∂2c

∂x2
≈ D

(∆x2)
[cni−1 − 2cni + cni+1]. (3.5)

We can assumable each term by substituting Eqs.(3.1-3.5) into Eq.(2.1), we obtain the
computed solution near left boundary, for i = 2,

cn+1
i = ((1−K∆t)cni −

1

6
Cr[φ(18cn+1

i+1 − 9cn+1
i+2 + 2cn+1

i+3 )

+ (1− φ)(−11cni + 18cni+1 − 9cni+2 + 2cni+3)]

+
Cr

Pe
[cni−1 − 2cni + cni+1])/(1− 11

6
Crφ). (3.6)

Interior nodes of the solution domain, for i = 3, ...,M − 2,

cn+1
i = ((1−K∆t)cni −

1

6
Cr[φ(cn+1

i−2 − 6cn+1
i−1 + 2cn+1

i+1 )

+ (1− φ)(cni−2 − 6cni−1 + 3cni + 2cni+1)]

+
Cr

Pe
[cni−1 − 2cni + cni+1])/(1 +

1

2
Crφ). (3.7)

Near the right boundary, for i = M − 1,
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cn+1
i = ((1−K∆t)cni −

1

6
Cr[φ(−2cn+1

i−3 + 9cn+1
i−2 − 18cn+1

i−1 )

+ (1− φ)(−2cni−3 + 9cni−2 − 18cni−1 + 11cni )]

+
Cr

Pe
[cni−1 − 2cni + cni+1])/(1 +

11

6
Crφ). (3.8)

where Cr = u∆t
∆x is Courant number (dimensionless), Pe = u∆x

D is Peclet number (dimen-
sionless) and φ ∈ {0, 0.5, 1}.

3.2. The Modified Siemieniuch-Gladwell Implicit Scheme

The modified Siemieniuch-Gladwell technique for solving the one-dimensional advec-
tion diffusion reaction Eq.(2.1) following:

∂c

∂t
≈

(
2Cr
Pe − Cr

4

)(
cn+1
i−1 − cni−1

∆t

)
+

(
2− 2Cr

Pe + Cr

2

)(
cn+1
i − cni

∆t

)

+

(
2Cr
Pe − Cr

4

)(
cn+1
i+1 − cni+1

∆t

)
, (3.9)

∂c

∂x
≈
(
cni+1 − cni−1

4∆x

)
+

(
cn+1
i+1 − c

n+1
i−1 )

4∆x

)
, (3.10)

∂2c

∂x2
≈ 1

2

(
cn+1
i+1 − 2cn+1

i + cn+1
i−1

(∆x)2

)
+

1

2

(
cni+1 − 2cni + cni−1)

(∆x)2

)
, (3.11)

substituting Eqs.(3.9-3.11) into Eq.(2.1), we have

−Crcn+1
i−1 + (2 + Pe) cn+1

i =

(
2
Cr

Pe

)
cni−1 +

(
2− 4

Cr

Pe
+ Pe− 2K∆

)
cni

+

(
2
Cr

Pe
− Pe

)
cni+1, (3.12)

for i = 1, 2, ...,M − 1.

4. Numerical Experiments

Example 4.1. The analytical solution to the one-dimensional advection-diffusion in a
region bounded 0 ≤ x ≤ 1 is taken from [16] and given,

c(x, t) =
0.025√

0.000625 + 0.02t
exp

[
− (x+ 0.5− t)2

(0.00125 + 0.004t)

]
, (4.1)
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the initial condition

c(x, 0) = exp

[
− (x+ 0.5)2

0.00125

]
, (4.2)

and the boundary conditions

c(0, t) =
0.025√

0.000625 + 0.02t
exp

[
− (0.5− t)2

(0.00125 + 0.004t)

]
, (4.3)

c(1, t) =
0.025√

0.000625 + 0.02t
exp

[
− (1.5− t)2

(0.00125 + 0.004t)

]
. (4.4)

In the analysis conducted in this study the various parameters used are D = 0.01
m2/s, u = 1 m/s, meshes the stream into 50 elements with the space step and time step
are ∆x = 0.02 m and ∆t = 0.002 s, respectively. Using a third order finite difference
scheme Eqs.(3.6-3.8) and the modified Siemieniuch-Gladwell method Eq.(3.12) to obtain
the pollutant concentration c(x, t) in each point at all time on a uniform flow stream.
As can see from Eqs.(3.6-3.8), φ = 0 the formula corresponding to the explicit expansion
of the advective term, φ = 1 the formula corresponding to the explicit expansion and
φ = 0.5 the formula corresponding to the Crank-Nicolson scheme. The approximation of
pollutant concentrations c of all schemes are shown in Table 1- Table 4. The comparison
of approximated solutions of an explicit, an implicit, the Crank-Nicolson schemes, the
modified Siemieniuch-Gladwell with advection diffusion reaction are shown in Fig. 2.

Table 1. The computed pollutant concentrations c(x, t) (kg/m3) when
K = 0.01

The concentrations at T=1 s
Solution technique 0.00 0.20 0.40 0.50 0.60 0.80 1.00

Explicit 0.0004 0.0184 0.1392 0.1827 0.1410 0.0143 0.0004
Implicit 0.0004 0.0179 0.1151 0.1459 0.1193 0.0222 0.0004

Crank-Nicolson 0.0004 0.0182 0.1267 0.1632 0.1300 0.0188 0.0004
Siemieniuch-Gladwell 0.0004 0.0194 0.1387 0.1733 0.1335 0.0207 0.0004

Table 2. The computed pollutant concentrations c(x, t) (kg/m3) when
K = 0.1

The concentrations at T=1 s
Solution technique 0.00 0.20 0.40 0.50 0.60 0.80 1.00

Explicit 0.0004 0.0194 0.1386 0.1733 0.1334 0.0207 0.0004
Implicit 0.0004 0.0194 0.1386 0.1733 0.1334 0.0207 0.0004

Crank-Nicolson 0.0004 0.0194 0.1386 0.1733 0.1334 0.0207 0.0004
Siemieniuch-Gladwell 0.0004 0.0189 0.1327 0.1650 0.1265 0.0195 0.0004
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Table 3. The computed pollutant concentrations c(x, t) (kg/m3) when
K = 0.5

The concentrations at T=1 s
Solution technique 0.00 0.20 0.40 0.50 0.60 0.80 1.00

Explicit 0.0004 0.0161 0.1119 0.1430 0.1081 0.0107 0.0004
Implicit 0.0004 0.0156 0.0928 0.1144 0.0915 0.0165 0.0004

Crank-Nicolson 0.0004 0.0159 0.1020 0.1279 0.0997 0.0140 0.0004
Siemieniuch-Gladwell 0.0004 0.0170 0.1114 0.1356 0.1023 0.0154 0.0004

Table 4. The computed pollutant concentrations c(x, t) (kg/m3) when
K = 1

The concentrations at T=1 s
Solution technique 0.00 0.20 0.40 0.50 0.60 0.80 1.00

Explicit 0.0004 0.0140 0.0902 0.1121 0.0830 0.0080 0.0004
Implicit 0.0004 0.0136 0.0748 0.0898 0.0703 0.0122 0.0004

Crank-Nicolson 0.0004 0.0138 0.0822 0.1003 0.0765 0.0104 0.0004
Siemieniuch-Gladwell 0.0004 0.0148 0.0896 0.1062 0.0785 0.0115 0.0004

Example 4.2. The analytical solution to the one-dimensional advection-diffusion equa-
tion of a Gaussian pulse of unit height, centred at x0 = 1 in a region bounded 0 ≤ x ≤ 9
is taken from [17] and given,

c(x, t) =
1√

4t+ 1
exp

[
− (x− x0 − ut)2

D(4t+ 1)

]
, (4.5)

the initial condition

c(x, 0) = exp

[
− (x− x0)2

D

]
, (4.6)

and the boundary conditions

c(0, t) =
1√

4t+ 1
exp

[
− (−1− ut)2

D(4t+ 1)

]
, (4.7)

c(1, t) =
1√

4t+ 1
exp

[
− (8− ut)2

D(4t+ 1)

]
. (4.8)

The values of the various parameters used D = 0.005 m2/s, u = 0.8 m/s, meshes the
stream into 450 elements with the space step and time step are ∆x = 0.02 m and ∆t =
0.002 s, respectively. The approximation of pollutant concentrations c of all schemes are
comparison,the solution are obtain an explicit, an implicit, the Crank-Nicolson schemes
and the modified Siemieniuch-Gladwell with advection diffusion reaction are shown in
Fig. 3.
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Figure 2. Comparison of numerical solutions techniques at T = 1 s for
all o ≤ x ≤ 1 which K are varied 0.00, 0.01, 0.1, 0.5 and 1, respectively.
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Figure 3. Comparison of numerical solutions techniques at T = 1 s for
all o ≤ x ≤ 9 which K are varied 0.002, 0.01, 0.05 and 0.1, respectively.

5. Discussion and Conclusion

The one-dimensional equation advection-diffusion-reaction can be used to describe the
concentration of contaminants within a uniform canal of water. In this study the cross
sectional average of pollutant concentration is called for each point in the flat bottom.
Finite difference approaches are developed for the one-dimensional model of water quality.
Comparison is made of the approximate solution and exact solution to the ideal prob-
lem. It turns out that, by illustrated examples, the numerical computations give good
agreement solutions.
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