Thai Journal of **Math**ematics Volume 19 Number 1 (2021) Pages 67–76

http://thaijmath.in.cmu.ac.th

σ -Intertwinings, σ -Cocycles and Automatic Continuity

Hussien Mahdavian $\operatorname{Rad}^{1,*}$ and Assadollah Niknam 2,3

 ¹ Department of Mathematics, Salman Farsi University of Kazerun, P. O. Box 73175457, Kazerun 7319673544, Iran
 e-mail : mahdavianrad@kazerunsfu.ac.ir, hmahdavianrad@gmail.com (H. M. Rad)
 ² Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran
 ³ Department of Mathematics, Salman Institute of Higher Education, Mashhad, Iran
 e-mail : niknam@um.ac.ir, dassamankin@yahoo.co.uk (A. Niknam)

Abstract Let \mathcal{A} be an algebra, \mathcal{X} an \mathcal{A} -bimodule and $\sigma : \mathcal{A} \to \mathcal{A}$ a continuous homomorphism. In this paper, we show a continuous linear one to one correspondence between $Z^1_{\sigma}(\mathcal{A}, \mathcal{F})$, the set of all module valued σ -derivations and $LI_{\sigma}(\mathcal{A}, \mathcal{X})$, the set of all left σ -intertwining mappings, where $\mathcal{F} = B(\mathcal{A}_+, \mathcal{X})$ and that $B(\mathcal{A}_+, \mathcal{X})$ is a $\sigma(\mathcal{A})$ -bimodule. A similar fact is proved between $Z^n_{\sigma}(\mathcal{A}, \mathcal{F})$, the set of all *n*- σ -cocycles, and $LI^n_{\sigma}(\mathcal{A}, \mathcal{X})$, the set of all σ -intertwining mappings in the last variables. Also there exists a linear homeomorphism between $\mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F})$, the set of all continuous module valued σ -derivations, and $B(\mathcal{A}, \mathcal{X})$. Moreove, it is proved that the same relation satisfies between $\mathfrak{Z}^n_{\sigma}(\mathcal{A}, \mathcal{F})$ and $B^n(\mathcal{A}, \mathcal{X})$.

MSC: 47B47; 46H40

Keywords: derivation; σ -derivation; (σ, τ) -derivation; intertwining; cocycle

Submission date: 29.04.2016 / Acceptance date: 29.01.2018

1. INTRODUCTION

Let \mathcal{A} be an algebra. A linear operator d on \mathcal{A} is said to be a *deivation* if it satisfies the Libnitz Rule d(ab) = d(a)b + ad(b) for each $a, b \in \mathcal{A}$. Furthermore if σ is a homomorphism on \mathcal{A} , then $d\sigma$ has the property that $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for each $a, b \in \mathcal{A}$; a linear mapping with such a property, is called a σ -derivation.

Let \mathcal{A} be a Banach algebra and \mathcal{X} an \mathcal{A} -bimodule. We say that a function $S : \mathcal{A} \to \mathcal{X}$ is *intertwining* if $\Delta^1 : L^1(\mathcal{A}, \mathcal{X}) \to L^2(\mathcal{A}, \mathcal{X})$ defined by

$$\left(\Delta^{1}(S)\right)(a,b) = aS(b) - S(ab) + S(a)b, \quad \forall a,b \in \mathcal{A}$$

$$(1.1)$$

is continuous bilinear mapping. The function S is left intertwining if for each $a \in \mathcal{A}$, the function $\varphi_a : \mathcal{A} \to \mathcal{X}$ defined by $\varphi_a(b) = aS(b) - S(ab)$ is continuous. In the same manner, S is called *right intertwining* if for each $a \in \mathcal{A}$, the function $\phi_a : \mathcal{A} \to \mathcal{X}$ defined by $\varphi_a(b) = S(ba) - S(b)a$ is continuous; the set of all left-intertwining mappings (or rightintertwining mappings) of \mathcal{A} to \mathcal{X} , denoted by $LI(\mathcal{A}, \mathcal{X})$ (or $RI(\mathcal{A}, \mathcal{X})$). At the same

^{*}Corresponding author.

Published by The Mathematical Association of Thailand. Copyright \bigodot 2021 by TJM. All rights reserved.

time, the set of all intertwining mappings of \mathcal{A} to \mathcal{X} is denoted by $I(\mathcal{A}, \mathcal{X})$. In view of the uniform bounded theorem, $S : \mathcal{A} \to \mathcal{X}$ is intertwining if and only if, it is both left intertwining and right intertwining.

Similar to the definition Δ^1 , one can consider for each natural number n, the function $\Delta^n : L^n(\mathcal{A}, \mathcal{X}) \to L^{n+1}(\mathcal{A}, \mathcal{X})$ defined by

$$\begin{aligned} ((\Delta^n)S)(a_1, a_2, \dots a_n, a_{n+1}) &= (-1)^0 a_1 S(a_2, a_3, \dots a_{n+1}) \\ &+ (-1)^1 S(a_1 a_2, a_3, \dots a_{n+1}) \\ &+ (-1)^2 S(a_1, a_2 a_3, a_4, \dots a_{n+1}) \\ &+ \dots + (-1)^{n+1} S(a_1, a_2, \dots a_n) a_{n+1} \end{aligned}$$

in where $S \in L^n(\mathcal{A}, \mathcal{X})$ and $(a_1, a_2, ..., a_n, a_{n+1}) \in \mathcal{A}^{n+1}$. For each nonnegative integer n, we denote $Kerl(\Delta^n)$ by $Z^n(\mathcal{A}, \mathcal{X})$ and call each of its elements a n-cocycle; for more about this fact, we refer the reader to [1, 2]. In [1], it was also proved that if $S : \mathcal{A} \to \mathcal{X}$ is left intertwining, then there exists a module valued derivation $D : \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X})$ and a continuous left \mathcal{A} -module homomorphism $U : B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ such that $U \circ D = S$.

In this paper, prior to anything, the facts and the notations such as σ -intertwining, σ -cocycle, $Z^1_{\sigma}(\mathcal{A}, \mathcal{F})$, $LI_{\sigma}(\mathcal{A}, \mathcal{X})$, $Z^n_{\sigma}(\mathcal{A}, \mathcal{F})$ will be defined and after that we extend some of theorems and results stated on the concepts intertwining and cocycle in [1, 2].

2. σ -Intertwinings and σ -Cocycles

Definition 2.1. Let \mathcal{A} be a Banach algebra, \mathcal{X} a Banach \mathcal{A} -bimodule and $\sigma : \mathcal{A} \to \mathcal{A}$ a continuouse homomorphism linear mapping. We say that a function $S : \mathcal{A} \to \mathcal{X}$ is a σ -intertwining mapping if $\Delta^1 : L^1(\mathcal{A}, \mathcal{X}) \to L^2(\mathcal{A}, \mathcal{X})$ defined by

$$\left(\Delta^{1}(S)\right)(a,b) = \sigma(a)S(b) - S(ab) + S(a)\sigma(b), \quad \forall a, b \in \mathcal{A}$$

$$(2.1)$$

is continuous bilinear mapping.

Definition 2.2. Let \mathcal{A} , \mathcal{X} , σ be as in Definition 2.1. We say that a function $S : \mathcal{A} \to \mathcal{X}$ is a *left* σ -*intertwining mapping* if for each $a \in \mathcal{A}$, the function $\varphi_a : \mathcal{A} \to \mathcal{X}$ defined by $\varphi_a(b) = \sigma(a)S(b) - S(ab)$ is continuous. In the same manner, S is a *right* σ -*intertwining mapping* if for each $a \in \mathcal{A}$, the function $\phi_a : \mathcal{A} \to \mathcal{X}$ defined by $\varphi_a(b) = S(ba) - S(b)\sigma(a)$ is continuous; we denote the set of all left σ -intertwining mappings (or right σ -intertwining mappings) of \mathcal{A} to \mathcal{X} , by $LI_{\sigma}(\mathcal{A}, \mathcal{X})$ (or $RI_{\sigma}(\mathcal{A}, \mathcal{X})$).

Remark 2.3. In view of the uniform bounded theorem, $S : \mathcal{A} \to \mathcal{X}$ is σ -intertwining if and only if, it is both left σ -intertwining mapping and right σ -intertwining; the set of all σ -intertwining mappings of \mathcal{A} to \mathcal{X} , denoted by $I_{\sigma}(\mathcal{A}, \mathcal{X})$.

Remark 2.4. Let $\mathcal{A}, \mathcal{X}, \sigma$ be as in Definition 2.1. Similar to the definition Δ^1 , for each natural number n, we consider $\Delta^n : L^n(\mathcal{A}, \mathcal{X}) \to L^{n+1}(\mathcal{A}, \mathcal{X})$ defined for each $S \in L^n(\mathcal{A}, \mathcal{X})$ and each $(a_1, a_2, ..., a_n, a_{n+1}) \in \mathcal{A}^{n+1}$ by

$$\begin{aligned} ((\Delta^n)(S))(a_1, a_2, \dots a_n, a_{n+1}) &= (-1)^0 \sigma(a_1) S(a_2, a_3, \dots a_{n+1}) \\ &+ (-1)^1 S(a_1 a_2, a_3, \dots a_{n+1}) \\ &+ (-1)^2 S(a_1, a_2 a_3, a_4, \dots a_{n+1}) \\ &+ \dots + (-1)^{n+1} S(a_1, a_2, \dots a_n) \sigma(a_{n+1}). \end{aligned}$$

Also for n = 0, we define $\Delta^0 : \mathcal{X} \to L^1(\mathcal{A}, \mathcal{X})$ by the rule

 $((\Delta^0)(x))(a) = \sigma(a)x - x\sigma(a), \quad \forall x \in \mathcal{X} \text{ and } \forall a \in \mathcal{A}.$

One can easily prove that $\Delta^1 \circ \Delta^0 = 0$ and so $Im(\Delta^0) \subseteq Kerl(\Delta^1)$. Also, in general, it can be proved that for each nonnegative integer $n, \Delta^n \circ \Delta^{n-1} = 0$ and so $Im(\Delta^{n-1}) \subseteq Kerl(\Delta^n)$. Thus the following complex is presentable:

$$\begin{array}{cccc} 0 \xrightarrow{0} \mathcal{X} & \xrightarrow{\Delta^{0}} & L^{1}(\mathcal{A}, \mathcal{X}) \xrightarrow{\Delta^{1}} L^{2}(\mathcal{A}, \mathcal{X}) \xrightarrow{\Delta^{2}} L^{3}(\mathcal{A}, \mathcal{X}) \\ & \xrightarrow{\Delta^{3}} & \dots \xrightarrow{\Delta^{n-1}} L^{n}(\mathcal{A}, \mathcal{X}) \xrightarrow{\Delta^{n}} L^{n+1}(\mathcal{A}, \mathcal{X}) \xrightarrow{\Delta^{n+1}} \dots \end{array}$$

Definition 2.5. Let \mathcal{A} , \mathcal{X} , σ be as in Definition 2.1 and $x \in \mathcal{X}$. A linear mapping $d_x : \mathcal{A} \to \mathcal{X}$ is said to be an *inner* σ -*derivation* if for each $a \in \mathcal{A}$, $d_x(a) = \sigma(a)x - x\sigma(a)$. It can be easily prove that the function d_x is a σ -derivation.

Definition 2.6. Let \mathcal{A} , \mathcal{X} , σ be as in Definition 2.1. For each nonnegative integer n, we denote $Kerl(\Delta^n)$ by $Z^n_{\sigma}(\mathcal{A}, \mathcal{X})$ and call each of itself elements a n- σ -cocycle. Also we denote $Im(\Delta^n)$ by $N^{n+1}_{\sigma}(\mathcal{A}, \mathcal{X})$ and call each of itself elements a n- σ -coboundary. Clearly $Z^n_{\sigma}(\mathcal{A}, \mathcal{X}) \subseteq L^n(\mathcal{A}, \mathcal{X})$ and $N^n_{\sigma}(\mathcal{A}, \mathcal{X}) \subseteq L^n(\mathcal{A}, \mathcal{X})$.

Remark 2.7. In view of the fact stated recently, $N_{\sigma}^{n}(\mathcal{A}, \mathcal{X}) \subseteq Z_{\sigma}^{n}(\mathcal{A}, \mathcal{X})$.

Remark 2.8. Suppose $T \in N^1_{\sigma}(\mathcal{A}, \mathcal{X}) = Im(\Delta^0)$. It turn out that there exists $x \in \mathcal{X}$ such that $T = (\Delta^0)(x)$. Then for each $a \in \mathcal{A}$ we have $T(a) = ((\Delta^0)(x))(a) = \sigma(a)x - x\sigma(a)$; i.e. T is an inner σ -derivation. Also it is well known that if $S \in Z^1_{\sigma}(\mathcal{A}, \mathcal{X}) = Kerl(\Delta^1)$ then

$$\sigma(a)S(b) - S(ab) + S(a)\sigma(b) = 0, \quad \forall a, b \in \mathcal{A};$$

i.e. S is a $\sigma\text{-drivation.}$

Definition 2.9. As it was mentioned above, $N^1_{\sigma}(\mathcal{A}, \mathcal{X}) \subseteq Z^1_{\sigma}(\mathcal{A}, \mathcal{X})$. We set

$$H^1_{\sigma}(\mathcal{A}, \mathcal{X}) = N^1_{\sigma}(\mathcal{A}, \mathcal{X}) - Z^1_{\sigma}(\mathcal{A}, \mathcal{X})$$

and define it the σ -cohomology space of \mathcal{A} with coefficients in \mathcal{X} . In the same manner, we define $H^n_{\sigma}(\mathcal{A}, \mathcal{X}) = N^n_{\sigma}(\mathcal{A}, \mathcal{X}) - Z^n_{\sigma}(\mathcal{A}, \mathcal{X})$ and call it the *n*- σ -cohomology space of \mathcal{A} with coefficients in \mathcal{X} .

Remark 2.10. Let \mathcal{A} , \mathcal{X} , σ be as in Definition 2.1. It is clear that the unitization of \mathcal{A} , i.e. $\mathcal{A}_+ = C \oplus \mathcal{A}$, is a \mathcal{A} -bimodule too. The vector space $B(\mathcal{A}_+, \mathcal{X})$ with the definition

 $(\sigma(a)f)(x) = \sigma(a)f(x), \quad (f\sigma(a))(x) = f(ax), \quad \forall a \in \mathcal{A}, \quad \forall f \in B(\mathcal{A}_+, \mathcal{X}), \quad \forall x \in \mathcal{X}$

is a $\sigma(\mathcal{A})$ -bimodule.

Theorem 2.11. Let $\mathcal{A}, \mathcal{X}, \sigma$ be as in Definition 2.1. Let $S : \mathcal{A} \to \mathcal{X}$ be a left σ -intertwining mapping. Then there exists a module valued σ -derivation $D : \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X})$ and a continuous left $\sigma(\mathcal{A})$ -module homomorphism $U : B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ such that $U \circ D = S$.

Proof. As it was mentioned already, we consider $B(\mathcal{A}_+, \mathcal{X})$ as a $\sigma(\mathcal{A})$ -bimodule by $(\sigma(a)f)(x) = \sigma(a)f(x), \quad (f\sigma(a))(x) = f(ax), \quad \forall a \in \mathcal{A}, \quad \forall f \in B(\mathcal{A}_+, \mathcal{X}), \quad \forall x \in \mathcal{X}.$

We define $U: B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ by

 $U(T) = T(1), \quad \forall T \in B(\mathcal{A}_+, \mathcal{X})$

and $D: \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X})$ by

$$D(a)(\beta, b) = \beta S(a) - \sigma(a)S(b) + S(ab).$$

On the one hand,

$$D(a_1a_2)(\beta, b) = \beta S(a_1a_2) + S(a_1a_2b) - \sigma(a_1a_2)S(b).$$

On the other hand

$$(D(a_1)\sigma(a_2))(\beta,b) = D(a_1)((0,a_2)(\beta,b)) = D(a_1)((0,\beta a_2 + a_2b)(\beta,b)) = \beta S(a_1a_2) + S(a_1a_2b) - \beta \sigma(a_1)S(a_2) - \sigma(a_1)S(a_2b)$$

and

$$\begin{aligned} (\sigma(a_1)D(a_2))(\beta,b) &= \sigma(a_1)(D(a_2)(\beta,b)) \\ &= \sigma(a_1)(\beta S(a_2) + S(a_2b) - \sigma(a_2)S(b)) \\ &= \beta\sigma(a_1)S(a_2) + \sigma(a_1)S(a_2b) - \sigma(a_1)\sigma(a_2)S(b). \end{aligned}$$

Thus we have

$$D(a_1a_2) = D(a_1)\sigma(a_2) + \sigma(a_1)D(a_2).$$

To prove $S = U \circ D$, we arrive at

$$(U \circ D)(a) = U(D(a)) = (D(a))(1) = D(a)(1,0) = 1S(a) + S(a,0) - \sigma(a)S(0) = S(a).$$

It is necessary to mention that clearly $D(a) \in B(\mathcal{A}_+, \mathcal{X})$.

Theorem 2.12. Let $D : \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X})$ be a module valued σ -derivation. The mapping $S = U \circ D : \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ is left σ -intertwining.

Proof. To prove, suppose $a \in \mathcal{A}$ is arbitrary. We define $\varphi_a : \mathcal{A} \to \mathcal{X}$ by

$$\varphi_a(b) = \sigma(a)S(b) - S(ab), \quad \forall b \in \mathcal{A}.$$

Thus we get

$$\begin{aligned} \varphi_{a}(b) &= \sigma(a)(U \circ D)(b) - (U \circ D)(ab) \\ &= \sigma(a)(D(b)(1)) - (D(ab)(1)) \\ &= \sigma(a)(D(b)(1)) - (\sigma(a)D(b)(1) + D(a)\sigma(b))(1) \\ &= \sigma(a)D(b)(1) - \sigma(a)D(b)(1) - D(a)(b) = -D(a)(b). \end{aligned}$$

It is clear that $D(a)(b) \in B(\mathcal{A}_+, \mathcal{X})$; hence $\varphi_a : \mathcal{A} \to \mathcal{X}$ is continuous and consequently $U \circ D : \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ is left σ -intertwining.

Corollary 2.13. By considering $F = B(\mathcal{A}_+, \mathcal{X})$, the function $\phi: Z^1_{\sigma}(\mathcal{A}, \mathcal{F}) \to LI_{\sigma}(\mathcal{A}, \mathcal{X})$

$$\phi(D) = U \circ D, \quad \forall \ D \in Z^1_{\sigma}(\mathcal{A}, \mathcal{F})$$

is an onto linear mapping.

Theorem 2.14. ϕ is continuous.

Proof.

$$||\phi|| = \sup_{||D|| \le 1} ||\phi(D)||$$

=
$$\sup_{||D|| \le 1} ||U \circ D||$$

and

$$\begin{aligned} ||U \circ D|| &= \sup_{\substack{||a|| \le 1}} ||(U \circ D)(a)|| \\ &= \sup_{\substack{||a|| \le 1}} ||(D(a))(1)|| \\ &\le ||D(a)|| \le ||D||. \end{aligned}$$

Then $||\phi|| \leq 1$; i.e. ϕ is continuous.

Theorem 2.15. ϕ is one-to-one.

Proof. We claim that the σ -derivation D is unique for each left σ -intertwining S. It turn out that

$$\beta D(a)(1) + (D(ab)(1)) - \sigma(a)(D(b)(1)) = \beta D(a)(1) + (\sigma(a)D(b) + D(a)\sigma(b))(1) - \sigma(a)(D(b)(1)) = \beta D(a)(1) + D(a)b = D(a)(\beta, b).$$

Thus if $\phi(D_1) = \phi(D_2)$, then $D_1(a)(1) = D_2(a)(1)$, for each $a \in \mathcal{A}$ and hence $D_1 = D_2$.

Remark 2.16. If in Remark 2.4, we replace the spaces $L^n(\mathcal{A}, \mathcal{X})$ by $B^n(\mathcal{A}, \mathcal{X})$, then we will denote $Z^n_{\sigma}(\mathcal{A}, \mathcal{X})$ and $N^n_{\sigma}(\mathcal{A}, \mathcal{X})$ by $\mathfrak{Z}^n_{\sigma}(\mathcal{A}, \mathcal{X})$ and $\mathfrak{N}^n_{\sigma}(\mathcal{A}, \mathcal{X})$, respectively and call each of theirs elemants the continuous n- σ -cocycle and the continuous n- σ -coboundary, respectively; in this case,

$$\mathfrak{H}^1_{\sigma}(\mathcal{A},\mathcal{X}) = \mathfrak{N}^1_{\sigma}(\mathcal{A},\mathcal{X}) - \mathfrak{Z}^1_{\sigma}(\mathcal{A},\mathcal{X})$$

is called the continuous σ -cohomology of \mathcal{A} with coefficients in \mathcal{X} . In the same manner,

$$\mathfrak{H}^n_\sigma(\mathcal{A},\mathcal{X}) = \mathfrak{N}^n_\sigma(\mathcal{A},\mathcal{X}) - \mathfrak{Z}^n_\sigma(\mathcal{A},\mathcal{X})$$

is called the continuous n- σ -cohomology of \mathcal{A} with coefficients in \mathcal{X} .

Theorem 2.17. The mapping

$$\begin{split} \phi &: \mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F}) \to B(\mathcal{A}, \mathcal{X}) \\ \phi(D) &= U \circ D, \quad \forall \ D \in \mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F}) \end{split}$$

is a linear homeomorphism.

Proof. Suppose $D \in \mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F})$. Then

$$\sup_{|a|| \le 1} ||(U \circ D)(a)|| \le ||D||$$

and hence $S = U \circ D \in B(\mathcal{A}, \mathcal{X})$. Now assume that $T \in B(\mathcal{A}, \mathcal{X})$. Since for each $a \in \mathcal{A}$, the mapping $\varphi_a : \mathcal{A} \to \mathcal{X}$ defined by

$$\varphi_a(b) = \sigma(a)T(b) - T(ab), \quad \forall \ b \in \mathcal{A},$$

is continuous, then $T \in LI_{\sigma}(\mathcal{A}, \mathcal{X})$; in fact, $B(\mathcal{A}, \mathcal{X}) = LI_{\sigma}(\mathcal{A}, \mathcal{X})$. Thus there exists $D \in Z^{1}_{\sigma}(\mathcal{A}, \mathcal{F})$ such that $\phi(D) = T$. Since

$$||D|| = \sup_{||a|| \le 1} ||D(a)||$$

and

$$||D(a)|| \sup_{||(\beta,b)|| \le 1} ||D(a)(\beta,b)||$$

and

$$D(a)(\beta, b) = \beta S(a) - \sigma(a)S(b) + S(ab);$$

then $D \in \mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F})$. Thus ϕ is bounded, one-to-one and onto and since $\mathfrak{Z}^1_{\sigma}(\mathcal{A}, \mathcal{F})$ is a Banach space, from the open mapping theorem, ϕ is homeomorphism.

Corollary 2.18. Let \mathcal{A} , \mathcal{X} , σ be as in Definition 2.1. Let all of module valued σ -derivation from \mathcal{A} to $B(\mathcal{A}_+, \mathcal{X})$ be continuous. Then every left σ -intertwining mapping is continuous.

Remark 2.19. Similar to left σ -intertwinings, the concept of the right σ -intertwinings is presentable. Moreove that, all of theorems and corollary 2.18 until 2.17 hold for right σ -intertwinings too; the only pointable fact is that, for this case, we define the function $D: \mathcal{A} \to B(\mathcal{A}_+, \mathcal{X})$ by

 $D(a)(\beta, b) = \beta S(a) + S(ba) - S(b)\sigma(a)$

and consider $B(\mathcal{A}_+, \mathcal{X})$ as a $\sigma(\mathcal{A})$ -bimodule by

$$(\sigma(a)f)(x) = f(xa), \quad (f\sigma(a))(x) = f(x)\sigma(a), \quad \forall a \in \mathcal{A}, \quad \forall f \in B(\mathcal{A}_+, \mathcal{X}), \quad \forall x \in \mathcal{X}.$$

Remark 2.20. The facts such as left intertwinings and right intertwinings stated by now, can be extended as the following.

Definition 2.21. The mapping $S \in L^n(\mathcal{A}, \mathcal{X})$ is said to be σ -intertwining in the last variable if for each $a_1, a_2, a_3, \dots a_n \in \mathcal{A}$, the linear mapping

$$\varphi: \mathcal{A} \to \mathcal{X}$$
$$\varphi(a) = (\delta^n(S)(a_1, a_2, a_3, \dots a_n, a), \quad \forall a \in \mathcal{A}$$

is continuous.

Theorem 2.22. Let $S : \mathcal{A}^n \to \mathcal{X}$ be a σ -intertwining mapping in the last variable. There exists a continuous left $\sigma(\mathcal{A})$ -module homomorphism $U : B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ and a n- σ -cocycle $D : \mathcal{A}^n \to B(\mathcal{A}_+, \mathcal{X})$ such that $U \circ D = S$.

Proof. It need be noted that we consider $B(\mathcal{A}_+, \mathcal{X})$ as a $\sigma(\mathcal{A})$ -bimodule by

$$(\sigma(a)f)(x) = \sigma(a)f(x), \quad (f\sigma(a))(x) = f(ax), \quad \forall a \in \mathcal{A}, \quad \forall f \in B(\mathcal{A}_+, \mathcal{X}), \quad \forall x \in \mathcal{X}.$$

Suppose $U : B(\mathcal{A}_+, \mathcal{X}) \to \mathcal{X}$ is the same one that mentioned earlier. We consider the mapping

$$D: \mathcal{A}^n \to B(\mathcal{A}_+, \mathcal{X})$$

defined by

$$D(a_1, a_2, a_3, \dots a_n)(\beta, b) = \beta S(a_1, a_2, a_3, \dots a_n) + S(a_1, a_2, a_3, \dots a_n)\sigma(b) + (-1)^n \Delta^n(S)S(a_1, a_2, a_3, \dots a_n, b).$$

Since S is σ -intertwining in the last variable, one can conclude that $D(a) \in B(\mathcal{A}_+, \mathcal{X})$. Clearly $U \circ D = S$; because

$$(U \circ D)(a_1, a_2, a_3, \dots a_n) = (D(a_1, a_2, a_3, \dots a_n))(1)$$

= $(D(a_1, a_2, a_3, \dots a_n))(1, 0)$
= $1S(a_1, a_2, a_3, \dots a_n)$
+ $S(a_1, a_2, a_3, \dots a_n)0$
+ $(-1)^n \Delta^n(a_1, a_2, a_3, \dots a_n, 0)$
= $S(a_1, a_2, a_3, \dots a_n)$

Now it should be showed that $\Delta^n(D) = 0$. It turn out that

$$\begin{aligned} (\Delta^n(D))(a_1, a_2, a_3, \dots a_n, a) &= \sigma(a_1)D(a_2, a_3, \dots a_n, a) \\ &- D(a_1a_2, a_3, \dots a_n, a) \\ &+ D(a_1, a_2a_3, \dots a_n, a) \\ &- \dots \\ &+ (-1)^n D(a_1, a_2, a_3, \dots, a_n a) \\ &+ (-1)^{n+1}D(a_1, a_2, a_3, \dots, a_n)\sigma(a); \end{aligned}$$

on the one hand

$$\begin{aligned} \sigma(a_1)D(a_2, a_3, ... a_n, a)(\beta, b) &= \sigma(a_1)\beta S(a_2, a_3, ..., a_n, a) \\ &+ \sigma(a_1)S(a_2, a_3, ..., a_n, a)\sigma(b) \\ &+ (-1)^n \sigma(a_1)\Delta^n(S)(a_2, a_3, ... a_n, a, b) \end{aligned}$$

and

$$\begin{aligned} -D(a_1a_2, a_3, \dots a_n, a)(\beta, b) &= -\beta S(a_1a_2, a_3, \dots a_n, a) \\ &- S(a_1a_2, a_3, \dots, a_n, a)\sigma(b) \\ &+ (-1)^{n+1}\Delta^n(S)(a_1a_2, a_3, \dots a_n, a, b) \end{aligned}$$

and so on, until that

$$(-1)^{n} D(a_{1}, a_{2}, a_{3}, ..., a_{n}a)(\beta, b) = (-1)^{n} \beta S(a_{1}, a_{2}, a_{3}, ..., a_{n}a) + (-1)^{n} S(a_{1}, a_{2}, a_{3}, ..., a_{n}a)\sigma(b) + (-1)^{n} (-1)^{n} \Delta^{n}(S)(a_{1}a_{2}, a_{3}, ..., a_{n}a, b)$$

and

$$\begin{aligned} &(-1)^{n+1} (D(a_1, a_2, a_3, \dots, a_n) \sigma(a))(\beta, b) \\ &= (-1)^{n+1} (D(a_1, a_2, a_3, \dots, a_n) \sigma(a))(0, \beta a + ab) \\ &= (-1)^{n+1} \beta S(a_1, a_2, a_3, \dots, a_n) \sigma(a) \\ &+ (-1)^{n+1} \beta S(a_1, a_2, a_3, \dots, a_n) \sigma(a) \sigma(b) \\ &+ (-1)^{2n+1} \Delta^n(S)(a_1, a_2, a_3, \dots, a_n, ab) \\ &+ (-1)^{2n+1} \beta \Delta^n(S)(a_1, a_2, a_3, \dots, a_n, a). \end{aligned}$$

Adding the first parts of the relations stated above, we get

$$\beta \Delta^n(S)(a_1, a_2, a_3, \dots a_n, a)$$
 (2.2)

where (2.2) is deleted with the last part of the last relation. Adding the second parts, we get

$$\Delta^{n}(S)(a_{1}, a_{2}, a_{3}, \dots a_{n}, a)\sigma(b)$$
(2.3)

Adding the third parts and (2.3), we get

$$\Delta^{n+1}(\Delta^n(a_1, a_2, a_3, \dots a_n, b)) \tag{2.4}$$

whose produce is equal to 0; in fact $\Delta^n(D) = 0$.

Theorem 2.23. Let $D \in Z^n_{\sigma}(\mathcal{A}, \mathcal{F})$. There exists a σ -intertwining mapping in the last variable $S \in L^n(\mathcal{A}, \mathcal{X})$ such that $S = U \circ D$.

Proof. Define $S = U \circ D$. We should show that for each $a_1, a_2, a_3, ..., a_n \in \mathcal{A}$, the linear mapping

$$\varphi: \mathcal{A} \to \mathcal{X}$$
$$\varphi(a) = (\delta^n(S)(a_1, a_2, a_3, \dots a_n, a), \quad \forall a \in \mathcal{A}$$

is continuous. Since

$$\begin{split} (\delta^{n}(S)(a_{1},a_{2},a_{3},...a_{n},a) &= \sigma(a_{1})S(a_{2},a_{3},...,a_{n},a) \\ &- S(a_{1}a_{2},a_{3},...,a_{n},a) \\ &+ S(a_{1},a_{2}a_{3},...,a_{n},a) \\ &+ ...(-1)^{n}S(a_{1},a_{2},a_{3},...,a_{n}a) \\ &+ (-1)^{n+1}S(a_{1},a_{2},a_{3},...,a_{n})\sigma(a) \\ &= \sigma(a_{1}) \Big(D(a_{2},a_{3},...,a_{n},a)(1) \Big) \\ &- \Big(D(a_{1}a_{2},a_{3},...,a_{n},a) \Big)(1) \\ &+ (D(a_{1},a_{2}a_{3},...,a_{n},a) \Big)(1) \\ &+ ...(-1)^{n} \Big(D(a_{1},a_{2},a_{3},...,a_{n}) \Big)(1)\sigma(a) \\ &= \sigma(a_{1}) \Big(D(a_{2},a_{3},...,a_{n},a)(1) \Big) \\ &- \sigma(a_{1}) \Big(D(a_{2},a_{3},...,a_{n},a)(1) \Big) \\ &+ (-1)^{n} \Big(D(a_{1},a_{2},a_{3},...,a_{n})\sigma(a) \Big)(1) \\ &+ (-1)^{n+1} \Big(D(a_{1},a_{2},a_{3},...,a_{n}) \Big)(1)\sigma(a) \\ &= (-1)^{n} \Big(D(a_{1},a_{2},a_{3},...,a_{n})(1) \sigma(a) \\ &+ (-1)^{n+1} \Big(D(a_{1},a_{2},a_{3},...,a_{n}) \Big)(1)\sigma(a) \\ &+ (-1)^{n+1} \Big(D(a_{1},a_{2},a_{3},...,a_{n}) \Big)(1)\sigma(a) \Big) \\ &+ (-1)^{n+1} \Big(D(a_{1},a_{2},a_{3},...,a_{n}) \Big)(1)\sigma(a), \end{split}$$

clearly φ is continuous. Then S is σ -intertwining in the last variable.

Corollary 2.24. By considering $F = B(\mathcal{A}_+, \mathcal{X})$, the function $\phi : Z^n_{\sigma}(\mathcal{A}, \mathcal{F}) \to LI^n_{\sigma}(\mathcal{A}, \mathcal{X})$ $\phi(D) = U \circ D, \quad \forall \ D \in Z^n_{\sigma}(\mathcal{A}, \mathcal{F})$

is an onto, continuous and linear mapping.

Theorem 2.25. ϕ is one-to-one.

Proof. We claim that D is unique for each σ -intertwining in the last variable S. It turn out that

$$\beta D(a_1, a_2, a_3, \dots a_n)(1) + (D(a_1, a_2, a_3, \dots a_n)(1))\sigma(a) + (-1)^n ((-1)^n D(a_1, a_2, a_3, \dots, a_n)(0, a) + (-1)^{n+1} [D(a_1, a_2, a_3, \dots, a_n)](1)\sigma(a)) = D(a_1, a_2, a_3, \dots a_n)(\beta, 0) + D(a_1, a_2, a_3, \dots a_n)(0, a) = D(a_1, a_2, a_3, \dots a_n)(\beta, a)$$

Thus if $\phi(D_1) = \phi(D_2)$, then $D_1(a)(1) = D_2(a)(1)$ for each $a \in \mathcal{A}$ and hence $D_1 = D_2$.

Theorem 2.26. The mapping

$$\phi: \mathfrak{Z}^{n}_{\sigma}(\mathcal{A}, \mathcal{F}) \to B^{n}_{\sigma}(\mathcal{A}, \mathcal{X})$$

$$\phi(D) = U \circ D, \quad \forall \ D \in \mathfrak{Z}^{n}_{\sigma}(\mathcal{A}, \mathcal{F})$$

is a linear homeomorphism.

Proof. If
$$D \in \mathfrak{Z}_{\sigma}^{n}(\mathcal{A},\mathcal{F})$$
, then $\phi(D) = U \circ D$ is continuous. Now if $T \in B^{n}(\mathcal{A},\mathcal{X})$, then
 $(\delta^{n}(T)(a_{1},a_{2},a_{3},...a_{n},a) = \sigma(a_{1})T(a_{2},a_{3},...,a_{n},a)$
 $- T(a_{1}a_{2},a_{3},...,a_{n},a)$
 $+ T(a_{1},a_{2}a_{3},...,a_{n},a)$
 $+ ...(-1)^{n}T(a_{1},a_{2},a_{3},...,a_{n}a)$
 $+ (-1)^{n+1}T(a_{1},a_{2},a_{3},...,a_{n})\sigma(a)$

is continuous. So $T \in LI^n_{\sigma}(\mathcal{A}, \mathcal{X})$. Then there exists $D \in Z^n_{\sigma}(\mathcal{A}, \mathcal{F})$ such that $\phi(D) = T$. Since T is continuous, then so is D. Then $D \in \mathfrak{Z}^n_{\sigma}(\mathcal{A}, \mathcal{F})$. Since $\mathfrak{Z}^n_{\sigma}(\mathcal{A}, \mathcal{F})$ is Banach space, in view of the open mapping theorem, ϕ is homeomorphism.

Definition 2.27. The mapping $S \in L^n(\mathcal{A}, \mathcal{X})$ is said to be σ -intertwining in the first variable if for each $a_1, a_2, a_3, \dots a_n \in \mathcal{A}$, the linear mapping

$$\varphi: \mathcal{A} \to \mathcal{X}$$
$$\varphi(a) = (\delta^n(S)(a, a_1, a_2, a_3, \dots a_n), \quad \forall a \in \mathcal{A}$$

is continuous.

Remark 2.28. Similar to σ -intertwining in the last variables, one can define a analogous statement called σ -intertwining in the first variable. Moreover, all of theorems and corollary 2.22 until 2.26 hold too; the only pointable fact is that, for this case, we define the function

$$D: \mathcal{A}^n \to B(\mathcal{A}_+, \mathcal{X})$$

by

$$D(a_1, a_2, a_3, \dots a_n)(\beta, b) = \beta S(a_1, a_2, a_3, \dots a_n) + \sigma(b)S(a_1, a_2, a_3, \dots a_n) + (-1)^n \Delta^n(S)(b, a_1, a_2, a_3, \dots a_n).$$

and consider $B(\mathcal{A}_+, \mathcal{X})$ as a $\sigma(\mathcal{A})$ -bimodule by

$$(\sigma(a)f)(x) = f(xa), \quad (f\sigma(a))(x) = f(x)\sigma(a), \quad \forall a \in \mathcal{A}, \quad \forall f \in B(\mathcal{A}_+, \mathcal{X}), \quad \forall x \in \mathcal{X}.$$

References

- H.G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [2] H.G. Dales, A.R. Villena, Continuity of Derivations, Intertwining Maps, and Cocycles from Banach Algebras, J. Lond. Math. Soc. 2 (63) (2001) 215–225.