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1. Introduction

The first metric theoretical result for the existence and convergence of a fixed point is
the Banach contraction mapping principle as follows:

Theorem 1.1 ([1]). Let (E, d) be a complete metric space and T : E → E be a contraction
mapping, i.e., a mapping for which there exists a constant k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y) (1.1)

for all x, y ∈ E. Then T has a unique fixed point x∗ ∈ E. Moreover, the Picard iteration
{xn} associated to T with the initial point x1 ∈ X which is given by

xn+1 = Txn, n = 0, 1, 2, ..., (Pn)

converges to the fixed point x∗.
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Since this principle requires only the contractive condition of the self-mapping on a
complete metric space, it is easy to test such condition and so it is used to demonstrate
the existence and convergence of a solution of many equations such as integral equations,
ordinary differential equations, partial differential equations, matrix equations, functional
equations, etc. Based on the mentioned impact, the Banach contraction principle has
many applications not only in the various branches in mathematics but also in other fields.
However, the Picard iteration (Pn) in the convergence part has not been successfully
employed in approximating the fixed point of some mappings such as a nonexpansive self-
mapping T on a metric space (X, d), that is, a mapping satisfying the following condition:

d(Tx, Ty) ≤ d(x, y) (1.2)

for all x, y ∈ X even when F (T ) := {x ∈ Dom(T ) : Tx = x} ≠ ∅. Next, we give some
example showing the previous claiming.

Example 1.2. Consider a mapping T : [0, 1] → [0, 1] defined by Tx = 1 − x for all
x ∈ [0, 1]. Then T is a nonexpansive mapping with a usual metric and F (T ) = {1/2}. If
one chooses as a starting value x = x0 such that x0 ̸= 1

2 , then the Picard iteration (Pn)
of T yield that

x1 = Tx0 = 1− x0,

x2 = Tx1 = x0,

x3 = Tx2 = 1− x0,

...

This implies that Picard iteration (Pn) does not converges to a fixed poiiterationnt of T .

Based on the problem in the above example, when a fixed point of nonexpansive map-
pings exists, other approximation techniques are needed to approximate it.

Throughout this paper, unless otherwise specified, let C be a nonempty closed convex
subset of a Banach space and T : C → C be a given mapping. Next, we introduce some
iterations iterationfor approximation fixed points.

In [2], the Mann iterationis defined by the following sequence {xn} ⊆ C:

x1 ∈ C,
xn+1 = (1− αn)xn + αnTxn

}
(Mn)

for all n ∈ N, where {αn} are real sequences in [0, 1]. If αn = 1 for all n ∈ N, then
the Mann iteration iteration reduces to the Picard iteration process. In 1974, Ishikawa
[3] extended the concept of Mann iteration to the new iteration {xn} ⊆ C, where {xn}
construting by

x1 ∈ C,
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn

 (In)

for all n ∈ N, where {αn}, {βn} are real sequences in [0, 1]. This iteration becomes the
Mann iteration when βn = 0 for all n ∈ N. In [4], Rhoades gave the following interesting
observation related to the rate of convergence of Mann and Ishikawa iterations:

• for a decreasing function, the Mann iteration converges faster than the Ishikawa
iteration, and vice versa for an increasing.
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In 2000, Noor [5] introduced a new iteration {xn} ⊆ C, where {xn} is defined iteratively
by

x1 ∈ C,
zn = (1− γn)xn + γnTxn

yn = (1− βn)xn + βnTzn,
xn+1 = (1− αn)xn + αnTyn

 (Nn)

for all n ∈ N, where {αn}, {βn}, {γn} ⊆ [0, 1] are control sequences. It is easy to see that
this idea covers the idea of Ishikawa [3]. From the great impact of the Picard iteration
(Pn), the Mann iteration (Mn), the Ishikawa iteration (In), the Noor iteration (Nn), it
was developed extensively by several researchers.

In 2007, Agarwal et al. [6] introduced an iteration {xn} ⊆ C, where {xn} is defined
iteratively by

x1 ∈ C,
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn

 (ARSn)

for all n ∈ N, where {αn}, {βn} ⊆ [0, 1] are control sequences. They also claimed that this
process converges at a rate same as that of the Picard iteration and faster than the Mann
iteration for Banach contraction mappings. In 2014, Abbas and Nazir [7] introduced an
iteration process {xn} ⊆ C, where {xn} is defined iteratively by iteration

x1 ∈ C,
zn = (1− γn)xn + γnTxn,
yn = (1− βn)Txn + βnTzn,

xn+1 = (1− αn)Tyn + αnTzn

 (ANn)

for all n ∈ N, where {αn}, {βn}, {γn} ⊆ [0, 1] are control sequences. They also claimed
that the above iteration converges faster than the iteration (ARSn) for some nonlinear
mappings.

Recently, Thakur et al. [8] introduced a new iteration process {xn} ⊆ C, where {xn}
is defined iteratively by

x1 ∈ C,
zn = (1− βn)xn + βnTxn,
yn = T ((1− αn)xn + αnzn),

xn+1 = Tyn

 (TTPn)

for all n ∈ N, where {αn}, {βn} are real sequences in [0, 1]. They also prove the weak
and strong convergence theorems in a uniformly convex Banach space. This work is an
inspiration to writ tis paper.

On the other side of the research for convergence analysis of fixed points, several types
of nonlinear mappings are presented. For instance, Suzuki [9] first presented the new
nonlinear which is a generalization of nonexpansive mappings as follows:

Definition 1.3 ([9]). Let C be a nonempty subset of a Banach space X. A mapping
T : C → C is said to satisfy condition (C) if

1

2
∥x− Tx∥ ≤ ∥x− y∥ =⇒ ∥Tx− Ty∥ ≤ ∥x− y∥ (1.3)

for all x, y ∈ C.
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Lemma 1.4 ([9]). Let C be a nonempty subset of a Banach space (X, ∥·∥) and T : C → C
be a mapping. Then the following assertions hold:

(1) If T is a nonexpansive mapping, then T satisfies the condition (C).
(2) If T satisfies the condition (C) and T has a fixed point, then T is a quasi-
nonexpansive mapping, that is, F (T ) ̸= ∅ and T satisfies the following condition

∥Tx− p∥ ≤ ∥x− p∥ (1.4)

for all x ∈ C and p ∈ F (T ).
(3) If T satisfies the condition (C), then ∥x− Ty∥ ≤ 3∥Tx− x∥+ ∥x− y∥ for all
x, y ∈ C.

Three years later, Phuengrattana [10] used the Ishikawa iteration for proving the con-
vergence theorems for mappings satisfying the condition (C) in uniformly convex Banach
spaces and CAT(0) spaces. Nowadays, the existence and convergence results of fixed
points for mappings satisfying condition (C) have been investigated by many authors (see
in [8, 11–14] and references therein).

Motivated by the above inspiration and many research papers in literatures, the main
goal of this paper is to introduce a new iteration process which weak and strong converging
to fixed points for mapping satisfying condition (C) in a uniformly convex Banach spaces.
Theoretical results for guaranteeing the trueness of convergence results are given. Finally,
we provide a numerical example for comparing the convergence of the proposed iteration
with many existing iteration for a mapping satisfying condition (C).

2. Notations and Useful Tools for Convergence Theorems

For the convenience of the readers and self-dependency of the paper, we include the
definitions, notations and the useful tools in this section.

Definition 2.1 ([15]). A Banach space X is called uniformly convex if for each ϵ ∈ (0, 2]
there is a δ > 0 such that for x, y ∈ X, the following condition holds:

∥x∥ ≤ 1,
∥y∥ ≤ 1,

∥x− y∥ > ϵ

 =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ δ. (2.1)

Definition 2.2 ([16]). A Banach space (X, ∥ · ∥) is said to satisfy the Opial property if
for each weakly convergent sequence {xn} in X with weak limit x, we get

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥

for all y ∈ X with y ̸= x.

Lemma 2.3 ([9]). Let T be a mapping on a subset C of a Banach space X with the Opial
property. If T satisfies the condition (C) and {xn} ⊆ X converges weakly to z ∈ X such
that lim

n→∞
∥Txn − xn∥ = 0, then z is a fixed point of T .

Lemma 2.4 ([9]). Let C be a weakly compact convex subset of a uniformly convex Banach
space X and T : C → C be a mapping. If T satisfies the condition (C), then T has a
fixed point.
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Lemma 2.5 ([9]). Let X be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ∈ N. Suppose that {xn} and {yn} are two sequences in X such that

lim sup
n→∞

∥xn∥ ≤ r,

lim sup
n→∞

∥yn∥ ≤ r

and

lim sup
n→∞

∥tnxn + (1− tn)yn∥ = r

for some r ≥ 0. Then lim
n→∞

∥xn − yn∥ = 0.

Definition 2.6. Let C be a nonempty closed convex subset of a Banach space (X, ∥ · ∥)
and {xn} be a bounded sequence in a C.

(1) The asymptotic radius of {xn} relative to C is denoted by r(C, {xn}) and it is
given by

r(C, {xn}) := inf
x∈C

{r(x, {xn})},

where r(x, {xn}) := lim sup
n→∞

∥x− xn∥.

(2) The asymptotic center of {xn} relative to C is denoted by A(C, {xn}) and it
is given by

A(C, {xn}) := {x ∈ C : r(x, {xn}) = r({xn})}.

Remark 2.7. A set A(C, {xn}) consists of exactly one point in a uniformly convex
Banach space.

In [17], Senter and Dostan introduced the concept of special self mapping as follows:

Definition 2.8 ([17]). Let C be a nonempty subset of a Banach space (X, ∥ · ∥). A
mapping T : C → C is said to satisfy condition (I) if there is a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(t) > 0 for all t > 0 such that

∥x− Tx∥ ≥ f(d(x, F (T ))) (2.2)

for all x ∈ C, where d(x, F (T )) := inf
y∈F (T )

∥x− y∥.

3. Convergence Theoretical Results

Throughout this section, unless otherwise specified, C is a nonempty subset of a Banach
space X. First, a new hybrid iterative algorithm for seeking fixed points for a mapping
T : C → C satisfying condition (C) is introduce as follows:

x1 ∈ C,
xn+1 = Tnyn,
yn = T ((1− αn)xn + αnzn),
zn = (1− βn)xn + βnTxn, n = 1, 2, ...,

 (3.1)

where {αn} and {βn} are real control sequences in the interval [0, 1].
Next, we establish the following useful results for helping the convergence theorem.
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Lemma 3.1. Let x1 ∈ C and {xn} be a sequence generated by (3.1). If C be a nonempty
closed convex subset of a Banach space X and T : C → C satisfies the condition (C) with
F (T ) ̸= ∅, then lim

n→∞
∥xn − p∥ exists for any p ∈ F (T ).

Proof. Since F (T ) ̸= ∅, we may choose a point p in F (T ) and z ∈ C. It is easy to see
that the left hand side of the implication (1.3) holds. By using the condition C of T , we
obtain

∥Tp− Tz∥ ≤ ∥p− z∥.
From the defining of zn and yn in the algorithm (3.1), we obtain

∥zn − p∥ = ∥(1− βn)xn + βnTxn − p∥
≤ (1− βn)∥xn − p∥+ βn∥Txn − p∥
≤ (1− βn)∥xn − p∥+ βn∥xn − p∥
= ∥xn − p∥ (3.2)

and then

∥yn − p∥ = ∥T ((1− αn)xn + αnzn)− p∥
≤ ∥(1− αn)xn + αnzn − p∥
≤ (1− αn)∥xn − p∥+ αn∥zn − p∥
≤ (1− αn)∥xn − p∥+ αn∥xn − p∥
= ∥xn − p∥ (3.3)

for all n ∈ N. This implies that

∥xn+1 − p∥ = ∥Tnyn − p∥
≤ ∥yn − p∥
≤ ∥xn − p∥ (3.4)

for all n ∈ N. It follows that {∥xn−p∥} is bounded and nonincreasing and thus lim
n→∞

∥xn−
p∥ exists for any p ∈ F (T ).

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and T : C → C be a mapping satisfying condition (C) with F (T ) ̸= ∅. For
arbitrary chosen x1 ∈ C, let the sequence {xn} be generated by (3.1), where {αn} and
{βn} are control sequences in the interval [a, b] ⊆ (0, 1). Then F (T ) ̸= ∅ if and only if
{xn} is bounded and lim

n→∞
∥Txn − xn∥ = 0.

Proof. (=⇒) Suppose that F (T ) ̸= ∅ and p ∈ F (T ). From Lemma 3.1, we get
lim
n→∞

∥xn − p∥ exists and {xn} is bounded. Assume that

lim
n→∞

∥xn − p∥ = r. (3.5)

From (3.2), we obtain

lim sup
n→∞

∥zn − p∥ ≤ r. (3.6)

By using Lemma 3.1, we have

lim sup
n→∞

∥Txn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = r. (3.7)
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For each n ∈ N, we get

∥xn+1 − p∥ ≤ ∥yn − p∥
= ∥T ((1− αn)xn + αnzn)− p∥
≤ ∥(1− αn)xn + αnzn − p∥
≤ (1− αn)∥xn − p∥+ αn∥zn − p∥. (3.8)

This implies that

∥xn+1 − p∥ − ∥xn − p∥
αn

≤ ∥zn − p∥ − ∥xn − p∥

and so

∥xn+1 − p∥ − ∥xn − p∥ ≤ ∥xn+1 − p∥ − ∥xn − p∥
αn

≤ ∥zn − p∥ − ∥xn − p∥

for all n ∈ N. Therefore,
∥xn+1 − p∥ ≤ ∥zn − p∥

for all n ∈ N. Taking limit inferior as n → ∞ in the above inequality, we get

r ≤ lim inf
n→∞

∥zn − p∥. (3.9)

It follows from (3.6) and (3.9) that

lim
n→∞

∥zn − p∥ = r (3.10)

and hence

lim
n→∞

∥βn(Txn − p)− (1− βn)(xn − p)∥ = r. (3.11)

By using Lemma 2.5 with (3.5), (3.7) and (3.11), we obtain lim
n→∞

∥Txn−xn∥ = 0.

(⇐=) Suppose that {xn} is bounded and lim
n→∞

∥Txn − xn∥ = 0. Let p ∈ A(C, {xn}).
From Lemma 3.1, we get

r(Tp, {xn}) = lim sup
n→∞

∥xn − Tp∥

≤ lim sup
n→∞

(3∥Txn − xn∥+ ∥xn − p∥)

= lim sup
n→∞

∥xn − p∥

= r(p, {xn}).
It yields that Tp ∈ A(C, {xn}). Since X is uniformly convex, we get A(C, {xn})
is a singleton set and hence p = Tp.

This completes the proof.

Here we give the (weak/strong) convergence theorem under several conditions.

Theorem 3.3. Let C be a nonempty convex subset of a uniformly convex Banach space
X and T : C → C be a mapping satisfying the condition (C). Suppose that x1 ∈ C and
the sequence {xn} is generated by (3.1), where {αn} and {βn} are control sequences in
the interval [a, b] ⊆ (0, 1). Then the following assertions hold.

(W1) If C is closed, X satisfies the Opial property and F (T ) ̸= ∅, then {xn} con-
verges weakly to a fixed point of T .
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(S1) If C is compact, then {xn} converges strongly to a fixed point of T .
(S2) If C is closed, T satisfies thecondition (I) and F (T ) ̸= ∅, then {xn} converges

strongly to a fixed point of T .

Proof. (W1) First, Theorem 3.2 implies the boundedness of a sequence {xn} and
lim
n→∞

∥Txn − xn∥ = 0. It follows from the uniform convexity of X that X is

reflexive. Now, we can use the Eberlin’s theorem to guarantee the existence of
a weakly convergent subsequence {xnj

} of {xn}. We may assume that {xnj
}

converges weakly to some z ∈ X. By the closedness and the convexity of C, the
Mazur’s theorem claims that z ∈ C. Using Lemma 2.3, z ∈ F (T ). Next, we will
show that {xn} converges weakly to z. We may assume this to contrary that
there exists a subsequence {xnk

} of {xn} such that {xnk
} converges weakly to

w ∈ C such that z ̸= w. By Lemma 2.3, we obtain w is a fixed point of F (T ).
By mixing Theorem 3.2 together with the Opial property, we get

lim
n→∞

∥xn − z∥ = lim
j→∞

∥xnj − z∥

< lim
j→∞

∥xnj
− w∥

= lim
n→∞

∥xn − w∥

= lim
k→∞

∥xnk
− w∥

< lim
k→∞

∥xn − z∥

= lim
n→∞

∥xn − z∥,

which is a contradiction. So z = w and then {xn} converges weakly to a fixed
point of T .

(S1) From Lemma 2.4, we get F (T ) ̸= ∅. By Theorem 3.2, we obtain lim
n→∞

∥Txn −
xn∥ = 0. Since C is compact, there exists a subsequence xnk

of {xn} such that
xnk

converges strongly to p for some p ∈ C. From Lemma 1.4, we have

∥xnk
− Tp∥ ≤ 3∥Txnk

− xnk
∥+ ∥xnk

− p∥

for all k ∈ N. Letting k → ∞, we have xnk
converges to Tp. By the uniqueness of

the limit for xnk
, we get p = Tp and so p ∈ F (T ). Since lim

n→∞
∥xn − p∥ exists, we

get lim
n→∞

∥xn − p∥ = lim
k→∞

∥xnk
− p∥ = 0. This yields that {xn} converges strongly

to a fixed point of T .
(S2) Suppose that p ∈ F (T ). From Lemma 3.1, we know that lim

n→∞
∥xn − p∥ exists

and hence lim
n→∞

d(xn, F (T )) exists. Assume that lim
n→∞

∥xn−p∥ = r for some r ≥ 0.

If r = 0, we have nothing to prove. Next, we may assume that r > 0. Since T
satisfies the condition (I), there exists a nondecreasing function f : [0,∞) →
[0,∞) with f(0) = 0 and f(t) > 0 for all t > 0 such that

∥x− Tx∥ ≥ f(d(x, F (T ))) (3.12)

for all x ∈ C. From (3.12), we get

f(d(xn, F (T ))) ≤ ∥xn − Txn∥ (3.13)
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for all n ∈ N. Taking limit as n → ∞ in the above inequality and using Theorem
3.2, we get

lim
n→∞

f(d(xn, F (T ))) = 0. (3.14)

This implies that lim
n→∞

d(xn, F (T )) = 0 because f is nondecreasing. Thus we have

a subsequence {xnk
} of {xn} and a sequence {yk} ⊆ F (T ) such that

∥xnk
− yk∥ <

1

2k
for all k ∈ N.

It implies that

∥xnk+1
− yk∥ ≤ ∥xnk

− yk∥ <
1

2k
for all k ∈ N.

Then

∥yk+1 − yk∥ ≤ ∥yk+1 − xnk+1
∥+ ∥xnk+1

− yk∥ ≤ 1

2k+1
+

1

2k
<

1

2k−1

for all k ∈ N. This implies that {yk} is a Cauchy sequence in F (T ). Since F (T )
is closed in a Banach space X, we get {yk} converges to some point p ∈ F (T ).
It follows that {xnk

} converges strongly to p. Since lim
n→∞

∥xn − p∥ exists, we get

lim
n→∞

∥xn − p∥ = lim
k→∞

∥xnk
− p∥ = 0. This yields that {xn} converges strongly to

a fixed point of T .
This completes the proof.

4. A Numerical Result

In this section, using Example 4.1, we will compare the convergence of new hybrid
iteration (3.1) with the other iterations.

Example 4.1. Let (X, ∥ · ∥) = (R, | · |) be a usual normed space and C = [0, 1]. We see
that C is a compact convex subset of X. Define a mapping T : C → C by

Tx =

{
1− x if x ∈ [0, 0.2);
x+4
5 if x ∈ (0.2, 1],

Recently, Thakur et al. [8] showed that T satisfies condition (C) and T has a unique fixed
point x∗ = 1. Also, he claimed that T is not a nonexpansive mapping.

Next, we will present the comparison of the convergence behavior of the proposed
iteration (3.1) and several iterations in the literatures. We set

αn = n
n+1 , βn = n

n+5 and γn = 1√
2n+9

.

Table 1 shows the computational results for several initial values with the stopping crite-
rion that ∥xn − x∗∥ ≤ 10−15.

To investigate the influence of parameters αn, βn and γn in our agorithm, the following
set of parameters are taken:

Case-A:: αn = n
n+1 , βn = n

n+5 and γn = 1√
2n+9

Case-B:: αn = 2n
5n+2 , βn = 1

n+5 and γn = 1
(7n+9)3/2

Case-C:: αn = 2n
7n+9 , βn = 1

(3n+7)3/2
and γn = 1

(n+1)5/2

Case-D:: αn = n
4n+5 , βn = 1

(3n+7)5/2
and γn = 1

(n+5)3/2
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Initial value Number of iterations required to obtain fixed point

Picard Mann Ishikawa Agarwal Noor Abbas Thakur New

iteration iteration iteration iteration iteration iteration iteration iteration

0.10 22 27 21 16 21 18 10 6
0.15 22 27 21 16 21 18 10 6

0.20 22 27 21 16 21 18 10 6

0.50 22 27 21 16 21 18 10 6
0.80 21 26 21 16 20 18 10 6

0.90 21 26 20 16 20 17 9 5

Table 1. Influence of initial point.

Next, we test the algorithms for different initial points with the above set of parameters
and the stopping criterion ∥xn − x∗∥ ≤ 10−15 are given in Table 2.

Table 2. Influence of parameters: comparison of the new method to
other methods.

Iteration Initial point
0.1 0.15 0.2 0.5 0.8 0.9

Case-A: αn = n
n+1

, βn = n
n+5

and γn = 1√
2n+9

Mann 27 27 27 27 26 26

Ishikawa 21 21 21 21 21 20

Agarwal 16 16 16 16 16 16
Noor 21 21 21 21 20 20

Abbas 18 18 18 18 18 17

Thakur 10 10 10 10 10 9
New 6 6 6 6 5 5

Case-B: αn = 2n
5n+2

, βn = 1
n+5

and γn = 1
(7n+9)3/2

Mann 91 91 91 90 88 86

Ishikawa 91 91 91 89 87 85

Agarwal 21 22 22 21 21 20
Noor 91 91 91 89 87 85

Abbas 15 15 15 15 15 14
Thakur 11 11 11 11 11 10
New 6 6 6 6 6 5

Case-C: αn = 2n
7n+9

, βn = 1
(3n+7)3/2

and γn = 1
(n+1)5/2

Mann 139 139 139 137 134 131
Ishikawa 139 139 139 137 134 131

Agarwal 21 22 22 21 21 21

Noor 139 139 139 137 134 131
Abbas 14 14 14 14 13 13
Thakur 11 11 11 11 11 11

New 6 6 6 6 6 6

Case-D: αn = n
4n+5

, βn = 1
(3n+7)5/2

and γn = 1
(n+5)3/2

Mann 24 24 24 21 17 14

Ishikawa 161 161 161 158 155 151
Agarwal 22 22 22 22 21 21

Noor 161 161 161 158 155 151

Abbas 13 14 13 13 13 13
Thakur 11 11 11 11 11 11

New 6 6 6 6 6 6
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The comparison in Table 2 don’t have the Picard iteration since parameters αn, βn and
γn do not appear in this iteration. Here, the fastness and stability of various iterations
corresponding to all mentioned set of parameters is determine. In Figure 1, we give the
observations of the average of number of iterations for different initial points from each
sub-table of the Table 2. It shows that the proposed hybrid iteration (3.1) not only
converges faster than the known iterations but also is stable.

0 1 2 3 4
0

20

40

60

80

100

120

140

160

Set of parameters

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n

 

 

Mann Iteration

Ishikawa Iteration

Agarwal Iteration

Noor Iteration

Abbas Iteration

Thakur Iteration

New Iteration

Figure 1. Average number of iterations for different set of parameters.
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