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1. Introduction

The existence of fixed point theorem in Banach space was first investigated by Banach
or the well known as the Banach contraction principle [1] in 1922.

Next, many authors extended and improved many fixed point results in connection
with existing ones.

In 1989, Bakhtin [2] (see also Czerwik [3]) introduced the concept of a b−metric space
(a special kind of metric space) and proved some fixed point theorems for some contraction
mappings in b−metric spaces which generalize Banach’s contraction principle in metric
space.

In 2015, Khojasteh et at. [4] introduced the notion of a simulation function in connec-
tion with the generalization of Banach’s contraction principle.

Recently, Roldán-LÓpez-de-Hierroet et al. [5] modified the notion of a simulation
function and showed the existence and uniqueness of coincidence points of two nonlinear
mappings, using the concept of a simulation function.

Very recently Demma et at. [6] introduced the notion of b−simulation in the setting
of b−metric spaces and they established the existence and uniqueness of fixed points in
b−metric spaces.

In this paper, we introduce the notion of CF − b−simulation function and prove some
fixed point theorems in complete b−metric spaces. Furthermore, we also give one example
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to illustrate the main results. As consequences of this study, we deduce several related
results in fixed point theory in b−metric space.

2. Preliminaries

We begin with giving some notation and preliminaries that we shall need to state our
results.

In the sequel, the letters R and N will denote the set of all real numbers and the set of
all natural numbers, respectively.

Definition 2.1. (see [7]). Let X be a nonempty set and let d : X ×X −→ [0,∞) be a
function satisfying the conditions :

(m1) d(x, y) = 0 if and only if x = y;
(m2) d(x, y) = d(y, x);
(m3) d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X. Then d is called metric on X, and the pair (X, d) is called metric
space.

Definition 2.2. (see [2]). Let X be a nonempty set and K ≥ 1 be a given real number. A
function d : X ×X −→ [0,∞) is a b-metric if, for all x, y, z ∈ X, the following conditions
are satisfied :

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) ≤ K[d(x, y) + d(y, z)].

A pair (X, d) is called a b-metric space.

We can see from the definition of b− metric that every metric space is b− metric for
K = 1, but the converse is not true.

Example 2.3. (see [8]). Let X = R and d : X×X → [0,∞) defined by d(x, y) = |x−y|2.
Then d is a b-metric on R with K = 2, but it is not a metric on R.

Example 2.4. (see [9]). Let X = lp, (0 < p < 1), when

lp = {(xn) ⊂ R|
∞∑

n=1

|xn|p <∞}.

Define d : X × X → [0,∞) by d(x, y) = (
∑∞

n=1 |xn − yn|p)
1
p , where x = (xn) ∈ X and

y = (yn) ∈ X. Then d is a b−metric with K = 2
1
p .

Definition 2.5. (see [3]). Let {xn} be a sequence in b−metric space (X, d).Then {xn}
is called a b−Cauchy sequence, if for all ε > 0 there exist a positive integer N such that
for m,n ≥ N we have d(xm, xn) < ε.

Definition 2.6. (see [3]). A sequence {xn} is called b−convergent in b−metric space
(X, d), if for all ε > 0 and for n ≥ N we have d(xn, x) < ε, where x is called the limit
point of the sequence {xn}.
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Definition 2.7. (see [3]). A b−metric space (X, d) is said to be complete if every Cauchy
sequence in X converge to a point of X.

Definition 2.8. (see [10]). A mapping F : [0,∞)2 → R is called C−class function if it
is continuous and satisfies the following conditions:

(C1) F (s, t) ≤ s;
(C2) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

We denote C−class function as C.

Definition 2.9. (see [11]). A mapping F : [0,∞)2 → R has a property CF , if there exists
a nonnegative real number CF such that

(Cf1) F (s, t) > CF implies s > t;
(Cf2) F (t, t) ≤ CF , for all t ∈ [0,∞).

Let CF be the family of all C−class functions that have property CF .

Example 2.10. The following function F : [0,∞)2 → R are elements of C that have
property CF , for all s, t ∈ [0,∞)

(1) F (s, t) = s− t, CF = a, a ∈ [0,∞).

(2) F (s, t) = s− (2+t)t
1+t , CF = 0.

Definition 2.11. (see [4]). Let ζ : [0,∞)2 → R be a mapping, then ζ is called a
simulation function if it satisfies the following conditions

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0 then

lim sup
n→∞

ζ(tn, sn) < 0.

Example 2.12. (see [4]). Let ζi : [0,∞)2 → R, i = 1, 2, 3 be defined by

(i) ζ1(t, s) = ψ(s) − φ(t) for all t, s ∈ [0,∞), where φ, ψ : [0,∞) → [0,∞) are
two continuous functions such that ψ(t) = φ(t) = 0 if and only if t = 0 and
ψ(t) < t ≤ φ(t) for all t > 0.

(ii) ζ2(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → [0,∞) are two

continuous functions with respect to each variable such that f(t, s) > g(t, s) for
all t, s > 0.

(iii) ζ3(t, s) = s − ϕ(s) − t for all t, s ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0 if and only if t = 0.

Then ζi for i = 1, 2, 3 are simulation functions.

Definition 2.13. (see [11]). A CF−simulation is a mapping ζF : [0,∞)2 → R satisfies
the following conditions

(ζF 1) ζF (t, s) < F (s, t) for all t, s > 0 and F ∈ C;
(ζF 2) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζF (tn, sn) < CF .
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Definition 2.14. (see [6]). Let (X, d) be a b−metric space with constant K ≥ 1. A
b−simulation function is a function ξ : [0,∞)2 → R satisfying the following conditions:

(ξ1) ξ(t, s) < s− t, for all t, s > 0;
(ξ2) if {tn}, {sn} are sequences in (0,∞) such that

0 < lim
n→∞

tn ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ K lim
n→∞

tn <∞,

then
lim sup
n→∞

ξ(Ktn, sn) < 0.

Theorem 2.15. (see [6]). Let (X, d) be a complete b−metric space with constant K ≥ 1
and let f : X → X be a mapping. Suppose that there exists a b−simulation function ξ
such that

ξ(Kd(fx, fy), d(x, y)) ≥ 0, for all x, y ∈ X.
Then f has a unique fixed point.

3. Main Results

In this section, we define the CF − b−simulation function and prove the existence of a
fixed point for such mapping in complete b−metric spaces.

Definition 3.1. Let (X, d) be a b−metric space with a constant K ≥ 1. A CF −
b−simulation function is a function ξCF

: [0,∞)2 → R satisfying the following conditions:

(ξCF
1) ξCF

(t, s) < F (s, t) for all t, s > 0, where F : [0,∞)2 → R is element of CF ;
(ξCF

2) if {tn}, {sn} are sequences in (0,∞) such that

0 < lim
n→∞

tn ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ K lim
n→∞

tn <∞,

then
lim sup
n→∞

ξCF
(Ktn, sn) < CF ,

where CF is a nonnegative real number.

Example 3.2. Let λ ∈ [0, 1) and define ξ1 : [0,∞)2 → R by ξ1(t, s) = λs − t for all
t, s ∈ [0,∞) then ξ1 is CF − b−simulation function where F (s, t) = s− t and CF = 0.

Example 3.3. If ϕ : [0,∞) → [0,∞) is a lower semi-continuous functions such that
ϕ(t) = 0 if and only if t = 0 and define ξ2 : [0,∞)2 → R by ξ2(t, s) = s− ϕ(s)− t for all
t, s ∈ [0,∞), then ξ2 is CF − b−simulation function where F (s, t) = s− t and CF = 0.

Example 3.4. If ϕ : [0,∞) → [0, 1) is a function such that lim sup
t→r+

ϕ(t) < 1 for all

r > 0, and define ξ3 : [0,∞)2 → R by ξ3(t, s) = sϕ(s) − t for all t, s ∈ [0,∞), then ξ3 is
CF − b−simulation function where F (s, t) = s− t and CF = 0.

Theorem 3.5. Let (X, d) be a complete b−metric space with a constant K ≥ 1 and let
f : X → X be a mapping. Suppose that there exists a CF − b−simulation function ξCF

such that

ξCF
(Kd(fx, fy), d(x, y)) ≥ CF , for all x, y ∈ X. (3.1)

Then f has a unique fixed point.
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Proof. Let x0 ∈ X be arbitrary and {xn} be a sequence in X defined by xn = fxn−1, for
all n ∈ N. If xm−1 = xm for some m ∈ N, then xm−1 = xm = fxm−1, that is xm−1 is a
fixed point of f. Therefore, suppose that xn−1 6= xn, for all n ∈ N.
We have devided the proof in 4 steps.

Step 1. We shall now prove that lim
n→∞

d(xn, xn+1) = 0. Using (3.1) and (ξCF
1), for all

n ≥ 0,

CF ≤ ξCF
(Kd(fxn−1, fxn), d(xn−1, xn))

= ξCF
(Kd(xn, xn+1), d(xn−1, xn))

< F (d(xn−1, xn),Kd(xn, xn+1)). (3.2)

Form (Cf1) of definition 2.9 it follows that d(xn−1, xn) > Kd(xn, xn+1), for all n ≥ 0.
Then {d(xn−1, xn)} is a decreasing sequence of nonnegative real numbers. Hence there
exists r ≥ 0 such that lim

n→∞
d(xn−1, xn) = r.

Assume that r > 0. Applying the condition (ξCF
2), with tn = d(xn, xn+1) and sn =

d(xn−1, xn), it follows that

lim sup
n→∞

ξCF
(Kd(xn, xn+1), d(xn−1, xn)) < CF ,

which contradics (3.2) because ξCF
(Kd(xn, xn+1), d(xn−1, xn)) ≥ CF . Thus

lim
n→∞

d(xn, xn+1) = r = 0.

Step 2. We claim that the sequence {xn} is a bounded sequence. Assume that {xn} is
not a bounded sequence. Then there exists a subsequence {xnk

} of {xn} such that n1 = 1
and for each k ∈ N, nk+1 is the minimum integer such that

d(xnk+1
, xnk

) > 1

and d(xm, xnk
) ≤ 1, for nk ≤ m ≤ nk+1 − 1. By (b3) of definition 2.2, we get

1 < d(xnk+1
, xnk

)

≤ Kd(xnk+1
, xnk+1−1) +Kd(xnk+1−1, xnk

)

≤ Kd(xnk+1
, xnk+1−1) +K. (3.3)

Letting k →∞ in (3.3) and lim
n→∞

d(xn, xn+1) = 0, we obtain

1 ≤ lim inf
k→∞

d(xnk+1
, xnk

) ≤ lim sup
k→∞

d(xnk+1
, xnk

) ≤ K (3.4)

From (3.1) and property (ξCF
1), we have

CF ≤ ξCF
(Kd(fxnk+1−1, fxnk−1), d(xnk+1−1, xnk−1))

= ξCF
(Kd(xnk+1

, xnk
), d(xnk+1−1, xnk−1))

≤ F (d(xnk+1−1, xnk−1),Kd(xnk+1
, xnk

)). (3.5)

Using (Cf1) of the definition 2.9 and (b3) of definition 2.2, it follows that

Kd(xnk+1
, xnk

) < d(xnk+1−1, xnk−1)

≤ Kd(xnk+1−1, xnk
) +Kd(xnk

, xnk−1)

≤ K +Kd(xnk
, xnk−1). (3.6)
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Letting k →∞ in the above inequality and using (3.4), we deduce that there exist

lim
k→∞

d(xnk+1
, xnk

) = 1 and lim
k→∞

d(xnk+1−1, xnk−1) = K.

Therefore by 3.5 and (ξCF
2), with tk = d(xnk+1

, xnk
) and sk = d(xnk+1−1, xnk−1), we

have

CF ≤ lim sup
k→∞

ξCF
(Kd(xnk+1

, xnk
), d(xnk+1−1, xnk−1)) < CF ,

which is a contradiction. Hence the sequence {xn} is bounded.

Step 3. Now, we prove that the sequence {xn} is Cauchy in X.
Let An = sup{d(xi, xj) : i, j ≥ n}, n ∈ N.
Since the sequence {xn} is bounded, An <∞ for all n ∈ N and since the sequence {An}
is a positive decreasing, there exists A ≥ 0 such that

lim
n→∞

An = A. (3.7)

Suppose that A > 0. Then by the definition of An, for every k ∈ N there exists nk,mk ∈ N
such that mk > nk ≥ k and

Ak −
1

k
< d(xmk

, xnk
) ≤ Ak. (3.8)

Letting k →∞ in (3.8), we have

lim
k→∞

d(xmk
, xnk

) = A. (3.9)

By (3.1) and property (ξCF
1), we have

CF ≤ ξCF
(Kd(fxmk−1, fxnk−1), d(xmk−1, xnk−1))

= ξCF
(Kd(xmk

, xnk
), d(xmk−1, xnk−1))

< F (d(xmk−1, xnk−1),Kd(xmk
, xnk

)).

Using (Cf1) of the definition 2.9 and definition of An, we get

Kd(xmk
, xnk

) < d(xmk−1, xnk−1) ≤ Ak−1. (3.10)

Letting k →∞ in (3.10), using (3.7) and (3.9), we have

KA ≤ lim inf
k→∞

d(xmk−1, xnk−1) ≤ lim sup
k→∞

d(xmk−1, xnk−1) ≤ A. (3.11)

From (3.11) we see that, if K > 1 then A = 0. If K = 1 then by the property (ξCF
2) with

tk = d(xmk
, xnk

) and sk = d(xmk−1, xnk−1), we get

CF ≤ lim sup
k→∞

ξCF
(Kd(xmk

, xnk
), d(xmk−1, xnk−1)) < CF ,

which is a contradiction. Thus A = 0, that is lim
n→∞

An = 0, for all K ≥ 1. This prove that

{xn} is a Cauchy sequence.

Step 4. We claim that f has a unique fixed point.
Since X is a complete b−metric space and {xn} is a Cauchy sequence in X, there exists
z ∈ X such that

lim
n→∞

xn = z. (3.12)
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We shall prove that z is a fixed point of f. Using (3.1) and property (ξCF
1), we obtain

CF ≤ ξCF
(Kd(fxn, fz), d(xn, z))

< F (d(xn, z),Kd(fxn, fz)).

From (Cf1) of definition 2.9, it follows that

d(xn, z) > Kd(fxn, fz), forall n ∈ N,

and consequently

d(z, fz) ≤ Kd(z, xn+1) +Kd(xn+1, fz)

= Kd(z, xn+1) +Kd(fxn, fz)

≤ Kd(z, xn+1) + d(xn, z). (3.13)

Letting n → ∞ in (3.13), we get d(z, fz) = 0, that is z is a fixed point of f. Finally, we
prove that z is the unique fixed point of f in X. Suppose that there exists w ∈ X such
that fw = w and w 6= z.
Using (3.1) and property (ξCF

1), we obtain

CF ≤ ξCF
(Kd(fw, fz), d(w, z))

< F (d(w, z),Kd(fw, fz))

= F (d(w, z),Kd(w, z)),

using (Cf1) of definition 2.9, we get d(w, z) > Kd(w, z).
Since d(w, z) 6= 0, K < 1, which is a contradiction. Therefore w = z. This complete the
proof.

Corollary 3.6. ([12], Theorem 3.3). Let (X, d) be a complete b−metric space with K ≥ 1
and let f : X → X be a mapping. Suppose that there exists λ ∈ (0, 1) such that

Kd(fx, fy) ≤ λd(x, y), for all x, y ∈ X.

Then f has a unique fixed point.

Proof. It follows from Theorem 3.5 using the CF − b−simulation function

ξCF
(t, s) = λs− t,

for all t, s ≥ 0 and F (s, t) = s− t and CF = 0.

Corollary 3.7. (Rhoades Type [13]). Let (X, d) be a complete b−metric space with K ≥ 1
and let f : X → X be a mapping. Suppose that there exists a lower semi-continuous
function ϕ : [0,∞)→ [0,∞) with ϕ−1(0) = {0} such that

Kd(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) for all x, y ∈ X.

Then f has a unique fixed point.

Proof. The result follows from Theorem 3.5 by taking as the CF − b−simulation function

ξCF
(t, s) = s− ϕ(s)− t,

for all t, s ≥ 0 and F (s, t) = s− t and CF = 0.
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Corollary 3.8. (Reich Type [14]). Let (X, d) be a complete b−metric space with K ≥ 1
and let f : X → X be a mapping. Suppose that there exists a function ϕ : [0,∞)→ [0, 1)
with lim sup

t→r+
ϕ(t) < 1 for all r > 0 such that

Kd(fx, fy) ≤ ϕ(d(x, y))d(x, y) for all x, y ∈ X.
Then f has a unique fixed point.

Proof. It follows from Theorem 3.5 using the CF − b−simulation function

ξCF
(t, s) = sϕ(s)− t,

for all t, s ≥ 0 and F (s, t) = s− t and CF = 0.

Corollary 3.9. (Boyd-Wong type [15]). Let (X, d) be a complete b−metric space with
K ≥ 1 and let f : X → X be a mapping. Suppose that there exists an upper semi-
continuous function η : [0,∞) → [0,∞) with η(t) < t for all t > 0 and η(0) = 0 such
that

Kd(fx, fy) ≤ η(d(x, y)) for all x, y ∈ X.
Then f has a unique fixed point.

Proof. It follows from Theorem 3.5 using the CF − b−simulation function

ξCF
(t, s) = η(s)− t,

for all t, s ≥ 0 and F (s, t) = s− t and CF = 0.

Example 3.10. Let X = [0, 1] and d : X ×X → [0,∞) be defined by d(x, y) = (x− y)2.
Then (X, d) is a complete b−metric space with K = 2. Define f : X → X by fx = ax

1+x

for all x ∈ X and a ∈ (0, 1√
2
]. Let ξCF

: [0,∞)2 → R define by ξCF
(t, s) = s

s+1 − t, let

F (s, t) = s−t and CF = 0, we have ξCF
is CF −b−simulation function. Indeed, we obtain

ξCF
(2d(fx, fy), d(x, y)) =

d(x, y)

d(x, y) + 1
− 2d(fx, fy)

=
(x− y)2

(x− y)2 + 1
− 2(

ax

1 + x
− ay

1 + y
)2

=
(x− y)2

(x− y)2 + 1
− 2a2(x− y)2

((1 + x)(1 + y))2

≥ (x− y)2

(x− y)2 + 1
− 2a2(x− y)2

1 + (x− y)2

=
(x− y)2 − 2a2(x− y)2

(x− y)2 + 1

≥ 0 = CF , for all x, y ∈ X.
Thus all the conditions of Theorem 3.5 are satisfied. Hence f has a unique fixed point
x = 0.
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