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1. INTRODUCTION

The existence of fixed point theorem in Banach space was first investigated by Banach
or the well known as the Banach contraction principle [1] in 1922.

Next, many authors extended and improved many fixed point results in connection
with existing ones.

In 1989, Bakhtin [2] (see also Czerwik [3]) introduced the concept of a b—metric space
(a special kind of metric space) and proved some fixed point theorems for some contraction
mappings in b—metric spaces which generalize Banach’s contraction principle in metric
space.

In 2015, Khojasteh et at. [4] introduced the notion of a simulation function in connec-
tion with the generalization of Banach’s contraction principle.

Recently, Rolddn-LOpez-de-Hierroet et al. [5] modified the notion of a simulation
function and showed the existence and uniqueness of coincidence points of two nonlinear
mappings, using the concept of a simulation function.

Very recently Demma et at. [6] introduced the notion of b—simulation in the setting
of b—metric spaces and they established the existence and uniqueness of fixed points in
b—metric spaces.

In this paper, we introduce the notion of C'r — b—simulation function and prove some
fixed point theorems in complete b—metric spaces. Furthermore, we also give one example
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to illustrate the main results. As consequences of this study, we deduce several related
results in fixed point theory in b—metric space.

2. PRELIMINARIES

We begin with giving some notation and preliminaries that we shall need to state our
results.

In the sequel, the letters R and N will denote the set of all real numbers and the set of
all natural numbers, respectively.

Definition 2.1. (see [7]). Let X be a nonempty set and let d : X x X — [0,00) be a
function satisfying the conditions :

(ml1) d(z,y) =0 if and only if z = y;

(mz) d(.’E, y) = d(y7 .’1?);
(m3) d(z,z) < d(z,y) +d(y, 2),

for all z,y,z € X. Then d is called metric on X, and the pair (X,d) is called metric
space.

Definition 2.2. (see [2]). Let X be a nonempty set and K > 1 be a given real number. A
function d : X x X — [0, 00) is a b-metric if, for all z,y, z € X, the following conditions
are satisfied :

(b1) d(z,y) =0 if and only if x = y;
(b2) d(z,y) = d(y, z);

(b3) d(z,z) < Kld(z,y) + d(y, 2)]-
A pair (X, d) is called a b-metric space.

We can see from the definition of b— metric that every metric space is b— metric for
K =1, but the converse is not true.

Example 2.3. (see [3]). Let X = Rand d: X x X — [0,00) defined by d(z,y) = |z —y/|>.
Then d is a b-metric on R with K = 2, but it is not a metric on R.

Example 2.4. (see [9]). Let X =1,,(0 < p < 1), when
I, = {(z,) CR] Z |zn|P < oo}
n=1

Define d : X x X — [0,00) by d(z,y) = oy |20 — yn\p)%, where z = (z,) € X and
y = (yn) € X. Then d is a b—metric with K = 27

Definition 2.5. (see [3]). Let {x,} be a sequence in b—metric space (X, d).Then {z,}
is called a b—Cauchy sequence, if for all € > 0 there exist a positive integer N such that
for m,n > N we have d(zy,, ) < €.

Definition 2.6. (see [3]). A sequence {x,} is called b—convergent in b—metric space
(X,d), if for all € > 0 and for n > N we have d(z,,2) < €, where x is called the limit
point of the sequence {z,}.
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Definition 2.7. (see [3]). A b—metric space (X, d) is said to be complete if every Cauchy
sequence in X converge to a point of X.

Definition 2.8. (see [10]). A mapping F : [0,00)?> — R is called C—class function if it
is continuous and satisfies the following conditions:

(C1) F(s,t) <s;

(C2) F(s,t) = s implies that either s =0 or t = 0, for all s,¢ € [0, 00).
We denote C'—class function as C.

Definition 2.9. (see [11]). A mapping F : [0,00)? — R has a property CF, if there exists
a nonnegative real number Cp such that

(Cfl) F(s,t) > Cp implies s > t;

(Cf2) F(t,t) < Cp, for all t € [0, 00).

Let Cx be the family of all C'—class functions that have property Cp.

2 5 R are elements of C that have

Example 2.10. The following function F : [0, 00)
property Cr, for all s,t € [0, 00)
(1) F(s,t)=s—t, Cp=a, a€l0,00).

(2) F(s,t)=s— 20 Cp=0.

Definition 2.11. (see [1]). Let ¢ : [0,00)> — R be a mapping, then ¢ is called a
simulation function if it satisfies the following conditions
(¢1) ¢(0,0) = 0;
(€2) ((t,s) <s—tforallt,s>0;
(¢3) if {tn},{sn} are sequences in (0,00) such that 1i_{n t, = 1i_>m $n > 0 then
lim sup ((¢y,, sn) < 0.

n—oo

Example 2.12. (see [4]). Let ¢; : [0,00)> = R, i=1,2,3 be defined by

(i) Ci(t,s) = P(s) — ¢(t) for all t,s € [0,00), where ¢, : [0,00) — [0,00) are
two continuous functions such that ¢(t) = ¢(t) = 0 if and only if ¢ = 0 and
P(t) <t < P(t) for all t > 0.

(i1) Ca(t,s) = s — ’;Eii;t for all t,s € [0,00), where f, g : [0,00)% — [0,00) are two
continuous functions with respect to each variable such that f(t,s) > g(t,s) for
all £,s > 0.

(iii) Cs5(t,s) = s — p(s) —t for all ¢t,s € [0,00), where ¢ : [0,00) — [0,00) is a
continuous function such that ¢(t) = 0 if and only if ¢ = 0.

Then (; for i = 1,2, 3 are simulation functions.

Definition 2.13. (see [11]). A Cr—simulation is a mapping (r : [0,00)? — R satisfies
the following conditions

(Crl) Cp(t,s) < F(s,t) for allt,s > 0 and F € C;

(Cr2) if {tn},{sn} are sequences in (0,00) such that lim ¢, = lim s, > 0, then

n— oo n—oo
lim sup Cp (£, 5n) < Cr.
n— oo
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Definition 2.14. (see [6]). Let (X,d) be a b—metric space with constant K > 1. A
b—simulation function is a function £ : [0, 00)? — R satisfying the following conditions:
(€1) &(t,s) < s—t, for all t, s > 0;
(€2) if {t,}, {sn} are sequences in (0, c0) such that

0 < lim t, <liminfs, <limsups, < K hm t, < 00,

n—oo n— oo n—oo

then
lim sup &(Kty, $p) < 0.
n—roo
Theorem 2.15. (see [0]). Let (X,d) be a complete b—metric space with constant K > 1
and let f : X — X be a mapping. Suppose that there exists a b—simulation function &
such that
(Kd(fz, fy),d(z,y)) =0, for all z,ye€X.

Then f has a unique fized point.

3. MAIN RESULTS

In this section, we define the Cr — b—simulation function and prove the existence of a
fixed point for such mapping in complete b—metric spaces.

Definition 3.1. Let (X,d) be a b—metric space with a constant K > 1. A Cp —
b—simulation function is a function &c,. : [0,00)? — R satisfying the following conditions:
(€cpl) Eop(t,s) < F(s,t) for all t,s > 0, where F : [0,00)? — R is element of Cr;

(€cp2) if {t,},{sn} are sequences in (0, c0) such that

0< lim t, <hm1nfsn<hmsupsn<K hmt < 00,

n—oo n— oo n—oo

then
lim sup gCF (Ktna Sn) < CF,

n—oo
where CF is a nonnegative real number.

Example 3.2. Let A € [0,1) and define & : [0,00)? — R by &i(t,s) = As — ¢ for all
t,s € [0,00) then & is Cr — b—simulation function where F'(s,t) = s — ¢ and Cp = 0.

Example 3.3. If ¢ : [0,00) — [0,00) is a lower semi-continuous functions such that
©(t) = 0 if and only if t = 0 and define & : [0,00)? — R by &(t,s) = s — p(s) —t for all
t,s € [0,00), then & is Cr — b—simulation function where F(s,t) = s —t and Cr = 0.

Example 3.4. If ¢ : [0,00) — [0,1) is a function such that limsup¢(t) < 1 for all

t—rt
r > 0, and define &3 : [0,00)? — R by &(t,s) = sp(s) —t for all t,5 € [0,00), then &3 is
Cr — b—simulation function where F(s,t) = s —t and Cr = 0.

Theorem 3.5. Let (X,d) be a complete b—metric space with a constant K > 1 and let
f: X — X be a mapping. Suppose that there exists a C'rp — b—simulation function £c,
such that

ECF(Kd(f‘Tafy)vd(x7y)) ZCF7f0r all xayGX' (31)
Then f has a unique fized point.



Fixed Point Theorems on b—Metric Spaces via C'r — b—Simulation Functions 81

Proof. Let zyp € X be arbitrary and {z,} be a sequence in X defined by =, = fa,_1, for

all n € N. If x,,_1 = x,, for some m € N, then x,,_1 = x,, = fx,;,_1, that is z,,_1 is a

fixed point of f. Therefore, suppose that x,,_1 # x,, for all n € N.

We have devided the proof in 4 steps.

Step 1. We shall now prove that lim d(x,,z,+1) = 0. Using (3.1) and ({¢,.1), for all
n—oo

n >0,

Cr < &op (Kd(frn_1, frn),d(@n—1,7n))
= gC'F (Kd(xnv -Tn+1)7 d(xnflv mn))
< F(d(zp—1,2n), Kd(@n, Tni1)). (3.2)
Form (Cf1) of definition 2.9 it follows that d(z,—1,2n) > Kd(zy,Zn41), for all n > 0.

Then {d(zn—1,2,)} is a decreasing sequence of nonnegative real numbers. Hence there
exists r > 0 such that lim d(z,_1,2,) =1

n—oo
Assume that r > 0. Applying the condition (¢,2), with t, = d(z,2n41) and s, =
d(xp—_1,2y), it follows that

limsup éon (Kd(2p, i), d(@n—1,2,)) < Cp,

n—0oo

which contradics (3.2) because (¢, (Kd(2n, Tnt1), d(Xn—1,%,)) > Cr. Thus

lim d(z,,zn41) =7 =0.
n— o0

Step 2. We claim that the sequence {z,} is a bounded sequence. Assume that {z,} is
not a bounded sequence. Then there exists a subsequence {xz,, } of {z,} such that n; =1
and for each k € N, ng41 is the minimum integer such that

d($nk+17xnk) >1
and d(Zm, Zn,, ) < 1, for ngy <m < ngy1 — 1. By (b3) of definition 2.2, we get
1 <d(Znyy,,Tn,)
< Kd(xmwmxnkufl) + Kd(xnkﬂflv xnk)
< Kd(Tp, s Tnpy,—1) + K. (3.3)

Letting k — oo in (3.3) and lim d(zp,2,+1) = 0, we obtain
n— oo

1 <liminfd(zp,,,,Tn,) <limsupd(zn,,,, Tn,) < K (3.4)

k—o0 k—s00
From (3.1) and property ({¢,1), we have
CF S é-CF (Kd(f.’l:nk+1717 fxnk71)7 d(xnk+1717 xnkfl))
= §CF (Kd(xnk+1 ) xnk)? d(‘r"k+1_1’ xnk—l))
< F(d(Ink+l_1,$nk_1),Kd(InkJrl,l‘nk)). (35)
Using (Cf1) of the definition 2.9 and (b3) of definition 2.2, it follows that
Kd(xnk+1 ’ xnk) < d(xnk+1*17 xnkfl)
< Kd(‘r’ﬂkurl*h xnk) + Kd(‘r’ﬂk’x’ﬂkfl)
< K+ Kd(zny, @ny1). (3.6)
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Letting k — oo in the above inequality and using (3.4), we deduce that there exist

klingo (Trpyr>Tny,) =1 and kl;ngo d(Tnyy—1:Tn—1) = K.
Therefore by 3.5 and ({¢,2), with t, = d(zn,.,,,2n,) and s, = d(zp, —1,Tn,—1), We
have

CF S lim sup gCF (Kd(xnkerxnk)a d(xnk+1—17 xnk—l)) < CFa

k—o0

which is a contradiction. Hence the sequence {x,} is bounded.

Step 3. Now, we prove that the sequence {z,} is Cauchy in X.
Let A,, = sup{d(z;,z;) : 4,7 > n}, neN.
Since the sequence {z,} is bounded, A, < oo for all n € N and since the sequence {4, }
is a positive decreasing, there exists A > 0 such that
lim A, = A. (3.7

n—oo

Suppose that A > 0. Then by the definition of A,,, for every k € N there exists ng, my € N
such that my > ny > k and

1
Ak — % < d(l‘mk7$nk) < Ak (38)
Letting k — oo in (3.8), we have
klir& A(Tmy, Tn,) = A. (3.9)

By (3.1) and property (¢, 1), we have
CYF < fCF (Kd(fxmkfh fxnk*1)7 d(xmk717 xnkfl))
=&cp (Kd(xmk ) xnk)v d<xmk—1’ xnk—l))
< F(d(xmk—lv xnk—1)7 Kd(zmk ) xnk))
Using (Cf1) of the definition 2.9 and definition of A4,,, we get
Kd(xm,, Tny) < A(@mp—1, Tnj—1) < Ap_1. (3.10)
Letting k£ — oo in (3.10), using (3.7) and (3.9), we have

KA< likminfd(xmk_l,xnk_l) < limsup d(Tmy—1,Tn,—1) < A. (3.11)
— 00

k—o0

From (3.11) we see that, if K > 1 then A = 0. If K = 1 then by the property ({¢.2) with
ty = d(Tm,,, Tn, ) and sg = d(Tm, -1, Tn,—1), We get

Cr <limsupéc, (Kd(Tm,, Tny), A @Tmy—1,Tn,—1)) < CF,
k—o0
which is a contradiction. Thus A = 0, that is lim A, = 0, for all K > 1. This prove that
n—oo

{z,} is a Cauchy sequence.

Step 4. We claim that f has a unique fixed point.
Since X is a complete b—metric space and {z,} is a Cauchy sequence in X, there exists
z € X such that

lim z, = z. (3.12)

n—oo
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We shall prove that z is a fixed point of f. Using (3.1) and property ({¢,1), we obtain
Cr < &op(Kd(fan, f2),d(xn, 2))
< F(d(zp, 2), Kd(fx,, f2)).
From (Cf1) of definition 2.9, it follows that
d(xn,z) > Kd(fx,, fz), forall n €N,
and consequently
d(z, fz) < Kd(z,Zp41) + Kd(2py1, f2)
= Kd(z, %p41) + Kd(fxy, f2)
< Kd(z,py1) + d(xn, 2). (3.13)

Letting n — oo in (3.13), we get d(z, fz) = 0, that is z is a fixed point of f. Finally, we
prove that z is the unique fixed point of f in X. Suppose that there exists w € X such
that fw = w and w # 2.

Using (3.1) and property ({¢,.1), we obtain

Cr < &op (Kd(fw, f2), d(w, 2))
< F(d(w, z), Kd(fw, fz))
= F(d(w,z), Kd(w, z)),

using (Cf1) of definition 2.9, we get d(w, z) > Kd(w, ).
Since d(w, z) # 0, K < 1, which is a contradiction. Therefore w = z. This complete the
proof. m

Corollary 3.6. ([12], Theorem 3.3). Let (X,d) be a complete b—metric space with K > 1
and let f: X — X be a mapping. Suppose that there exists A € (0,1) such that

Kd(fz, fy) < Ad(z,y), for all z,y e X.
Then f has a unique fized point.
Proof. 1t follows from Theorem 3.5 using the Cr — b—simulation function
e (t s) =As — 1,
for all t,s > 0 and F(s,t) = s —t and Cr = 0. L]

Corollary 3.7. (Rhoades Type [13]). Let (X, d) be a complete b—metric space with K > 1
and let f : X — X be a mapping. Suppose that there exists a lower semi-continuous
function ¢ : [0,00) — [0,00) with ¢~1(0) = {0} such that

Kd(fz, fy) <d(z,y) — p(d(z,y)) for all z,y e X.
Then f has a unique fized point.
Proof. The result follows from Theorem 3.5 by taking as the Cr — b—simulation function
or(t,s) =s—¢(s) —t,
for all t,s > 0 and F(s,t) =s—t and Cr = 0. n
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Corollary 3.8. (Reich Type [14]). Let (X,d) be a complete b—metric space with K > 1
and let f: X — X be a mapping. Suppose that there exists a function ¢ : [0,00) — [0,1)
with limsup ¢(t) < 1 for all r > 0 such that

t—rt

Kd(fz, fy) < o(d(z,y))d(z,y) for all z,y e X.
Then f has a unique fized point.
Proof. Tt follows from Theorem 3.5 using the Cr — b—simulation function
Eop(t, s) = sp(s) —t,
for all t,s > 0 and F(s,t) =s—t and Cp = 0. ]

Corollary 3.9. (Boyd-Wong type [15]). Let (X,d) be a complete b—metric space with
K >1andlet f: X — X be a mapping. Suppose that there exists an upper semi-
continuous function n : [0,00) — [0,00) with n(t) < t for allt > 0 and n(0) = 0 such
that

Kd(fx, fy) <n(d(z,y)) for all z,y e X.

Then f has a unique fized point.
Proof. 1t follows from Theorem 3.5 using the Cr — b—simulation function

ECF(tvs) :77(3) — 1,
for all t,s > 0 and F(s,t) =s—t and Cr = 0. L]

Example 3.10. Let X =[0,1] and d: X x X — [0,00) be defined by d(z,y) = (z — y)*.
Then (X, d) is a complete b—metric space with K = 2. Define f : X — X by fz = 2%

for all z € X and a € (0, %] Let cpp @ [0,00)* — R define by &c, (t,5) = 557 — t,liregfc
F(s,t) = s—t and Cr = 0, we have {¢,. is Cr —b—simulation function. Indeed, we obtain
€ (2. ) dla9) = 350~ 2d(fo. o)
(z —y)? ar___ay
T (r—y)?4+1 (1+x a 1+y)
(z—y)° 20%(z — y)°

(z—y)3?+1 (1+2)1+y)?
(z—y)? 2%z —y)?
T(-yP+l 1+ (z-y)?
(z —y)* —2d°(z —y)*
(z—y)?+1
>0=Cp, for all z,ye X.

Thus all the conditions of Theorem 3.5 are satisfied. Hence f has a unique fixed point
z = 0.
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