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1. Introduction

It is an interesting idea to examine the relationship between algebraic structures and
topological ones. To investigate this relation, we define a new mathematical structure:
Polcag space. Moreover, we show that group-like structures can be induced by Polcag
spaces, and give some useful results. In our next work, we will study topological struc-
tures by induced Polcag spaces, and we examine how the relationship between the induced
topological structure and the induced algebraic one changes when changing some condi-
tions.

We give the following definitions of group-like structures [1–6].

Definition 1.1. Let X be a set.

(1) X with a partial binary operation ◦ : X×X→X is said to be a partial magma.
(2) X with a binary operation ◦ : X ×X → X is said to be a magma.
(3) A partial magma (X, ◦) is called a partial semigroup if the followings hold:

(Partial associativity) For all x, y, z ∈ X holding x ◦ y ∈ X and y ◦ z ∈ X,
(a) x ◦ (y ◦ z) ∈ X iff (x ◦ y) ◦ z ∈ X and
(b) if x ◦ (y ◦ z) ∈ X then x ◦ (y ◦ z) = (x ◦ y) ◦ z.

(4) A magma (X, ◦) is said to be a semigroup if,
(Union) for all x, y, z ∈ X, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

(5) A magma (X, ◦) is said to be a quasigroup if the following condition holds:
(Divisibility) For all x, y ∈ X, there exists a pair of elementsu, v ∈ X holds the

following conditions:
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(a) x ◦ u = y
(b) v ◦ x = y

(6) A semigroup (X, ◦) is said to be a monoid if the following condition holds:
(Identity) For an elemente ∈ X and all x ∈ X , x ◦ e = e ◦ x = x.

(7) A quasigroup (X, ◦) is called a loop if the following condition holds:
(Identity) For an elemente ∈ X and all x ∈ X , x ◦ e = e ◦ x = x.

(8) A monoid (X, ◦) is said to be a group if the following condition holds:
(Inverse element) For all x ∈ X and some element y ∈ X, x ◦ y = y ◦ x = e

where e ∈ X is the identity element.
Equally, a loop (X, ◦) is called a group if the following condition holds:
(Union) For all x, y, z ∈ X, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

(9) The group (X, ◦) is called a commutative group if:
(Commutativity) for all x, y ∈ X, x ◦ y = y ◦ x.

2. Polcag Space

Definition 2.1. LetX be a set and P (X) is the power set of X. We define Φ = {ϕx}x∈X
and Ψ = {ψx}x∈X as two collections of functions from X to P(X) indexed by X. Then,
the triplet (X,Φ, Ψ) is called a raw structure.

Definition 2.2. Given a raw structure (X,Φ, Ψ) and let x, y ∈ X. If ϕy(x) 6= ∅ (ψy(x) 6=
∅) then x is said to be a ϕy-compatible (ψy-compatible).

Definition 2.3. Given a raw structure (X,Φ, Ψ) and let x, y, z ∈ X.

(1) x is called a ϕz conjugate of y if x ∈ ϕz(y).
(2) x is called a ψz conjugate of y if x ∈ ψz(y).
(3) x is called a z-conjugate of y if x is both a ϕz conjugate and ψz conjugate of y.

Definition 2.4. A raw structure (X,Φ, Ψ) is called a stable structure if, for all x, y, z ∈ X,

x is a ψz conjugate of y ⇔ y is a ϕz conjugate of x.

Definition 2.5. A stable structure (X,Φ, Ψ) is said to satisfy precedency property if, for
all distinct pair of elements x1, x2 and all y ∈ X,

ϕx1
(y) ∩ ϕx2

(y) = ∅ = ψx1
(y) ∩ ψx2

(y).

Definition 2.6. A stable structure (X,Φ, Ψ) is called a Polcag space and denoted by
P = (X,Φ, Ψ) if (X,Φ, Ψ) satisfies the precedency property.

3. Main Results

Theorem 3.1. Let P = (X,Φ, Ψ) be a Polcag space. The operation ◦ : X × X → X
defined by

◦(x, y) :=

{
z y is a ϕz conjugate of x

undefined otherwise

for all x, y, z ∈ X is a partial binary operation on X.
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Proof. Let x1◦y1 = z1, x2◦y2 = z2 and z1 6= z2. By the definition of the operation ◦on X,
y1is a ϕz1conjugate of x1 and y2 a ϕz2conjugate of x2 i.e., y1 ∈ ϕz1(x1) and y2 ∈ ϕz2(x2).

Let x1 = x2. In this case, by the precedency property one can obtain that ϕz1(x1) ∩
ϕz2(x2) = ϕz1(x1) ∩ ϕz2(x1) = ∅. On the other hand, it is known that y1 ∈ ϕz1(x1) and
y2 ∈ ϕz2(x2). So, y1 6= y2.

Let y1 = y2. Since P is stable, from the Definition 2.4, x1 is a ψz1conjugate of y1
and x2 is a ψz2conjugate of y2 i.e., x1 ∈ ψz1(y1) and x2 ∈ ψz2(y2). Therefore, by the
precendecy property, ψz1(y1) ∩ ψz2(y2) = ψz1(y1) ∩ ψz2(y1) = ∅. On the other hand, it is
known that x1 ∈ ψz1(y1) and x2 ∈ ψz2(y2). So, x1 6= x2.

Thus, if z1 6= z2 then (x1, y1) 6= (x2, y2) which implies that ◦ is well-defined.

Definition 3.2. A Polcag space P = (X,Φ, Ψ) is called a complete Polcag space if, for
all x, y ∈ X, there exists some z ∈ X such that x is a ϕz conjugate of y.

Theorem 3.3. Let a complete Polcag space P = (X,Φ, Ψ) is given. In this case, the
partial binary operation ◦ defined in Theorem 3.1 is a binary operation.

Proof. Let x, y ∈ X. Since P is complete, there exists some z ∈ X such that x is a
ϕz conjugate of y from Definition 3.2. So, x ∈ ϕz(y) according to Definition 2.3(1).
Therefore, y ◦ x = z ∈ X from the definition of ◦, i.e., the operation ◦ is closed on X.

Definition 3.4. Let P = (X,Φ, Ψ) be a complete Polcag space. The set X with the
partial binary operation ◦ defined in Theorem 3.1 is called the partial group-like structure
induced by P and denoted by (X, ◦)P. If ◦ is a binary operation then (X, ◦)P is called a
group-like structure induced by P.

Corollary 3.5. Let P = (X,Φ, Ψ) be a Polcag space. The (partial) group-like structure
(X, ◦)P is a (partial) magma.

Proof. It is clear from the definition of (partial) magma.

Definition 3.6. A Polcag space P = (X,Φ, Ψ) is called relevant if x is a ψw conjugate
of s if and only if z is a ϕw conjugate of t for all s, t, w ∈ X and all x, y, z ∈ X such that
y is a ϕt conjugate of x and a ψsconjugate of z.

Theorem 3.7. If a Polcag space P = (X,Φ, Ψ) is relevant then the partial magma (X, ◦)P
is a partial semigroup.

Proof. Let x ◦ y = t and y ◦ z = s. From the definition of the operation ◦, y is a ϕt

conjugate of x and z a ϕs conjugate of y, i.e., y ∈ ϕt(x) and z ∈ ϕs(y).

(a)⇒:: Let x◦(y◦z) ∈ X. Then, there exists some w ∈ X such that x◦(y◦z) =
w. So, we have x ◦ s = w, and from the definition of the operation ◦, s is a
ϕwconjugate of x. Since P is stable, x is a ψwconjugate of s. z is a ϕw conjugate
of t since P is relevant. Thus, from the definition of the operation ◦, we have
t ◦ z = w. Substituting t = x ◦ y in t ◦ z = w, we have (xoy) ◦ z = w, i.e.,
(xoy) ◦ z ∈ X.
⇐: Let (xoy)◦ z ∈ X. Then, there exists some v ∈ X such that (xoy)◦ z = v. So,
we have t ◦ z = v, and from the definition of the operation ◦, z is a ϕv conjugate
of t. x is a ψv conjugate of s since P is relevant. Thus, from the definition of
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the operation ◦, we have x ◦ s = v. Substituting s = y ◦ z in x ◦ s = v, we have
x ◦ (y ◦ z) = v, i.e., x ◦ (y ◦ z) ∈ X.

(b): Let x ◦ (y ◦ z) ∈ X. Thus, we have obtained the equality x ◦ (y ◦ z) = w =
(x ◦ y) ◦ z from (a). So, the proof is completed.

Corollary 3.8. If a complete Polcag space P = (X,Φ, Ψ) is relevant then the magma
(X, ◦)P is a semigroup.

Proof. Let x ◦ (y ◦ z) = w. From the proof of Theorem 3.7, (x ◦ y) ◦ z = w and so
x ◦ (y ◦ z) = w = (x ◦ y) ◦ z.

Definition 3.9. Let P = (X,Φ, Ψ) be a Polcag space and x, y ∈ X. x is called y-correlated
if ϕy and ψyconjugates of x are nonempty sets.

Definition 3.10. Let P = (X,Φ, Ψ) be a Polcag space. P is called correlated if x is
y-correlated for all x, y ∈ X.

Theorem 3.11. If a complete Polcag space P = (X,Φ, Ψ) is correlated then the magma
(X, ◦)P is a quasigroup.

Proof. Let x, y ∈ X. Since P is correlated, x is y-correlated according to Definition
3.10. Also, ϕy and ψy conjugates of x are nonempty sets according to Definition 3.9, i.e.,
ϕy(x) 6= ∅ 6= ψy(x). Chosen u, v ∈ X such that u ∈ ϕy(x) and v ∈ ψy(x). Then, u is a
ϕy conjugate of x and v is a ψy conjugate of x. From the definition of the operation ◦ in
Theorem 3.1, x ◦u = y and v ◦x = y. Since the pair of elements x, y is chosen arbitrarily,
the magma (X, ◦)P satisfies the divisibility property. Thus, (X, ◦)P is a quasigroup.

Definition 3.12. Let P = (X,Φ, Ψ) be a Polcag space and x, y ∈ X. x is called a
phi-selfconjugate of y if x is a ϕy conjugate of y; x is called a psi-selfconjugate of y if x
is a ψy conjugate of y. x is called a selfconjugate of y if x is a phi-selfconjugate of y and
psi-selfconjugate of y.

Definition 3.13. Let P = (X,Φ, Ψ) be a Polcag space. a ∈ X is called a common-
conjugate element of P and P is called common-correlated if a is a selfconjugate of every
x in X.

Theorem 3.14. If a complete, relevant Polcag space P = (X,Φ, Ψ) is common-correlated
then the semigroup (X, ◦)P is a monoid.

Proof. Let x ∈ X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. Then, e is a selfconjugate of x. From the Definition
3.12, e is both a phi-selfconjugate and a psi-selfconjugate of x, i.e., e ∈ ϕx(x) and e ∈
ψx(x). From the definition of the operation ◦ in Theorem 3.1, we have x ◦ e = x and
e ◦ x = x. Since the element x is chosen arbitrarily, e ∈ X is the identity element of the
semigroup (X, ◦)P. Thus, (X, ◦)P is a monoid.

Theorem 3.15. If a complete, correlated Polcag space P = (X,Φ, Ψ) is common-correlated
then the quasigroup (X, ◦)P is a loop.
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Proof. Let x ∈ X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. Then, e is a selfconjugate of x. From the Definition
3.12, e is both a phi-selfconjugate and a psi-selfconjugate of x, i.e., e ∈ ϕx(x) and e ∈
ψx(x). From the definition of the operation ◦ in Theorem 3.1, we have x ◦ e = x and
e ◦ x = x. Since the element x is chosen arbitrarily, e ∈ X is the identity element of the
quasigroup (X, ◦)P. Thus, (X, ◦)P is a loop.

Definition 3.16. Let P = (X,Φ, Ψ) be a Polcag space and e a common-conjugate element
of P. P is said to be inverse-correlated if there exists an e-conjugate of every element in
X.

Theorem 3.17. Let a complete, relevant and common-correlated Polcag space P =
(X,Φ, Ψ) is inverse-correlated then the monoid (X, ◦)P is a group.

Proof. Let x ∈ X. Since P is common-correlated, from Definition 3.13, P has a common-
conjugate element; say this element e. From Theorem 3.14, e is the identity element
of (X, ◦)P. Since P is inverse-correlated, from the Definition 3.16, x has a e-conjugate;
say this element y. From the Definition 2.3(3), x is both a ϕe conjugate of y and ψe

conjugate of y. Again, from Definition 2.3(1-2), we have x ∈ ϕe(y) and x ∈ ψe(y). From
the definition of the operation ◦ in the Theorem 3.1, we have y ◦ x = e and x ◦ y = e.
Since the element x is chosen arbitrarily, the monoid (X, ◦)P satisfies the inverse element
property. So, (X, ◦)P is a group.

Theorem 3.18. If a complete, correlated and common-correlated Polcag space P =
(X,Φ, Ψ) is relevant then the loop (X, ◦)P is a group.

Proof. Let x, y, z ∈ X. Since P is complete, x ◦ y ∈ X and y ◦ z ∈ X. Set t = x ◦ y and
s = y ◦ z. From the definition of the operation ◦ in Theorem 3.1, y is a ϕt conjugate of
x and z is a ϕs conjugate of y, i.e., y ∈ ϕt(x) and z ∈ ϕs(y). Again, since P is complete,
x ◦ s ∈ X and t ◦ z ∈ X. Set w = x ◦ s. Hence, from the definition of the operation ◦, s
is a ϕw conjugate of x. Since P is stable, x is a ψw conjugate of s. z is a ϕw conjugate
of t since P is relevant. From the definition of the operation ◦, t ◦ z = w. Substituting
t = x ◦ y in t ◦ z = w, we have (xoy) ◦ z = w. Also, since w = x ◦ s = x ◦ (y ◦ z), we have
(xoy) ◦ z = x ◦ (y ◦ z). Since the elements x, y, z are chosen arbitrarily, the loop (X, ◦)P
satisfies the associativity property. Thus, (X, ◦)P is a group.

Definition 3.19. A Polcag space P = (X,Φ, Ψ) is called symmetric-correlated if, for
every pair x, y in X, there exists some z ∈ X such that each of x, y is z-conjugate of the
other.

Theorem 3.20. Let P = (X,Φ, Ψ) be a complete, relevant and common-correlated Polcag
space and also, correlated or inverse correlated. If P is symmetric-correlated then the
group (X, ◦)P is commutative.

Proof. Let x, y ∈ X. Since P is symmetric-correlated, there exists some z ∈ X such
that x is a z-conjugate of y from Definition 3.19. From Definition 2.3(3), x is both a
ϕz conjugate of y and a ψz conjugate of y. Again, from Definition 2.3(1-2), x ∈ ϕz(y)
and x ∈ ψz(y). From the definition of the operation ◦ in the Theorem 3.1, we have
x◦y = z = y ◦x. Since the elements x, y are chosen arbitrarily, the group (X, ◦)P satisfies
the commutativity property. So, the group (X, ◦)P is commutative.
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