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1. Introduction

In 2003, Shaikh [1] introduced the notion of Lorentzian concircular structure manifolds
(briefly, (LCS)n-manifolds) with an example, which generalizes the notion of LP-Sasakian
manifolds introduced by Matsumoto [2] and also by Mihai and Rosca [3]. Then Shaikh
and Baishya ([4, 5]) investigated the applications of (LCS)n-manifolds to the general
theory of relativity and cosmology. The (LCS)n-manifolds are also studied by Hui et. al
([6–12]), Shaikh and his co-authors ([13–18]), Yadav et. al [19] and many others. In this
connection it may be mentioned that many authors studied various spaces and spacetime
such as [20–26].

The contact CR-submanifolds are rich and very much interesting subject. The study of
the differential geometry of a contact CR-submanifolds as a generalization of invariant and
anti-invariant submanifolds of an almost contact metric manifold was initiated by Bejancu
[27]. Thereafter several authors studied submanifolds as well as contact CR-submanifolds
of different classes of almost contact metric manifolds such as Chen ([28, 29]), Hasegawa
and Mihai [30], Jamali and Shahid [31], Khan et. al ([32, 33]), Munteanu [34], Murathan
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et. al [35] and many others. Recently Atceken and his co-author ([36, 37]) studied contact
CR-submanifolds of Kenmotsu manifolds.

Motivated by the above studies the present paper deals with the study of contact CR-
submanifolds of (LCS)n-manifolds. The paper is organized as follows. Section 2 is con-
cerned with preliminaries. Section 3 is devoted to the study of contact CR-submanifolds
of (LCS)n-manifolds. We obtain many integrability conditions of the distributions of
contact CR-submanifolds of (LCS)n-manifolds. Finally we give an interesting example
of a contact CR-submanifold of (LCS)7-manifold.

2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Haus-
dorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor
field g of type (0,2) such that for each point p ∈M , the tensor gp : TpM ×TpM → R is a

non-degenerate inner product of signature (−,+, · · · ,+), where TpM denotes the tangent

vector space of M at p and R is the real number space. A non-zero vector v ∈ TpM is
said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp,
≤ 0, = 0, > 0) [38].

Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

g(X,P ) = A(X),

for any X ∈ Γ(TM), is said to be a concircular vector field [39] if

(∇XA)(Y ) = α{g(X,Y ) + ω(X)A(Y )}

where α is a non-zero scalar and ω is a closed 1-form and ∇ denotes the operator of
covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike concircular
vector field ξ, called the characteristic vector field of the manifold. Then we have

g(ξ, ξ) = −1. (2.1)

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η
such that for

g(X, ξ) = η(X), (2.2)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, α 6= 0 (2.3)

that is,

∇Xξ = α{X + η(X)ξ}, α 6= 0 (2.4)

for all vector fields X, Y , where ∇ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

∇Xα = (Xα) = dα(X) = ρη(X), (2.5)

ρ being a certain scalar function given by ρ = −ξ(α). If we put

φX =
1

α
∇Xξ, (2.6)
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then from (2.3) and (2.6) we have

φX = X + η(X)ξ, (2.7)

from which it follows that φ is a symmetric (1,1) tensor and called the structure tensor of
the manifold. Thus the Lorentzian manifold M together with the unit timelike concircular
vector field ξ, its associated 1-form η and an (1,1) tensor field φ is said to be a Lorentzian
concircular structure manifold (briefly, (LCS)n-manifold) [1]. Especially, if we take α = 1,
then we can obtain the LP-Sasakian structure [40]. In a (LCS)n-manifold (n > 2), the
following relations hold [1]:

η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.8)

φ2X = X + η(X)ξ, (2.9)

S(X, ξ) = (n− 1)(α2 − ρ)η(X), (2.10)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.11)

R(ξ, Y )Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y ], (2.12)

(∇Xφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X}, (2.13)

(Xρ) = dρ(X) = βη(X), (2.14)

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ){g(Y,Z)η(X)− g(X,Z)η(Y )}ξ (2.15)

for all X, Y, Z ∈ Γ(TM).
Let M be a submanifold of a (LCS)n-manifold M with induced metric g. Also let ∇

and ∇⊥ are the induced connections on the tangent bundle TM and the normal bundle
T⊥M of M respectively. Then the Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X,Y ) (2.16)

and

∇XV = −AVX +∇⊥XV (2.17)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are second fundamental form
and the shape operator (corresponding to the normal vector field V ) respectively for the
immersion of M into M . The second fundamental form h and the shape operator AV are
related by

g(h(X,Y ), V ) = g(AVX,Y ) (2.18)
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for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where g is the Riemannian metric on M as
well as on M .
For any submanifold M of a Riemannian metric on M , the equation of Gauss is given by

R(X,Y )Z = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X (2.19)

+ (∇Xh)(Y, Z)− (∇Y h)(X,Z)

for any X,Y, Z ∈ Γ(TM), where R and R denote the Riemannian curvature tensors of
M and M respectively. The covariant derivative ∇h of h is defined by

(∇Xh)(Y,Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(∇XZ, Y ) (2.20)

and the covariant derivative ∇A is defined by

(∇XAV )Y = ∇X(AV Y )−A∇⊥
XV

Y −AV∇XY (2.21)

for any X,Y, Z ∈ Γ(TM) and V ∈ Γ(T⊥M). The normal part
(
R(X,Y )Z

)⊥
of R(X,Y )Z

from (2.19) is given by(
R(X,Y )Z

)⊥
= (∇Xh)(Y,Z)− (∇Y h)(X,Z), (2.22)

which is known as Codazzi equation.

In particular, if
(
R(X,Y )Z

)⊥
= 0 then M is said to be curvature-invariant submanifold

of M .
The Ricci equation is given by

g
(
R(X,Y )V,U

)
= g

(
R⊥(X,Y )V,U

)
+ g

(
[AU , AV ]X,Y

)
(2.23)

for any X,Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M), where R⊥ denotes the Riemannian curvature
tensor of the normal vector bundle T⊥M and if R⊥ = 0 then the normal connection of
M is called flat [41].

3. Contact CR-Submanifolds of (LCS)n-Manifolds

Let M be an isometrically immersed submanifold of a (LCS)n-manifold M . Then for
any X ∈ Γ(TM), we can write

φX = EX + FX, (3.1)

where EX is the tangential component and FX is the normal component of φX.
Also for any V ∈ Γ(T⊥M), we can write

φV = BV + CV, (3.2)

where BV and CV are the tangential and normal components of φV respectively. Also
B is an endomorphism of the normal bundle T⊥M of TM and C is an endomorphism of
the sub-bundle of the normal bundle T⊥M .
The covariant derivatives of the tensor fields of E and F are defined as

(∇XE)Y = ∇XEY − E(∇XY ), (3.3)

and

(∇XF )Y = ∇⊥XFY − F (∇XY ) (3.4)
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for all X,Y ∈ Γ(TM). The canonical structures E and F on a submanifold M are said
to be parallel if ∇E = 0 and ∇F = 0, respectively.
Also the covariant derivatives of B and C are defined by

(∇XB)V = ∇XBV −B(∇⊥XV ), (3.5)

and

(∇XC)V = ∇⊥XCV − C(∇⊥XV ). (3.6)

Also for any X,Y ∈ Γ(TM), we have g(EX,Y ) = g(X,EY ) and for any U, V ∈ Γ(T⊥M),
we have g(U,CV ) = g(CU, V ). This shows that E and C are also symmetric tensor fields.
Moreover for any X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have the relation between F and B,
given by

g(FX, V ) = g(X,BV ). (3.7)

Definition 3.1 ([37]). Let M be an isometrically immersed submanifold of a (LCS)n-
manifold M . Then M is called a contact CR-submanifold of M if there is a differential
distribution D : p→ Dp ⊆ TpM on M satisfying the following conditions:
(i) ξ ∈ D,
(ii) D is invariant with respect to φ, i.e., φ(Dp) ⊆ Dp for each p ∈M and
(iii) the orthogonal complementary distribution D⊥ : p→ D⊥p ⊆ TpM satisfying φ(D⊥p ) ⊆
T⊥p M for each p ∈M .

A contact CR-submanifold is called anti-invariant (or totally real) if Dp = {0} and
invariant (or holomorphic) if D⊥p = {0}, respectively for any p ∈ M . It is called proper

contact CR-submanifold if neither Dp = {0} nor D⊥p = {0}.
Now for ξ ∈ Γ(D) ⊆ Γ(TM) we have from (3.1) that φξ = Eξ + Fξ = 0, which is
equivalent to

Eξ = Fξ = 0. (3.8)

Applying φ to (3.1) and using (2.9) and (3.2), we get

E2 +BF = I + η ⊕ ξ and FE + CF = 0. (3.9)

Similarly applying φ to (3.2) and using (2.9) and (3.1), we get

C2 + FB = I and EB +BC = 0. (3.10)

We now prove the following:

Theorem 3.2. Let M be an isometrically immersed submanifold of a (LCS)n-manifold
M . Then M is a contact CR-submanifold if and only if FE = 0.

Proof. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Let us denote the
orthogonal projections on D and D⊥ by R and S, respectively. Then we have

R+ S = I,R2 = R,S2 = S and RS = SR = 0. (3.11)

For any X ∈ Γ(TM), we can write

X = RX + SX and φX = φRX + φSX = ERX + FRX +ESX + FSX. (3.12)

Since D is invariant distribution, it follows that

FR = 0 and ES = 0. (3.13)
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Also we have

RE = E = ER and FS = SF = F. (3.14)

From (3.9) we get

FER+ CFR = 0. (3.15)

In view of (3.13), (3.15) yields

FE = 0. (3.16)

From (3.9) and (3.16), we obtain

CF = 0. (3.17)

Conversely, let M be a submanifold of a (LCS)n-manifold M such that FE = 0. For any
X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have

g(X,φ2V ) = g(φ2X,V ), g(X,φBV ) = g(φFX, V ),

g(X,EBV ) = g(CFX, V ) = 0.

Consequently we get

EB = 0. (3.18)

By virtue of (3.9), (3.10), (3.17) and (3.18) we obtain E3−E = 0 and C3−C = 0, which
shows that E and C are f -structures on TM and T⊥M , respectively.
If we take R = E2 + η ⊗ ξ and S = I − E2 − η ⊗ ξ then we can easily see that

R+ S = I,R2 = R,S2 = S and RS = SR = 0, (3.19)

that is, R and S are orthogonal projections and they define orthogonal complementary
distributions such as D and D⊥. Since R = E2 + η ⊗ ξ and E3 −E = 0, we get ER = E
and ES = 0.
For any X,Y ∈ Γ(TM), we have g(SEX, Y ) = g(EX,SY ) = g(X,ESY ) = 0. Thus we
have SE = 0, which implies that SER = 0.
Using (3.8), (3.16) and the relation R = E2 + η ⊗ ξ, we get

FR = 0. (3.20)

From (3.19) and (3.20), we can say that D and D⊥ are invariant and anti-invariant
distributions on M , respectively. Also from (3.11), we have Rξ = ξ and Sξ = 0, that is,
the distribution D contains ξ.
On the other hand, setting R = E2 and S = I −E2, we can easily see that projections R
and S define orthogonal distributions such as D and D⊥, respectively.
Thus we have ER = E, SE = 0, FR = 0 and ES = 0, that is D is an invariant
distribution, D⊥ is an anti-invariant distribution and Rξ = 0 and Sξ = ξ, which implies
that ξ ∈ D⊥. Hence the theorem is proved.

Next we prove the following theorem:

Theorem 3.3. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then the
anti-invariant distribution D⊥ is completely integrable and its maximal integral subman-
ifold is an anti-invariant submanifold of M if and only if the shape operator A satisfy

AFXY = AFYX,

for all X,Y ∈ Γ(D⊥).
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Proof. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then from (2.13),
(2.16), (2.17), (3.1) and (3.2) and the relation (∇Xφ)Y = ∇XφY − φ∇XY , we get

α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X} (3.21)

= ∇XEY +∇XFY − φ∇XY − φh(X,Y )

for any X,Y ∈ Γ(TM).
From the tangential and normal components of (3.21), we get

(∇XE)Y = AFYX +Bh(X,Y ) + α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X} (3.22)

and

(∇XF )Y = Ch(X,Y )− h(X,EY ). (3.23)

Similarly we have for any X ∈ Γ(TM) and V ∈ Γ(T⊥M) that

(∇XB)V + (∇XC)V + h(X,BV )−ACVX + EAVX + FAVX = 0. (3.24)

Comparing the tangential and normal components of (3.24) we get

(∇XC)V = −h(X,BV )− FAVX, (3.25)

and

(∇XB)V = ACVX − EAVX. (3.26)

Since M is tangent to ξ, we have from (2.13) and (2.18) that

AV ξ = αBV , h(X, ξ) = αFX (3.27)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM). It is well known that Bh = 0 plays an important
role in the geometry of submanifolds. Consequently (3.22) reduces to

(∇XE)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X} (3.28)

for any X,Y ∈ Γ(D). From (3.28) we may conclude that the induced structure E is a
(LCS)n- structure on M .
Again using (2.13) and (2.18) we have

E[X,Y ] = AFYX −AFXY,

for all X,Y ∈ Γ(D⊥). Thus [Z,W ] ∈ Γ(D⊥) for any Z,W ∈ Γ(D⊥), that is D⊥ is
integrable. Hence the theorem is proved.

Theorem 3.4. Let M be a contact CR-submanifold of a (LCS)n-manifold M . If the sec-
ond fundamental form of the contact CR-submanifold M is parallel, then α is a constant
function on M .

Proof. Let M be a contact CR-submanifold of a (LCS)n-manifold M and let the second
fundamental form of the contact CR-submanifold M is parallel. Then from (2.20) we get

∇⊥Xh(Y,Z)− h(∇XY,Z)− h(∇XZ, Y ) = 0 (3.29)

for any X,Y, Z ∈ Γ(TM).
Putting Y = ξ in (3.29) and using (2.4), (2.16) and (3.27) we get

∇⊥Xh(Y, ξ)− h(∇XY, ξ)− h(∇Xξ, Y ) = 0.
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By using (3.23) and (3.27), we have

0 = ∇⊥X(α.FY )− α.F∇XY − α.h(TX, Y )

= X(α)FY + α∇⊥XFY − αF∇XY − α.h(TX, Y )

= X(α)FY + α(XF )Y − α.h(TX, Y )

= X(α)FY − α{h(X,TY ) + h(TX, Y )− Ch(X,Y )}.
Here choosing Y = ξ, we mean that h(TX, ξ)−Ch(X, ξ) = αFTX−Ch(X, ξ) = 0. Since
M is a contact CR-submanifold, we conclude that Ch(X, ξ) = 0. So we obtain

X(α)FY − α{h(ξ, TY )− Ch(ξ, TY )} = 0⇒ X(α)FY = 0,

that is, X(α) = 0. This proves our assertion.

Theorem 3.5. Let M be a submanifold of a (LCS)n-manifold M . Then M is a contact
CR-submanifold if and only if the endomorphism C defines an f structure on Γ(T⊥M),
that is, C3 − C = 0.

Proof. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then from (3.10)
and (3.17) we have C3 − C = 0, which implies that C is an f structure on T⊥M .
Conversely, let C be an f -structure on Γ(T⊥M). Then from (3.10), we can derive CFB =
0. So for any V ∈ Γ(T⊥M) by using (3.7), we have

g(BCV,BCV ) = g(φCV,BCV ) = g(CV, FBCV ) = g(V,CFBCV ) = 0,

which implies that BC = 0 and hence EB = 0. Thus from Theorem 3.1, we conclude
that M is a contact CR-submanifold.

Theorem 3.6. Let M be a contact CR-submanifold of a (LCS)n-manifold M . If the
endomorphism E on M is parallel, then M is anti-invariant submanifold of M .

Proof. Since E is parallel then from (3.22) and (3.27), we get

0 = g(h(X, ξ), FY ) + α{−g(X,Y )− 2η(X)η(Y ) + η(X)η(Y )}
= αg(FX,FY )− α{g(X,Y ) + η(X,Y )} = −αg(EX,EY )

for any X,Y ∈ Γ(TM). Since α 6=0. This implies that M is anti-invariant submanifold.

Theorem 3.7. Let M be a contact CR-submanifold of a (LCS)n-manifold. Then the
endomorphism F is parallel if and only if the endomorphism B is parallel.

Proof. From (3.23) we get

g((∇XF )Y, V ) = g(Ch(X,Y )− h(X,EY ), V )

= g(h(X,Y ), CV )− g(AVX,EY )

= g(ACVX,Y )− g(EAVX,Y ) = g((∇XB)V, Y ). (3.30)

This proves our assertion.

Definition 3.8. If the invariant distribution D and anti-invariant distribution D⊥ are
totally geodesic in M then M is called contact CR-product.

Now we characterize contact CR-products in (LCS)n-manifold.

Theorem 3.9. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then M
is a contact CR-product if and only if the shape operator A of M satisfies the condition

AφD⊥D = 0. (3.31)
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Proof. Let us take M be a contact CR-submanifold of M . Then for all X,Y ∈ Γ(D) and
Z,W ∈ Γ(D⊥) we have from (2.13), (2.16) and (2.18) we get

g(AφWφX, Y ) = g
(
h(φX, Y ), φW

)
= g(∇Y φX, φW )

= g
(
(∇Y φ)X + φ∇YX,φW

)
= g

(
α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(X)Y }, φW

)
+ g(∇YX,W )

= αη(X)g(Y, φW ) + g(∇YX,W )

= g(∇YX,W )

i.e.,

g
(
AφWφX, Y ) = g(∇YX,W ) (3.32)

and

g(AφWφX,Z) = g
(
h(φX,Z), φW

)
= g(∇ZφX, φW )

= g
(
(∇Zφ)X + φ∇ZX,φW

)
= g

(
α{g(X,Z)ξ + η(X)Z}, φW

)
+ g(∇ZX,W )

= αη(X)g(Z, φW )− g(∇ZW,X)

= −g(∇ZW,X)

i.e.,

g
(
AφWφX,Z) = −g(∇ZW,X) (3.33)

Thus from (3.32) and (3.33) we get ∇XY ∈ Γ(D) and ∇ZW ∈ Γ(D⊥) if and only if the
relation (3.31) holds.

From 3.9, we can state the following:

Corollary 3.10. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then
M is a contact CR-product if and only if Bh(D,TM) = 0.

Theorem 3.11. Let M be a contact CR-submanifold of a (LCS)n-manifold M . Then
the structure C is parallel if and only if the shape operator AV of M satisfies the condition

AVBU +AUBV = 0 (3.34)

for all U, V ∈ Γ(T⊥M).

Proof. From (2.18), (3.7) and (3.25), we have

g
(
(∇XC)V,U

)
= −g

(
h(X,BV ), U

)
− g(FAVX,U) (3.35)

= −g(AUX,BV )− g(AVX,BU)

= −g(AVBU +AUBV,X)

for all X ∈ Γ(TM). From (3.35) it follows that the structure C is parallel if and only if
the relation (3.34) holds.



184 Thai J. Math. Vol. 19 (2021) /S. K. Hui et al.

Example 3.12. Let M = R7 be the semi-Euclidean space endowed with the semi-
Euclidean metric g =

[
− dt2 + dx21 + dx22 + dx23 + dx24 + dx25 + dx26

]
with coordinate

(t, x1, x2, x3, x4, x5, x6). Define

η = dt, ξ =
∂

∂t
, φ(

∂

∂t
) = 0, φ(

∂

∂x1
) = − ∂

∂x4
, φ(

∂

∂x2
) = − ∂

∂x5
,

φ(
∂

∂x3
) = − ∂

∂x6
, φ(

∂

∂x4
) =

∂

∂x1
, φ(

∂

∂x5
) =

∂

∂x2
, φ(

∂

∂x6
) = − ∂

∂x3
.

Then it can be easily seen that the structure (φ, ξ, η, g) is a (LCS)7-manifold on M = R7.
Now we define a submanifold M of M by M = {(x1, 0, x3, x4, 0, x6, t) ∈ R7} endowed
with the global vector fields

e1 = ξ =
∂

∂t
, e2 =

∂

∂x4
, e3 =

∂

∂x2
+ x6

∂

∂t
, e4 =

∂

∂x6
, e5 =

∂

∂x1
+ x4

∂

∂t
.

Then the distributions DT = span{e2, e5} and D⊥ = span{e3, e4} are respectively invari-
ant and anti-invariant distributions on M . Thus we can write TM = DT (= {e2, e5}) ⊕
D⊥(= {e3, e4})⊕ < e1(= {ξ}) >. Consequently M is a contact CR-submanifold of
M = R7.
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