
ISSN 1686-0209

Thai Journal of Mathematics

Volume 19 Number 1 (2021)
Pages 169–174

http://thaijmath.in.cmu.ac.th

Tauberian Conditions under which Statistical

Convergence Follows from Statistical Summability by

Weighted Means in Non-Archimedean Fields

Vaithinathasamy Srinivasan∗ and D. Eunice Jemima

Department of Mathematics, Faculty of Engineering & Technology, SRM Institute of Science and Technology,
Kattankulathur- 603203, India
e-mail : drvsrinivas.5@gmail.com (V. Srinivasan); eunicejem@gmail.com (D. E. Jemima)

Abstract In this paper, K denotes a complete, non-trivially valued, non-archimedean field. Sequences

and infinite matrices have entries in K. The weighted statistical convergence and statistical summabil-

ity were enunciated along with the notion of (N, pn) - summability method in [K. Suja, V. Srinivasan,

Weighted statistical convergence in ultrametric fields, International Journal of Pure and Applied Mathe-

matics 116 (4) (2017) 813–817]. We have proved here, the necessary and sufficient Tauberian conditions

under which statistical convergence follows from statistical summability by weighted means over non-

archimedean fields (an analogous and further extension of these concepts proved by F. Moricz and C.

Orhan [F. Moricz, C. Orhan, Tauberian conditions under which statistical convergence follows from sta-

tistical summability by weighted means, Studia Sci. Math. Hung. 41 (4) (2004) 391–403], in the classical

context).
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1. Introduction

The concept of statistical convergence was introduced by Fast [1] in 1951. It plays an
important role in Summability Theory and Functional Analysis. Schoenberg introduced
the relationship between Summability Theory and statistical convergence [2]. A little
later, many researchers like Fridy [3], Kolk, Fridy and Miller, Mursaleen, Fridy and Orhan,
Freedman et al. and Savas studied statistical convergence as a summability method. In
general, statistical convergence of weighted means is studied as a class of regular matrix
transformations. Ferenc Moricz and Cihan Orhan [4] established the Tauberian conditions
[5] under which statistical convergence follows from statistical summability by weighted
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means [6, 7] in classical analysis. These conditions are studied over non-archimedean
fields in this paper.

Let K be a complete, non-trivially valued, non-archimedean field [8–10]. (It may be
recalled that a valued field (K, |.|) is non-archimedean if |a + b| ≤ max{|a|, |b|}, for all
a, b ∈ K). A sequence x = {xk}, xk ∈ K, k = 0, 1, 2, . . . is said to be statistically
convergent to a limit ‘L’ if, for every ε > 0,

lim
n→∞

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

where the outer vertical bars indicate the cardinality of the set. In this case we write,

st− lim
k→∞

xk = L (1.1)

Let p = (pk), k = 0, 1, 2, . . . be a sequence of nonnegative numbers such that p0 > 0 and

Pn =

n∑
k=0

pk, n = 0, 1, 2, . . .

and let

tn =
1

Pn

n∑
k=0

pkxk, n = 0, 1, 2, . . .

The sequence (xk) is said to be statistically summable to L by the weighted mean method
[11] determined by the sequence p = (pk), or, statistically summable (N, p) if

st− lim
n→∞

tn = L. (1.2)

K. Suja and V. Srinivasan [12] have proved that, if a sequence (xk) is weighted statistically
convergent to L, then (xk) is (N, p) summable to L.

2. Main Results

Theorem 2.1. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0; let
(λk) be a sequence in K such that lim

k→∞
λk = 0 and

st− lim
Pn
Pλn

< 1 for every 0 < λn < 1. (2.1)

Let x = {xk}, xk ∈ K, k = 0, 1, 2, . . . be a sequence which is statistically summable (N, p)
to a limit L. Then {xk} is statistically convergent to L if and only if for every ε > 0,

lim
N→∞

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn)−1
n∑

k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0. (2.2)

The following Lemma is required in proving the theorem.

Lemma 2.2. Let p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and

st− lim
Pn
Pλn

< 1 for every 0 < λn < 1,
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and let x = {xk}, xk ∈ K, k = 0, 1, 2, . . . be a sequence which is statistically summable
(N, p) to a limit L. Then for every 0 < λn < 1,

st− lim
n→∞

tλn
= L, (2.3)

where {Pn} and {tλn
} are non-decreasing sequences of positive numbers.

Proof. Given that the sequence {xk} is statistically summable (N, p) to a limit L.

i.e., st− lim
n→∞

tn = L.

i.e., lim
N→∞

1

N
|{n ≤ N : |tn − L| ≥ ε}| = 0.

i.e., lim
N→∞

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣ 1

Pn

n∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0. (2.4)

To prove, st − lim
n→∞

tλn
= L

i.e., to prove lim
N→∞

1

N
|{λn ≤ N : |tλn − L| ≥ ε}| = 0,

i.e., to prove lim
N→∞

1

N

∣∣∣∣∣
{
λn ≤ N :

∣∣∣∣∣ 1

Pλn

λn∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0,

consider

1

N

∣∣∣∣∣
{
λn ≤ N :

∣∣∣∣∣ 1

Pλn

λn∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣

=
1

N

∣∣∣∣∣
{
λn ≤ N :

∣∣∣∣∣
(
Pn
Pλn

)
1

Pn

λn∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣

≤ 1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣ 1

Pn

n∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ (using (2.1))

→ 0 as N →∞ (using (2.4))

Therefore,

lim
N→∞

1

N

∣∣∣∣∣
{
λn ≤ N :

∣∣∣∣∣ 1

Pλn

λn∑
k=0

pkxk − L

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0.

or, st − lim
n→∞

tλn
= L, which proves the lemma.

We shall next prove that, for 0 < λn < 1,

(Pn − Pλn)−1
n∑

k=λn+1

pkxk = tn + Pλn(Pn − Pλn)−1(tn − tλn)
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provided Pn > Pλn . To this end, consider the right-hand side.

tn +
Pλn

Pn − Pλn

(tn − tλn
) =

Pntn − Pλn
tn + Pλn

tn − Pλn
tλn

Pn − Pλn

=
1

Pn − Pλn

[
Pn

(
1

Pn

n∑
k=0

pkxk

)
− Pλn

(
1

Pλn

λn∑
k=0

pkxk

)]

=
1

Pn − Pλn

[
n∑
k=0

pkxk −
λn∑
k=0

pkxk

]

= (Pn − Pλn)−1
n∑

k=λn+1

pkxk

Thus, (Pn − Pλn)−1
n∑

k=λn+1

pkxk = tn + Pλn(Pn − Pλn)−1(tn − tλn).

Now, rearranging the terms and adding xn on both sides we have,

xn − tn = Pλn(Pn − Pλn)−1(tn − tλn)− (Pn − Pλn)−1
n∑

k=λn+1

pkxk + xn

= Pλn
(Pn − Pλn

)−1(tn − tλn
) + (Pn − Pλn

)−1
n∑

k=λn+1

pk(xn − xk) (2.5)

Proof of Theorem 2.1.

Necessity:
Here, we assume that st − lim

n→∞
xn = L and prove that, for every 0 < λn < 1,

lim
N→∞

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0.

Now, since st − lim
n→∞

xn = L and st − lim
n→∞

tn = L, we have

st− lim
n→∞

(xn − tn) = 0.

i.e., lim
N→∞

1

N
|{n ≤ N : |xn − tn| ≥ ε}| = 0.

From equation (2.5) we have,

lim
N→∞

1

N

∣∣∣∣{n ≤ N :

∣∣∣∣Pλn
(Pn − Pλn

)−1(tn − tλn
)

+(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0.

Since the valuation is non-archimedean wherein |a+ b| = |a| if |a| > |b| and since

lim
N→∞

1

N

∣∣{n ≤ N :
∣∣Pλn

(Pn − Pλn
)−1(tn − tλn

)
∣∣ ≥ ε}∣∣→ 0 as N →∞

by (1.2) and (2.3),
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we have,

lim
N→∞

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0.

Sufficiency:

We now assume that

lim
N→∞

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0,

and prove that

st− lim
n→∞

xn = L.

To this end, it is enough if we prove that

st− lim
n→∞

(xn − tn) = 0.

i.e., to prove, lim
N→∞

|{n ≤ N : |xn − tn| ≥ ε}| = 0.

Using equation (2.5) we have,

1

N
|{n ≤ N : |xn − tn| ≥ ε}|

=
1

N

∣∣∣∣{n ≤ N :

∣∣∣∣Pλn(Pn − Pλn)−1(tn − tλn)

+(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣

≤ max


1

N

∣∣{n ≤ N :
∣∣Pλn(Pn − Pλn)−1(tn − tλn)

∣∣ ≥ ε}∣∣ ,
1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣


But, by our assumption,

1

N

∣∣∣∣∣
{
n ≤ N :

∣∣∣∣∣(Pn − Pλn
)−1

n∑
k=λn+1

pk(xn − xk)

∣∣∣∣∣ ≥ ε
}∣∣∣∣∣→ 0 as N →∞.

Therefore,

1

N
|{n ≤ N : |xn − tn| ≥ ε}|

≤ max

{
1

N

∣∣{n ≤ N :
∣∣Pλn(Pn − Pλn)−1(tn − tλn)

∣∣ ≥ ε}∣∣ , 0}
≤ 1

N

∣∣{n ≤ N :
∣∣Pλn(Pn − Pλn)−1(tn − tλn)

∣∣ ≥ ε}∣∣
→ 0 as N →∞ by (1.2) and (2.3)
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which implies that

lim
N→∞

1

N
|{n ≤ N : |xn − tn| ≥ ε}| = 0.

i.e., st− lim
n→∞

(xn − tn) = 0.

Thus, {xk} is statistically convergent to L. This completes the proof of the theorem.

Conclusion

In this paper, we thus have proved both the necessary and sufficient Tauberian condi-
tions under which statistical convergence follows from statistical summability by (one of
the special methods of summability) weighted means over non-archimedean fields. This
has given us an impetus to go for a development of this notion through weighted statistical
convergence of double sequences in such fields K.
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