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Abstract Let A be an algebra, X an A-bimodule and σ : A → A a continuous homomorphism. In this

paper, we show a continuous linear one to one correspondence between Z1
σ(A,F), the set of all module

valued σ-derivations and LIσ(A,X ), the set of all left σ-intertwining mappings, where F = B(A+,X )

and that B(A+,X ) is a σ(A)-bimodule. A similar fact is proved between Znσ (A,F), the set of all n-σ-

cocycles, and LInσ (A,X ), the set of all σ-intertwining mappings in the last variables. Also there exists

a linear homeomorphism between Z1
σ(A,F), the set of all continuous module valued σ-derivations, and

B(A,X ). Moreove, it is proved that the same relation satisfies between Znσ(A,F) and Bn(A,X ).
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1. Introduction

Let A be an algebra. A linear operator d on A is said to be a deivation if it satisfies the
Libnitz Rule d(ab) = d(a)b+ad(b) for each a, b ∈ A. Furthermore if σ is a homomorphism
on A, then dσ has the property that d(ab) = d(a)σ(b) + σ(a)d(b) for each a, b ∈ A; a
linear mapping with such a property, is called a σ-derivation.

Let A be a Banach algebra and X an A-bimodule. We say that a function S : A → X
is intertwining if ∆1 : L1(A,X )→ L2(A,X ) defined by(

∆1(S)
)

(a, b) = aS(b)− S(ab) + S(a)b, ∀a, b ∈ A (1.1)

is continuous bilinear mapping. The function S is left intertwining if for each a ∈ A,
the function ϕa : A → X defined by ϕa(b) = aS(b) − S(ab) is continuous. In the same
manner, S is called right intertwining if for each a ∈ A, the function φa : A → X defined
by ϕa(b) = S(ba)−S(b)a is continuous; the set of all left-intertwining mappings (or right-
intertwining mappings) of A to X , denoted by LI(A,X ) ( or RI(A,X )). At the same
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time, the set of all intertwining mappings of A to X is denoted by I(A,X ). In view of
the uniform bounded theorem, S : A → X is intertwining if and only if, it is both left
intertwining and right intertwining.

Similar to the definition ∆1, one can consider for each natural number n, the function
∆n : Ln(A,X )→ Ln+1(A,X ) defined by

((∆n)S)(a1, a2, ...an, an+1) = (−1)0a1S(a2, a3, ...an+1)

+ (−1)1S(a1a2, a3, ...an+1)

+ (−1)2S(a1, a2a3, a4, ...an+1)

+ ...+ (−1)n+1S(a1, a2, ...an)an+1

in where S ∈ Ln(A,X ) and (a1, a2, ...an, an+1) ∈ An+1. For each nonnegative integer
n, we denote Kerl(∆n) by Zn(A,X ) and call each of its elements a n-cocycle; for more
about this fact, we refer the reader to [1, 2]. In [1], it was also proved that if S : A → X
is left intertwining, then there exists a module valued derivation D : A → B(A+,X ) and
a continuous left A-module homomorphism U : B(A+,X )→ X such that U ◦D = S.

In this paper, prior to anything, the facts and the notations such as σ-intertwining,
σ-cocycle, Z1

σ(A,F), LIσ(A,X ), Znσ (A,F) will be defined and after that we extend some
of theorems and results stated on the concepts intertwining and cocycle in [1, 2].

2. σ-Intertwinings and σ-Cocycles

Definition 2.1. Let A be a Banach algebra, X a Banach A-bimodule and σ : A → A
a continuouse homomorphism linear mapping. We say that a function S : A → X is a
σ-intertwining mapping if ∆1 : L1(A,X )→ L2(A,X ) defined by(

∆1(S)
)

(a, b) = σ(a)S(b)− S(ab) + S(a)σ(b), ∀a, b ∈ A (2.1)

is continuous bilinear mapping.

Definition 2.2. Let A , X , σ be as in Definition 2.1. We say that a function S : A → X
is a left σ-intertwining mapping if for each a ∈ A, the function ϕa : A → X defined by
ϕa(b) = σ(a)S(b)− S(ab) is continuous. In the same manner, S is a right σ-intertwining
mapping if for each a ∈ A, the function φa : A → X defined by ϕa(b) = S(ba)−S(b)σ(a) is
continuous; we denote the set of all left σ-intertwining mappings (or right σ-intertwining
mappings) of A to X , by LIσ(A,X ) ( or RIσ(A,X )).

Remark 2.3. In view of the uniform bounded theorem, S : A → X is σ-intertwining if
and only if, it is both left σ-intertwining mapping and right σ-intertwining; the set of all
σ-intertwining mappings of A to X , denoted by Iσ(A,X ).

Remark 2.4. Let A, X , σ be as in Definition 2.1. Similar to the definition ∆1, for
each natural number n, we consider ∆n : Ln(A,X ) → Ln+1(A,X ) defined for each
S ∈ Ln(A,X ) and each (a1, a2, ...an, an+1) ∈ An+1 by

((∆n)(S))(a1, a2, ...an, an+1) = (−1)0σ(a1)S(a2, a3, ...an+1)

+ (−1)1S(a1a2, a3, ...an+1)

+ (−1)2S(a1, a2a3, a4, ...an+1)

+ ...+ (−1)n+1S(a1, a2, ...an)σ(an+1).
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Also for n = 0, we define ∆0 : X → L1(A,X ) by the rule

((∆0)(x))(a) = σ(a)x− xσ(a), ∀x ∈ X and ∀a ∈ A.

One can easily prove that ∆1 ◦∆0 = 0 and so Im(∆0) ⊆ Kerl(∆1). Also, in general, it
can be proved that for each nonnegative integer n, ∆n ◦∆n−1 = 0 and so Im(∆n−1) ⊆
Kerl(∆n). Thus the following complex is presentable:

0
0−→ X ∆0

−→ L1(A,X )
∆1

−→ L2(A,X )
∆2

−→ L3(A,X )

∆3

−→ ...
∆n−1

−→ Ln(A,X )
∆n

−→ Ln+1(A,X )
∆n+1

−→ ...

Definition 2.5. Let A , X , σ be as in Definition 2.1 and x ∈ X . A linear mapping
dx : A → X is said to be an inner σ-derivation if for each a ∈ A, dx(a) = σ(a)x−xσ(a).
It can be easily prove that the function dx is a σ-derivation.

Definition 2.6. Let A , X , σ be as in Definition 2.1. For each nonnegative integer n,
we denote Kerl(∆n) by Znσ (A,X ) and call each of itself elements a n-σ-cocycle. Also we
denote Im(∆n) by Nn+1

σ (A,X ) and call each of itself elements a n-σ-coboundary. Clearly
Znσ (A,X ) ⊆ Ln(A,X ) and Nn

σ (A,X ) ⊆ Ln(A,X ).

Remark 2.7. In view of the fact stated recently, Nn
σ (A,X ) ⊆ Znσ (A,X ).

Remark 2.8. Suppose T ∈ N1
σ(A,X ) = Im(∆0). It turn out that there exists x ∈ X such

that T = (∆0)(x). Then for each a ∈ A we have T (a) =
(
(∆0)(x)

)
(a) = σ(a)x − xσ(a);

i.e. T is an inner σ-derivation. Also it is well known that if S ∈ Z1
σ(A,X ) = Kerl(∆1)

then

σ(a)S(b)− S(ab) + S(a)σ(b) = 0, ∀a, b ∈ A;

i.e. S is a σ-drivation.

Definition 2.9. As it was mentioned above, N1
σ(A,X ) ⊆ Z1

σ(A,X ). We set

H1
σ(A,X ) = N1

σ(A,X )− Z1
σ(A,X )

and define it the σ-cohomology space of A with coefficients in X . In the same manner,
we define Hn

σ (A,X ) = Nn
σ (A,X ) − Znσ (A,X ) and call it the n-σ-cohomology space of A

with coefficients in X .

Remark 2.10. Let A , X , σ be as in Definition 2.1. It is clear that the unitization of A,
i.e. A+ = C ⊕A, is a A-bimodule too. The vector space B(A+,X ) with the definition

(σ(a)f)(x) = σ(a)f(x), (fσ(a))(x) = f(ax), ∀a ∈ A, ∀f ∈ B(A+,X ), ∀x ∈ X

is a σ(A)-bimodule.

Theorem 2.11. Let A,X , σ be as in Definition 2.1. Let S : A → X be a left σ-
intertwining mapping. Then there exists a module valued σ-derivation D : A → B(A+,X )
and a continuous left σ(A)-module homomorphism U : B(A+,X )→ X such that U ◦D =
S.

Proof. As it was mentioned already, we consider B(A+,X ) as a σ(A)-bimodule by

(σ(a)f)(x) = σ(a)f(x), (fσ(a))(x) = f(ax), ∀a ∈ A, ∀f ∈ B(A+,X ), ∀x ∈ X .



70 Thai J. Math. Vol. 18 (2020) /H. M. Rad and A. Niknam

We define U : B(A+,X )→ X by

U(T ) = T (1), ∀T ∈ B(A+,X )

and D : A → B(A+,X ) by

D(a)(β, b) = βS(a)− σ(a)S(b) + S(ab).

On the one hand,

D(a1a2)(β, b) = βS(a1a2) + S(a1a2b)− σ(a1a2)S(b).

On the other hand

(D(a1)σ(a2))(β, b) = D(a1)((0, a2)(β, b))

= D(a1)((0, βa2 + a2b)(β, b))

= βS(a1a2) + S(a1a2b)− βσ(a1)S(a2)− σ(a1)S(a2b)

and

(σ(a1)D(a2))(β, b) = σ(a1)(D(a2)(β, b))

= σ(a1)(βS(a2) + S(a2b)− σ(a2)S(b))

= βσ(a1)S(a2) + σ(a1)S(a2b)− σ(a1)σ(a2)S(b).

Thus we have

D(a1a2) = D(a1)σ(a2) + σ(a1)D(a2).

To prove S = U ◦D, we arrive at

(U ◦D)(a) = U(D(a)) = (D(a))(1) = D(a)(1, 0)

= 1S(a) + S(a, 0)− σ(a)S(0) = S(a).

It is necessary to mention that clearly D(a) ∈ B(A+,X ).

Theorem 2.12. Let D : A → B(A+,X ) be a module valued σ-derivation. The mapping
S = U ◦D : A → B(A+,X )→ X is left σ-intertwining.

Proof. To prove, suppose a ∈ A is arbitrary. We define ϕa : A → X by

ϕa(b) = σ(a)S(b)− S(ab), ∀b ∈ A.

Thus we get

ϕa(b) = σ(a)(U ◦D)(b)− (U ◦D)(ab)

= σ(a)(D(b)(1))− (D(ab)(1))

= σ(a)(D(b)(1))− (σ(a)D(b)(1) +D(a)σ(b))(1)

= σ(a)D(b)(1)− σ(a)D(b)(1)−D(a)(b) = −D(a)(b).

It is clear that D(a)(b) ∈ B(A+,X ); hence ϕa : A → X is continuous and consequently
U ◦D : A → B(A+,X )→ X is left σ-intertwining.
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Corollary 2.13. By considering F = B(A+,X ), the function

φ : Z1
σ(A,F)→ LIσ(A,X )

φ(D) = U ◦D, ∀ D ∈ Z1
σ(A,F)

is an onto linear mapping.

Theorem 2.14. φ is continuous.

Proof.

||φ|| = sup
||D||≤1

||φ(D)||

= sup
||D||≤1

||U ◦D||

and

||U ◦D|| = sup
||a||≤1

||(U ◦D)(a)||

= sup
||a||≤1

||(D(a))(1)||

≤ ||D(a)|| ≤ ||D||.
Then ||φ|| ≤ 1; i.e. φ is continuous.

Theorem 2.15. φ is one-to-one.

Proof. We claim that the σ-derivation D is unique for each left σ-intertwining S. It turn
out that

βD(a)(1) + (D(ab)(1))− σ(a)(D(b)(1)) = βD(a)(1) + (σ(a)D(b)

+ D(a)σ(b))(1)− σ(a)(D(b)(1))

= βD(a)(1) +D(a)b

= D(a)(β, b).

Thus if φ(D1) = φ(D2), then D1(a)(1) = D2(a)(1), for each a ∈ A and hence D1 = D2.

Remark 2.16. If in Remark 2.4, we replace the spaces Ln(A,X ) by Bn(A,X ), then we
will denote Znσ (A,X ) and Nn

σ (A,X ) by Znσ(A,X ) and Nn
σ(A,X ), respectively and call

each of theirs elemants the continuous n-σ-cocycle and the continuous n-σ-coboundary,
respectively; in this case,

H1
σ(A,X ) = N1

σ(A,X )− Z1
σ(A,X )

is called the continuous σ-cohomology of A with coefficients in X . In the same manner,

Hnσ(A,X ) = Nn
σ(A,X )− Znσ(A,X )

is called the continuous n-σ-cohomology of A with coefficients in X .

Theorem 2.17. The mapping

φ : Z1
σ(A,F)→ B(A,X )

φ(D) = U ◦D, ∀ D ∈ Z1
σ(A,F)

is a linear homeomorphism.
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Proof. Suppose D ∈ Z1
σ(A,F). Then

sup
||a||≤1

||(U ◦D)(a)|| ≤ ||D||

and hence S = U ◦D ∈ B(A,X ). Now assume that T ∈ B(A,X ). Since for each a ∈ A,
the mapping ϕa : A → X defined by

ϕa(b) = σ(a)T (b)− T (ab), ∀ b ∈ A,

is continuous, then T ∈ LIσ(A,X ); in fact, B(A,X ) = LIσ(A,X ). Thus there exists
D ∈ Z1

σ(A,F) such that φ(D) = T . Since

||D|| = sup
||a||≤1

||D(a)||

and
||D(a)|| sup

||(β,b)||≤1

||D(a)(β, b)||

and
D(a)(β, b) = βS(a)− σ(a)S(b) + S(ab);

then D ∈ Z1
σ(A,F). Thus φ is bounded, one-to-one and onto and since Z1

σ(A,F) is a
Banach space, from the open mapping theorem, φ is homeomorphism.

Corollary 2.18. Let A , X , σ be as in Definition 2.1. Let all of module valued σ-
derivation from A to B(A+,X ) be continuous. Then every left σ-intertwining mapping
is continuous.

Remark 2.19. Similar to left σ-intertwinings, the concept of the right σ-intertwinings
is presentable. Moreove that, all of theorems and corollary 2.18 until 2.17 hold for right
σ-intertwinings too; the only pointable fact is that, for this case, we define the function
D : A → B(A+,X ) by

D(a)(β, b) = βS(a) + S(ba)− S(b)σ(a)

and consider B(A+,X ) as a σ(A)-bimodule by

(σ(a)f)(x) = f(xa), (fσ(a))(x) = f(x)σ(a), ∀a ∈ A, ∀f ∈ B(A+,X ), ∀x ∈ X .

Remark 2.20. The facts such as left intertwinings and right intertwinings stated by now,
can be extended as the following.

Definition 2.21. The mapping S ∈ Ln(A,X ) is said to be σ-intertwining in the last
variable if for each a1, a2, a3, ...an ∈ A, the linear mapping

ϕ : A → X
ϕ(a) = (δn(S)(a1, a2, a3, ...an, a), ∀a ∈ A

is continuous.
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Theorem 2.22. Let S : An → X be a σ-intertwining mapping in the last variable.
There exists a continuous left σ(A)-module homomorphism U : B(A+,X ) → X and a
n-σ-cocycle D : An → B(A+,X ) such that U ◦D = S.

Proof. It need be noted that we consider B(A+,X ) as a σ(A)-bimodule by

(σ(a)f)(x) = σ(a)f(x), (fσ(a))(x) = f(ax), ∀a ∈ A, ∀f ∈ B(A+,X ), ∀x ∈ X .

Suppose U : B(A+,X ) → X is the same one that mentioned earlier. We consider the
mapping

D : An → B(A+,X )

defined by

D(a1, a2, a3, ...an)(β, b) = βS(a1, a2, a3, ...an)

+ S(a1, a2, a3, ...an)σ(b)

+ (−1)n∆n(S)S(a1, a2, a3, ...an, b).

Since S is σ-intertwining in the last variable, one can conclude that D(a) ∈ B(A+,X ).

Clearly U ◦D = S; because

(U ◦D)(a1, a2, a3, ...an) = (D(a1, a2, a3, ...an))(1)

= (D(a1, a2, a3, ...an))(1, 0)

= 1S(a1, a2, a3, ...an)

+ S(a1, a2, a3, ...an)0

+ (−1)n∆n(a1, a2, a3, ...an, 0)

= S(a1, a2, a3, ...an)

Now it should be showed that ∆n(D) = 0. It turn out that

(∆n(D))(a1, a2, a3, ...an, a) = σ(a1)D(a2, a3, ...an, a)

− D(a1a2, a3, ...an, a)

+ D(a1, a2a3, ...an, a)

− ...

+ (−1)nD(a1, a2, a3, ..., ana)

+ (−1)n+1D(a1, a2, a3, ..., an)σ(a);

on the one hand

σ(a1)D(a2, a3, ...an, a)(β, b) = σ(a1)βS(a2, a3, ..., an, a)

+ σ(a1)S(a2, a3, ..., an, a)σ(b)

+ (−1)nσ(a1)∆n(S)(a2, a3, ...an, a, b)

and
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−D(a1a2, a3, ...an, a)(β, b) = −βS(a1a2, a3, ...an, a)

− S(a1a2, a3, ..., an, a)σ(b)

+ (−1)n+1∆n(S)(a1a2, a3, ...an, a, b)

and so on, until that

(−1)nD(a1, a2, a3, ..., ana)(β, b) = (−1)nβS(a1, a2, a3, ..., ana)

+ (−1)nS(a1, a2, a3, ..., ana)σ(b)

+ (−1)n(−1)n∆n(S)(a1a2, a3, ...ana, b)

and

(−1)n+1(D(a1, a2, a3, ..., an)σ(a))(β, b)

= (−1)n+1(D(a1, a2, a3, ..., an)σ(a))(0, βa+ ab)

= (−1)n+1βS(a1, a2, a3, ..., an)σ(a)

+ (−1)n+1βS(a1, a2, a3, ..., an)σ(a)σ(b)

+ (−1)2n+1∆n(S)(a1, a2, a3, ...an, ab)

+ (−1)2n+1β∆n(S)(a1, a2, a3, ...an, a).

Adding the first parts of the relations stated above, we get

β∆n(S)(a1, a2, a3, ...an, a) (2.2)

where (2.2) is deleted with the last part of the last relation. Adding the second parts, we
get

∆n(S)(a1, a2, a3, ...an, a)σ(b) (2.3)

Adding the third parts and (2.3), we get

∆n+1(∆n(a1, a2, a3, ...an, b)) (2.4)

whose produce is equal to 0; in fact ∆n(D) = 0.

Theorem 2.23. Let D ∈ Znσ (A,F). There exists a σ-intertwining maping in the last
variable S ∈ Ln(A,X ) such that S = U ◦D.

Proof. Define S = U ◦ D. We should show that for each a1, a2, a3, ...an ∈ A, the linear
mapping

ϕ : A → X
ϕ(a) = (δn(S)(a1, a2, a3, ...an, a), ∀a ∈ A
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is continuous. Since

(δn(S)(a1, a2, a3, ...an, a) = σ(a1)S(a2, a3, ..., an, a)

− S(a1a2, a3, ..., an, a)

+ S(a1, a2a3, ..., an, a)

+ ...(−1)nS(a1, a2, a3, ..., ana)

+ (−1)n+1S(a1, a2, a3, ..., an)σ(a)

= σ(a1)
(
D(a2, a3, ..., an, a)(1)

)
−

(
D(a1a2, a3, ..., an, a)

)
(1)

+
(
D(a1, a2a3, ..., an, a)

)
(1)

+ ...(−1)n
(
D(a1, a2, a3, ..., ana

)
(1)

+ (−1)n+1
(
D(a1, a2, a3, ..., an)

)
(1)σ(a)

= σ(a1)
(
D(a2, a3, ..., an, a)(1)

)
− σ(a1)

(
D(a2, a3, ..., an, a)(1)

)
+ (−1)n

(
D(a1, a2, a3, ..., an)σ(a)

)
(1)

+ (−1)n+1
(
D(a1, a2, a3, ..., an)

)
(1)σ(a)

= (−1)n
(
D(a1, a2, a3, ..., an)(0, a)

+ (−1)n+1
(
D(a1, a2, a3, ..., an)

)
(1)σ(a),

clearly ϕ is continuous. Then S is σ-intertwining in the last variable.

Corollary 2.24. By considering F = B(A+,X ), the function

φ : Znσ (A,F)→ LInσ (A,X )

φ(D) = U ◦D, ∀ D ∈ Znσ (A,F)

is an onto, continuous and linear mapping.

Theorem 2.25. φ is one-to-one.

Proof. We claim that D is unique for each σ-intertwining in the last variable S. It turn
out that

βD(a1, a2, a3, ...an)(1) +
(
D(a1, a2, a3, ...an)(1)

)
σ(a)

+ (−1)n
(

(−1)nD(a1, a2, a3, ..., an)(0, a)

+ (−1)n+1[D(a1, a2, a3, ..., an)](1)σ(a)
)

= D(a1, a2, a3, ...an)(β, 0)

+ D(a1, a2, a3, ...an)(0, a)

= D(a1, a2, a3, ...an)(β, a)
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Thus if φ(D1) = φ(D2), then D1(a)(1) = D2(a)(1) for each a ∈ A and hence D1 = D2.

Theorem 2.26. The mapping

φ : Znσ(A,F)→ Bnσ (A,X )

φ(D) = U ◦D, ∀ D ∈ Znσ(A,F)

is a linear homeomorphism.

Proof. If D ∈ Znσ(A,F), then φ(D) = U ◦D is continuous. Now if T ∈ Bn(A,X ), then

(δn(T )(a1, a2, a3, ...an, a) = σ(a1)T (a2, a3, ..., an, a)

− T (a1a2, a3, ..., an, a)

+ T (a1, a2a3, ..., an, a)

+ ...(−1)nT (a1, a2, a3, ..., ana)

+ (−1)n+1T (a1, a2, a3, ..., an)σ(a)

is continuous. So T ∈ LInσ (A,X ). Then there exists D ∈ Znσ (A,F) such that φ(D) = T .
Since T is continuous, then so is D. Then D ∈ Znσ(A,F). Since Znσ(A,F) is Banach
space, in view of the open mapping theorem, φ is homeomorphism.

Definition 2.27. The mapping S ∈ Ln(A,X ) is said to be σ-intertwining in the first
variable if for each a1, a2, a3, ...an ∈ A, the linear mapping

ϕ : A → X
ϕ(a) = (δn(S)(a, a1, a2, a3, ...an), ∀a ∈ A

is continuous.

Remark 2.28. Similar to σ-intertwining in the last variables, one can define a analo-
gous statement called σ-intertwining in the first variable. Moreover, all of theorems and
corollary 2.22 until 2.26 hold too; the only pointable fact is that, for this case, we define
the function

D : An → B(A+,X )

by

D(a1, a2, a3, ...an)(β, b) = βS(a1, a2, a3, ...an)

+ σ(b)S(a1, a2, a3, ...an)

+ (−1)n∆n(S)(b, a1, a2, a3, ...an).

and consider B(A+,X ) as a σ(A)-bimodule by

(σ(a)f)(x) = f(xa), (fσ(a))(x) = f(x)σ(a), ∀a ∈ A, ∀f ∈ B(A+,X ), ∀x ∈ X .
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