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1. INTRODUCTION

It is an interesting idea to examine the relationship between algebraic structures and
topological ones. To investigate this relation, we define a new mathematical structure:
Polcag space. Moreover, we show that group-like structures can be induced by Polcag
spaces, and give some useful results. In our next work, we will study topological struc-
tures by induced Polcag spaces, and we examine how the relationship between the induced
topological structure and the induced algebraic one changes when changing some condi-
tions.

We give the following definitions of group-like structures [1-(].

Definition 1.1. Let X be a set.

(1) X with a partial binary operation o : X xX — X is said to be a partial magma.
(2) X with a binary operation o : X x X — X is said to be a magma.
(3) A partial magma (X, o) is called a partial semigroup if the followings hold:
Partial associativity) For all z,y,2z € X holding xoy € X and yoz € X,
g
(a) xo(yoz)e X iff (xoy)oz e X and
b) ifxo(yoz) € X thenzo(yoz)=(xoy)oz.
( y y y
(4) A magma (X, o) is said to be a semigroup if,
Union) for all z,y,z € X, xo(yoz)=(xoy)oz.
( y y y
(5) A magma (X, o) is said to be a quasigroup if the following condition holds:
(Divisibility) For all z,y € X, there exists a pair of elementsu, v € X holds the
following conditions:
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(a) zou=1y
(b) voz =y

(6) A semigroup (X, o) is said to be a monoid if the following condition holds:
(Identity) For an elemente € X and allz € X ,zoe=cozx = z.

(7) A quasigroup (X, o) is called a loop if the following condition holds:
(Identity) For an elemente € X and allz € X ,zo0e=cox =ux.

(8) A monoid (X, o) is said to be a group if the following condition holds:
(Inverse element) For all z € X and some element y € X, zoy =yox =e¢

where e € X is the identity element.

Equally, a loop (X, o) is called a group if the following condition holds:
(Union) For all z,y,z € X, xo(yoz)=(xoy)oz.

(9) The group (X, o) is called a commutative group if:
(Commutativity) for all z,y € X, zoy =yox.

2. POLCAG SPACE

Definition 2.1. LetX be a set and P (X)) is the power set of X. We define & = {¢, }rex
and ¥ = {¢, }rex as two collections of functions from X to P(X) indexed by X. Then,
the triplet (X,®@,¥) is called a raw structure.

Definition 2.2. Given a raw structure (X, ®,¥) and let z,y € X. If ¢, (z) # 0 (¢y(x) #
() then x is said to be a ¢, -compatible (1, -compatible).

Definition 2.3. Given a raw structure (X, ®,¥) and let z,y,z € X.
(1) z is called a ¢, conjugate of y if x € p,(y).

(2) z is called a ¢, conjugate of y if x € ¥, (y).
(3) z is called a z-conjugate of y if x is both a ¢, conjugate and ¥, conjugate of y.
Definition 2.4. A raw structure (X, @, W) is called a stable structure if, for all z,y, 2z € X,
x is a 1, conjugate of y < y is a ¢, conjugate of x.
Definition 2.5. A stable structure (X, ®,¥) is said to satisfy precedency property if, for
all distinct pair of elements x1,x2 and all y € X,
Py (y) N Pz, (y) =0= wﬂn (y) N 1/}22 (y)

Definition 2.6. A stable structure (X,®,¥) is called a Polcag space and denoted by
P =(X,2,9) if (X,P,V) satisfies the precedency property.

3. MAIN RESULTS

Theorem 3.1. Let P = (X, ®,¥) be a Polcag space. The operation o : X x X — X
defined by

(2,1) z Yy is a @, conjugate of ©
o\, = .
Y undefined otherwise

for all x,y,z € X is a partial binary operation on X.
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Proof. Let x10y; = 21, x30y2 = 29 and z; # z9. By the definition of the operation con X,
y1is a @,, conjugate of 21 and ya2 a @,,conjugate of x5 i.e., y1 € ., (1) and ya € ., (z2).

Let ©1 = zo. In this case, by the precedency property one can obtain that ¢, (z1) N
02y (T2) = @z, (1) Nz, (1) = 0. On the other hand, it is known that y; € ¢, (z1) and
Y2 € ¥z, (22). So, y1 # yo.

Let y1 = y2. Since P is stable, from the Definition 2.4, 1 is a 1., conjugate of y;
and x9 is a 1),,conjugate of ys i.e., 1 € 1., (y1) and x5 € 9., (y2). Therefore, by the
precendecy property, ., (y1) Nz, (y2) = ¥z, (Y1) N2, (y1) = 0. On the other hand, it is
known that z1 € ¥, (y1) and x2 € ¥, (y2). So, x1 # xa.

Thus, if 21 # 2o then (z1,y1) # (z2,y2) which implies that o is well-defined. n

Definition 3.2. A Polcag space P = (X, ®,V¥) is called a complete Polcag space if, for
all x,y € X, there exists some z € X such that z is a ¢, conjugate of y.

Theorem 3.3. Let a complete Polcag space P = (X, ®,¥) is given. In this case, the
partial binary operation o defined in Theorem 3.1 is a binary operation.

Proof. Let z,y € X. Since P is complete, there exists some z € X such that z is a
@, conjugate of y from Definition 3.2. So, x € ¢,(y) according to Definition 2.3(1).
Therefore, y o x = z € X from the definition of o, i.e., the operation o is closed on X. =

Definition 3.4. Let P = (X,®,¥) be a complete Polcag space. The set X with the
partial binary operation o defined in Theorem 3.1 is called the partial group-like structure
induced by P and denoted by (X, o)p. If o is a binary operation then (X, o)p is called a
group-like structure induced by P.

Corollary 3.5. Let P = (X,®,¥) be a Polcag space. The (partial) group-like structure
(X, 0)p is a (partial) magma.

Proof. Tt is clear from the definition of (partial) magma. n

Definition 3.6. A Polcag space P = (X, ®,¥) is called relevant if x is a 1, conjugate
of s if and only if z is a ¢,, conjugate of ¢ for all s,¢,w € X and all z,y, z € X such that
y is a ¢; conjugate of x and a ¥sconjugate of z.

Theorem 3.7. If a Polcag space P = (X, ®, W) is relevant then the partial magma (X, 0)p
18 a partial semigroup.

Proof. Let xoy =t and yo z = s. From the definition of the operation o, y is a ¢
conjugate of z and z a ¢, conjugate of y, i.e., y € pi(x) and z € p,(y).
(a)=:: Let zo(yoz) € X. Then, there exists some w € X such that zo(yoz) =
w. So, we have x o s = w, and from the definition of the operation o, s is a
pwconjugate of x. Since P is stable, z is a 1, conjugate of s. z is a ¢,, conjugate
of t since P is relevant. Thus, from the definition of the operation o, we have
toz = w. Substituting ¢t = x oy in t oz = w, we have (zoy) o z = w, i.e.,
(xoy)oz € X.
<: Let (zoy) oz € X. Then, there exists some v € X such that (zoy)oz = v. So,
we have t o z = v, and from the definition of the operation o, z is a ¢, conjugate
of t. x is a 1, conjugate of s since P is relevant. Thus, from the definition of
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the operation o, we have x o s = v. Substituting s =y oz in z o s = v, we have
xo(yoz)=wv,ie,xzo(yoz) € X.

(b): Let zo(yoz) € X. Thus, we have obtained the equality z o (yoz) =w =
(x oy) oz from (a). So, the proof is completed.

Corollary 3.8. If a complete Polcag space P = (X, ®, W) is relevant then the magma
(X, 0)p is a semigroup.

Proof. Let x o (y o z) = w. From the proof of Theorem 3.7, (x oy) o z = w and so
zo(yoz)=w=(xoy)oz (]

Definition 3.9. Let P = (X, ®,¥) be a Polcag space and z,y € X. x is called y-correlated
if ¢, and 1, conjugates of x are nonempty sets.

Definition 3.10. Let P = (X, ®,¥) be a Polcag space. P is called correlated if x is
y-correlated for all x,y € X.

Theorem 3.11. If a complete Polcag space P = (X, P, W) is correlated then the magma
(X, 0)p is a quasigroup.

Proof. Let z,y € X. Since P is correlated, = is y-correlated according to Definition
3.10. Also, ¢, and 1, conjugates of x are nonempty sets according to Definition 3.9, i.e.,
wy(z) # 0 # y(z). Chosen u,v € X such that u € ¢, (z) and v € ¢, (z). Then, u is a
py conjugate of x and v is a 1, conjugate of x. From the definition of the operation o in
Theorem 3.1, zou = y and vox = y. Since the pair of elements x,y is chosen arbitrarily,
the magma (X, o)p satisfies the divisibility property. Thus, (X,0)p is a quasigroup. =

Definition 3.12. Let P = (X,®,¥) be a Polcag space and z,y € X. x is called a
phi-selfconjugate of y if x is a ¢, conjugate of y; x is called a psi-selfconjugate of y if ©
is a 1, conjugate of y. x is called a selfconjugate of y if x is a phi-selfconjugate of y and
psi-selfconjugate of y.

Definition 3.13. Let P = (X,®,¥) be a Polcag space. a € X is called a common-
conjugate element of P and P is called common-correlated if a is a selfconjugate of every
zin X.

Theorem 3.14. If a complete, relevant Polcag space P = (X, ®, W) is common-correlated
then the semigroup (X,o)p is a monoid.

Proof. Let x € X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. Then, e is a selfconjugate of . From the Definition
3.12, e is both a phi-selfconjugate and a psi-selfconjugate of z, i.e., e € p,(z) and e €
¥z (x). From the definition of the operation o in Theorem 3.1, we have x o e = = and
eox = x. Since the element z is chosen arbitrarily, e € X is the identity element of the
semigroup (X, o)p. Thus, (X, o0)p is a monoid. L]

Theorem 3.15. If a complete, correlated Polcag space P = (X, ®,¥) is common-correlated
then the quasigroup (X, o)p is a loop.
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Proof. Let x € X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. Then, e is a selfconjugate of x. From the Definition
3.12, e is both a phi-selfconjugate and a psi-selfconjugate of z, i.e., e € p,(x) and e €
1, (x). From the definition of the operation o in Theorem 3.1, we have z o e = x and
eox = x. Since the element x is chosen arbitrarily, e € X is the identity element of the
quasigroup (X, o)p. Thus, (X, 0)p is a loop. L]

Definition 3.16. Let P = (X, ®,¥) be a Polcag space and e a common-conjugate element
of P. P is said to be inverse-correlated if there exists an e-conjugate of every element in
X.

Theorem 3.17. Let a complete, relevant and common-correlated Polcag space P =
(X, ®,¥) is inverse-correlated then the monoid (X,0)p is a group.

Proof. Let z € X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. From Theorem 3.14, e is the identity element
of (X,0)p. Since P is inverse-correlated, from the Definition 3.16, x has a e-conjugate;
say this element y. From the Definition 2.3(3), x is both a ¢, conjugate of y and 1),
conjugate of y. Again, from Definition 2.3(1-2), we have x € p.(y) and x € ¥ (y). From
the definition of the operation o in the Theorem 3.1, we have yox = e¢ and x oy = e.
Since the element x is chosen arbitrarily, the monoid (X, o)p satisfies the inverse element
property. So, (X,0)p is a group. (]

Theorem 3.18. If a complete, correlated and common-correlated Polcag space P =
(X,9,W) is relevant then the loop (X,0)p is a group.

Proof. Let x,y,z € X. Since P is complete, zoy € X and yoz € X. Set t = x oy and
s = y o z. From the definition of the operation o in Theorem 3.1, y is a ¢ conjugate of
x and z is a pg conjugate of y, i.e., y € pi(z) and 2z € ps(y). Again, since P is complete,
rose€ X andtoz € X. Set w = xos. Hence, from the definition of the operation o, s
is a ,, conjugate of x. Since P is stable, = is a 1, conjugate of s. z is a ¢, conjugate
of t since P is relevant. From the definition of the operation o, t 0 z = w. Substituting
t=xoyintoz = w, we have (zoy) oz = w. Also, since w =208 =2x0(yoz), we have
(xoy) oz =z o (y o z). Since the elements x,y, z are chosen arbitrarily, the loop (X,o0)p
satisfies the associativity property. Thus, (X, o)p is a group. [

Definition 3.19. A Polcag space P = (X,®,¥) is called symmetric-correlated if, for
every pair z,y in X, there exists some z € X such that each of z,y is z-conjugate of the
other.

Theorem 3.20. Let P = (X, $,¥) be a complete, relevant and common-correlated Polcag
space and also, correlated or inverse correlated. If P is symmetric-correlated then the
group (X,0)p is commutative.

Proof. Let z,y € X. Since P is symmetric-correlated, there exists some z € X such
that x is a z-conjugate of y from Definition 3.19. From Definition 2.3(3), « is both a
@, conjugate of y and a v, conjugate of y. Again, from Definition 2.3(1-2), z € ¢.(y)
and z € 1.(y). From the definition of the operation o in the Theorem 3.1, we have
xoy = z = yox. Since the elements x,y are chosen arbitrarily, the group (X, o)p satisfies
the commutativity property. So, the group (X, o)p is commutative. [
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