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Abstract In this paper, we present a new integral transformation related to the Fourier transform,

called the multiplicative Fourier transform. We also study some interesting properties and the inverse

transformation. Moreover, we give some applications to linear and nonlinear multiplicative differential

equations.
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1. Introduction

Calculus is a branch of mathematics that plays an integral role in the development
and improvement of the world from the past to the present, continuously. Actually, cal-
culus has several practical applications in real life. For instance, in sciences, especially
in physics, calculus is used to define, explain and calculate motion, electricity, forces and
dynamics. In engineerings, some applications of calculus appear in aerospace engineering
and electrical engineering. In addition, calculus is used in economics to predict supply,
demand, maximum potential profits and minimum costs. It is well known that the con-
cept of calculus was first introduced by Sir Isaac Newton. Consequently, such concept
of calculus is considered as a classical calculus or Newtonian calculus. However, basic
knowledge of calculus is still improved, subsequently. Thus some relevant definitions and
prominent theorems always occur and they are different from the concept of Newtonian
calculus.

In 1972, Grossman and Katz [1] presented various new types of calculus such as geo-
metric calculus, harmonic calculus, quadratic calculus, bigeometric calculus, biharmonic
calculus and biquadratic calculus. Those types of calculus are called Non-Newtonian cal-
culus which can be found in [2, 3]. Moreover, such new types are applied for solving
problems in economics, actuarial science, finance, digital image processing and demo-
graphics etc.

Later, the concept of geometric calculus was studied spreadily and related to the multi-
plication, so called multiplicative calculus which can be seen in [4–6] for more informations.

Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.



114 Thai J. Math. Vol. 19 (2021) /C. Bunpog

There are two crucial definitions consisting of multiplicative derivatives and multiplicative
integrals defined as follows.

Let f be a positive function. The multiplicative derivative of f(x) is defined by

d∗f(x)

dx
= f∗(x) = lim

h→0

[
f(x+ h)

f(x)

] 1
h

. (1.1)

The multiplicative integral of a positive bounded integrable function f(x) on [a, b] is
defined by∫ b

a

f(x)dx = exp

[∫ b

a

ln f(x)dx

]
(1.2)

where ln f(x) is the natural logarithm of f(x) with respect to the base of the mathematical
constant e.

From (1.1), we obtain the relation between the first order classical derivative and the
first order multiplicative derivative of f(x) which is expressed as follows:

f∗(x) = e
f′(x)
f(x) = e[ln f(x)]

′
. (1.3)

In addition, the relation between the nth order classical derivative and the nth order
multiplicative derivative of f(x) satisfies that

f∗(n)(x) = e[ln f(x)]
(n)

, ∀n ∈ N. (1.4)

Furthermore, we obtain some prominent properties from (1.1) and (1.2) with respect to
the multiplicative derivative and multiplicative integral of the multiplication of f(x) and
g(x), respectively, as follows:

(f · g)∗(x) = f∗(x) · g∗(x) and∫ b

a

[f(x) · g(x)]dx =

∫ b

a

f(x)dx ·
∫ b

a

g(x)dx.

Note that, from the above statement, using of the terminology “multiplicative calculus”
would be more suitable and reasonable than using of “geometric calculus”.

In 2016, Yalcin et al. [7] studied the multiplicative calculus related to the multiplica-
tive Laplace transforms and their applications. In this paper, we present multiplicative
Fourier transforms of functions concerned with the Fourier transform. Moreover, we
purpose certain interesting properties such as the shifting property and multiplicative
property. Besides the multiplicative case, the inverse multiplicative Fourier transform is
also considered together with illustrating some examples. In addition, the results will be
applied to solve linear and nonlinear multiplicative differential equations.

2. Preliminaries

We start this part with the definition of the multiplicative Fourier transform as follows.

Definition 2.1. Let f(x) be a positive function on R. The multiplicative Fourier trans-
form of f(x) is defined by

Fm(s) = Fm{f(x)} =

∫ ∞
−∞

[
f(x)e

−ixs
]dx

, i =
√
−1.
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From the definition of the multiplicative integral in (1.2) and by applying the above
definition, we consequently obtain that

Fm(s) = Fm{f(x)} =

∫ ∞
−∞

[
(f(x))

e−ixs
]dx

= exp

[∫ ∞
−∞

ln
(

(f(x))
e−ixs

)
dx

]
= exp

[∫ ∞
−∞

ln f(x) · e−ixsdx
]

= eF{ln f(x)} (2.1)

where F{g(x)} is the Fourier transform of g(x) defined by

∫ ∞
−∞

g(x) · e−ixsdx. It follows

that (2.1) is the equation which shows the relation between the multiplicative Fourier
transform and the Fourier transform of functions.

Next, we investigate the existence condition of the multiplicative Fourier transform of
functions which is shown in the following theorem.

Theorem 2.2. (The existence of multiplicative Fourier transform)
Let f(x) be a positive function on R. If ln f(x) is a bounded integrable function on R and

lim
x→±∞

f(x) = 1, then the multiplicative Fourier transform of f(x) exists.

Proof. We prove that |Fm{f(x)}| <∞. We now consider

|Fm{f(x)}| =
∣∣∣eF{ln f(x)}∣∣∣

≤ e|F{ln f(x)}|

and

|F{ln f(x)}| =

∣∣∣∣∫ ∞
−∞

ln f(x) · e−ixsdx
∣∣∣∣

≤
∫ ∞
−∞

∣∣ln f(x) · e−ixs
∣∣ dx

≤
∫ ∞
−∞
|ln f(x)| dx.

Since ln f(x) is a bounded integrable function on R and lim
x→±∞

f(x) = 1, we have∫ ∞
−∞
|ln f(x)| dx <∞.

Therefore, |Fm{f(x)}| < ∞. This completely proves the existence of the multiplicative
Fourier transform of f .

Then, we mention about the inverse multiplicative Fourier transform according to the
following definition.

Definition 2.3. Let Fm(s) be the multiplicative Fourier transform of f(x), that is,
Fm(s) = Fm{f(x)}. We define the inverse multiplicative Fourier transform of Fm(s) by

F−1m (x) =
(
F−1m {Fm(s)}

)
(x)

= f(x).
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3. Results

In this section, we study important properties of the multiplicative Fourier transform
and the inverse multiplicative Fourier transform of functions. We first start with the
following theorem related to the multiplication of two functions.

Theorem 3.1. Let a, b be arbitrary constants and f(x), g(x) positive functions on R. If
the multiplicative Fourier transforms of f(x) and g(x) exist, then

Fm{(f(x))
a

(g(x))
b} = (Fm{f(x)})a · (Fm{g(x)})b . (3.1)

Proof. From (2.1), we obtain that

Fm{(f(x))
a

(g(x))
b} = exp

[
F
{

ln
(

(f(x))
a

(g(x))
b
)}]

= exp

[∫ ∞
−∞

ln
(

(f(x))
a

(g(x))
b
)
· e−ixsdx

]
= exp

[∫ ∞
−∞

(
ln (f(x))

a
+ ln (g(x))

b
)
· e−ixsdx

]
= exp

[∫ ∞
−∞

(a ln f(x) + b ln g(x)) · e−ixsdx
]

= exp

[
a

∫ ∞
−∞

ln f(x) · e−ixsdx+ b

∫ ∞
−∞

ln g(x) · e−ixsdx
]

=

(
exp

[∫ ∞
−∞

ln f(x) · e−ixsdx
])a
·
(

exp

[∫ ∞
−∞

ln g(x) · e−ixsdx
])b

= (Fm{f(x)})a · (Fm{g(x)})b .

This completes the proof of our assertion.

The following theorem presents the shifting properties of the multiplicative Fourier
transforms of functions.

Theorem 3.2. Let f(x) be a positive function on R and a an arbitrary constant. If
Fm(s) is the multiplicative Fourier transform of f(x), then the following statements hold:

(1) Fm{(f(x))
eax} = Fm(s− a);

(2) Fm{f(x− a)} = (Fm(s))
e−ias

.

Proof. Consider

Fm{(f(x))
eax} = exp

[
F{ln (f(x))

eax}
]

= exp

[∫ ∞
−∞

ln (f(x))
eax · e−ixsdx

]
= exp

[∫ ∞
−∞

eax · ln f(x) · e−ixsdx
]

= exp

[∫ ∞
−∞

ln f(x) · e−ix(s−a)dx
]

= Fm(s− a)
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and

Fm{f(x− a)} = exp [F{ln f(x− a)}]

= exp

[∫ ∞
−∞

ln f(x− a) · e−ixsdx
]

= exp

[∫ ∞
−∞

ln f(x− a) · e−i(x−a)s · e−iasd(x− a)

]
= exp

[∫ ∞
−∞

ln f(y) · e−iys · e−iasdy
]
, y = x− a

= exp

[
e−ias

∫ ∞
−∞

ln f(y)} · e−iysdy
]

=

(
exp

∫ ∞
−∞

ln f(y)} · e−iysdy
)e−ias

= (Fm(s))
e−ias

.

The theorem is completely proved.

We next verify the multiplicative Fourier transform of the first order multiplicative
derivative of f(x) as follows.

Theorem 3.3. Let f(x) be a positive function on R. If ln f(x) is a bounded integrable
function on R, lim

x→±∞
f(x) = 1 and f(x) has the first order multiplicative derivative, then

Fm{f∗(x)} = (Fm(s))
si

(3.2)

where Fm(s) is the multiplicative Fourier transform of f(x).

Proof. By (1.3), we get that

Fm {f∗(x)} = Fm
{
e
f′(x)
f(x)

}
= exp

[
F
{

ln e
f′(x)
f(x)

}]
= exp

[
F
{
f ′(x)

f(x)

}]
= exp

[∫ ∞
−∞

f ′(x)

f(x)
· e−ixsdx

]
.

Using the integration by parts by setting u = e−ixs and dv = f ′(x)
f(x) dx implies that

du = −ise−ixsdx and v = ln f(x) and

Fm{f∗(x)} = exp

[
ln f(x)e−ixs|∞−∞ + si

∫ ∞
−∞

ln f(x) · e−ixsdx
]
.
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Since lim
x→±∞

f(x) = 1 and
∣∣e−ixs∣∣ ≤ 1, we obtain that ln f(x) · e−ixs|∞−∞ = 0. It follows

that

Fm{f∗(x)} = exp

[
si

∫ ∞
−∞

ln f(x) · e−ixsdx
]

=

(
exp

[∫ ∞
−∞

ln f(x) · e−ixsdx
])si

.

By our assumption and Theorem 2.2, we can conclude that Fm(s) exists. Consequently,

Fm{f∗(x)} = (Fm(s))
si
.

Hence, the result follows.

We now extend the concept in Theorem 3.3 to find the multiplicative Fourier transform
of the multiplicative derivative of order n of f(x).

Theorem 3.4. Let f(x) be a positive function on R and k, n ∈ N. If f(x) has the

multiplicative derivative of order n, (ln f(x))
(k)

is a bounded integrable function on R and

lim
x→±∞

(ln f(x))
(k)

= 0 for all k ≤ n, then

Fm{f∗(n)(x)} = (Fm(s))
(si)n

. (3.3)

Proof. We will prove the theorem by using the mathematical induction. For n = 1, the
result holds by Theorem 3.3. We now assume that, for k ∈ N,

Fm{f∗(k)(x)} = (Fm(s))
(si)k

. (3.4)

We need to show that Fm{f∗(k+1)(x)} = (Fm(s))
(si)k+1

. From (1.4), we obtain that

Fm{f∗(k+1)(x)} = Fm{e(ln f(x))
(k+1)

}

= exp
[
F{ln e(ln f(x))

(k+1)

}
]

= exp
[
F{(ln f(x))

(k+1)}
]

= exp

[∫ ∞
−∞

(ln f(x))
(k+1) · e−ixsdx

]
= exp

[∫ ∞
−∞

(
(ln f(x))

(k)
)′
· e−ixsdx

]
.

By using the integration by parts, let u = e−ixs and dv =
(

(ln f(x))
(k)
)′
dx. Then

du = −sie−ixsdx and v = (ln f(x))
(k)

. Hence

Fm{f∗(k+1)(x)} = exp

[
(ln f(x))

(k)
e−ixs|∞−∞ + si

∫ ∞
−∞

(ln f(x))
(k) · e−ixsdx

]
.
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By the assumption of the theorem, we have

Fm{f∗(k+1)(x)} = exp

[
0 + si

∫ ∞
−∞

(ln f(x))
(k) · e−ixsdx

]
=

(
exp

[∫ ∞
−∞

(ln f(x))
(k) · e−ixsdx

])si
=

(
exp

[∫ ∞
−∞

ln e(ln f(x))
(k)

· e−ixsdx
])si

=
(

exp
[
F{ln e(ln f(x))

(k)

}
])si

=
(

exp
[
F{ln f∗(k)(x)}

])si
=

(
Fm{f∗(k)(x)}

)si
=

(
(Fm(s))

(si)k
)si

(by (3.4))

= (Fm(s))
(si)k+1

.

Hence

Fm{f∗(n)(x)} = (Fm(s))
(si)n

, ∀n ∈ N.

The theorem is proved, as required.

Next, we focus on the multiplicative Fourier transform of functions with the exponent
xn where n ∈ N. The case n = 1 is first considered as follows.

Theorem 3.5. Let f(x) be a positive function on R with the multiplicative Fourier trans-
form Fm(s). If the first order multiplicative derivative of Fm(s) (denoted by F∗m(s)) exists,
then

Fm{(f(x))x} = (F∗m(s))
i
. (3.5)

Proof. Consider

F∗m(s) =
d∗

ds
exp

[∫ ∞
−∞

ln f(x) · e−ixsdx
]

= exp

[
d

ds
ln

(
exp

[∫ ∞
−∞

ln f(x) · e−ixsdx
])]

= exp

[
d

ds

∫ ∞
−∞

ln f(x) · e−ixsdx
]

= exp

[∫ ∞
−∞
−ix ln f(x) · e−ixsdx

]
=

(
exp

[∫ ∞
−∞

ln(f(x))x · e−ixsdx
])−i

= (Fm{(f(x))x})−i .

It follows that Fm{(f(x))x} = (F∗m(s))
i
.
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For the case of an arbitrary positive integer n, the result is presented in the following
theorem.

Theorem 3.6. Let f(x) be a positive function on R with the multiplicative Fourier trans-

form Fm(s). If the multiplicative derivative of order n of Fm(s) (denoted by F∗(n)m (s))
exists, then

Fm{(f(x))x
n

} =
(
F∗(n)m (s)

) 1
(−i)n

. (3.6)

Proof. The proof is done by the mathematical induction. The case n = 1 is true from
Theorem 3.5 as shown in (3.6). Next, assume that

Fm{(f(x))x
k

} =
(
F∗(k)m (s)

) 1

(−i)k
. (3.7)

We will show that Fm{(f(x))x
k+1} =

(
F∗(n)m (s)

) 1

(−i)k+1

by considering the value of

F∗(k+1)
m (s) as follows:

F∗(k+1)
m (s) =

d∗

ds

(
F∗(k)m (s)

)
=

d∗

ds

(
Fm{(f(x))x

k

}
)(−i)k

(from (3.7))

=
d∗

ds

(
exp

[∫ ∞
−∞

ln(f(x))x
k

· e−ixsdx
])(−i)k

= exp

[
d

ds
ln

(
exp

[∫ ∞
−∞

ln(f(x))x
k

· e−ixsdx
])(−i)k

]

= exp

[
(−i)k d

ds

∫ ∞
−∞

xk ln(f(x)) · e−ixsdx
]

= exp

[
(−i)k

∫ ∞
−∞

(−i)xk+1 ln(f(x)) · e−ixsdx
]

=

(
exp

[∫ ∞
−∞

ln(f(x))x
k+1

· e−ixsdx
])(−i)k+1

=
(
Fm{(f(x))x

k+1

}
)(−i)k+1

.

It follows that Fm{(f(x))x
k+1} =

(
F∗(n)m (s)

) 1

(−i)k+1

. Therefore,

Fm{(f(x))x
n

} =
(
F∗(n)m (s)

) 1
(−i)n

, ∀n ∈ N.

The theorem is proved.

Theorem 3.7. Let a and b be arbitrary constants, Gm(s) and Hm(s) the multiplica-
tive Fourier transforms of g(x) and h(x), respectively, that is, Gm(s) = Fm{g(x)} and
Hm(s) = Fm{h(x)}, then

F−1m {(Gm(s))
a

(Hm(s))
b} =

(
F−1m {Gm(s)}

)a (F−1m {Hm(s)}
)b

= (g(x))
a

(h(x))
b
.
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Proof. By Theorem 3.1, we have

Fm{(g(x))
a

(h(x))
b} = (Fm{g(x)})a (Fm{h(x)})b

= (Gm(s))
a

(Hm(s))
b
.

Using Definition 2.3 implies that

(g(x))
a

(h(x))
b

= F−1m {(Gm(s))
a

(Hm(s))
b}.

This completes the proof, actually.

4. Applications

In this section, we illustrate the multiplicative Fourier transform and the inverse mul-
tiplicative Fourier transform of some functions. After that we apply for solving linear and
nonlinear multiplicative differential equations.

Example 4.1. Let Fm{f(x)} be the multiplicative Fourier transform of f(x) and
F−1m {F (s)} be the inverse multiplicative Fourier transform of F (s). We obtain that

(1) Fm{1} = 1 and F−1m {1} = 1.

(2) Fm{ee
−|x|} = e

2
1+s2 and F−1m {e

2
1+s2 } = ee

−|x|
.

(3) Fm{ee
−x2} = e

√
πe−

s2

4 and F−1m {e
√
πe−

s2

4 } = ee
−x2

.

(4) Fm{exe
−x2 } = e−

√
πsi
2 e−

s2

4 and F−1m {e−
√
πsi
2 e−

s2

4 } = exe
−x2

.

Solution.

(1) As the fact that ln 1 = 0 we get Fm{1} = e0 = 1.
(2) By equation (2.1), we have that

Fm{ee
−|x|
} = eF{ln e

e−|x|}

= exp

[∫ ∞
−∞

ln ee
−|x|
· e−ixsdx

]
= exp

[∫ ∞
−∞

e−|x| · (cos(xs)− i sin(xs)) dx

]
.

Since e−|x| cos(xs) is an even function and e−|x| sin(xs) is an odd function, it
follows that

Fm{ee
−|x|
} = exp

[
2

∫ ∞
0

e−x cos(xs)dx

]
= e

2
1+s2 .
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(3) The multiplicative Fourier transform of f(x) = ee
−x2

is

Fm{ee
−x2

} = exp
[
F{ln ee

−x2

}
]

= exp
[
F{e−x

2

}
]

= exp

[∫ ∞
−∞

e−x
2

· e−ixsdx
]

= exp

[∫ ∞
−∞

e−(x+
si
2 )2+( si2 )2dx

]
= exp

[
e−

s2

4

∫ ∞
−∞

e−y
2

dy

]
where y = x+

si

2
.

It is well known that

∫ ∞
−∞

e−y
2

dy =
√
π which leads to Fm{ee

−x2} = e
√
πe−

s2

4 .

(4) Rewrite the function f(x) = exe
−x2

as f(x) =
(
ee
−x2
)x

. Then

Fm{exe
−x2

} = Fm
{(

ee
−x2
)x}

.

Hence we can conclude by Theorem 3.5 that

Fm{exe
−x2

} =

[
d∗

ds

(
e
√
πe−

s2

4

)]i
= e−

√
πsi
2 e−

s2

4 .

All of these results, together with Definition 2.3, provide the desired inverse multiplicative
Fourier transform.

Example 4.2. The inverse multiplicative Fourier transform of Zm(s) = e−
(2−si)

√
π

2 e−
s2

4

is z(x) = ee
−x2 · exe−x

2

.

Solution. Since e−
(2−si)

√
π

2 e−
s2

4 = e
√
πe−

s2

4 · e−
√
πsi
2 e−

s2

4 , we obtain that

z(x) = F−1m {e−
(2−si)

√
π

2 e−
s2

4 } = F−1m {e
√
πe−

s2

4 · e−
√
πsi
2 e−

s2

4 }.
By Theorem 3.7, we get

z(x) = F−1m {e
√
πe−

s2

4 } · F−1m {e−
√
πsi
2 e−

s2

4 }.
From Example 4.1, we conclude that

z(x) = ee
−x2

· exe
−x2

= e(1+x)e
−x2

.

Example 4.3. Find a solution of the linear multiplicative differential equation

y∗∗(x) = y(x). (4.1)

Solution. Applying the multiplicative Fourier transform to both sides of (4.1) yields that

[Ym(s)]
−s2

= Ym(s).
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Then

[Ym(s)]
s2+1

= 1,

that is,

Ym(s) = 1.

By applying the inverse multiplicative Fourier transform to both sides of Ym(s) = 1, we
have y(x) = 1 which is the solution of (4.1), certainly.

Example 4.4. Find a solution of the nonlinear multiplicative differential equation√
y∗(x) = e−xe

−x2

. (4.2)

Solution. We rewrite (4.2) as

[y∗(x)]
−1
2 = exe

−x2

. (4.3)

Applying the multiplicative Fourier transform to both sides of (4.3) implies that

[Ym(s)]
−is
2 = e−

√
πis
2 e−

s2

4 .

Thus

Ym(s) = e
√
πe−

s2

4 .

By applying the inverse multiplicative Fourier transform to both sides of the above equa-
tion, we have

y(x) = ee
−x2

,

which is the solution of (4.3).

5. Conclusions

In this paper, the definition of a new type of the integral transform of functions,
called the multiplicative Fourier transform, has been introduced which is related to the
Fourier transform. In addition, the existence of such transform and some interesting
properties consisting of the shifting property and multiplicative derivative property have
been studied. Moreover, the inverse multiplicative Fourier transform has been considered
and some relevant examples have been illustrated. Finally, applications to linear and
nonlinear multiplicative differential equations have been presented to find their solutions.
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