**Thai J**ournal of **Math**ematics Volume 19 Number 1 (2021) Pages 59–65

http://thaijmath.in.cmu.ac.th



# Some Results of Lambert Operators on L<sup>p</sup> Spaces

#### Seyed Kamel Hosseini and Jahangir Cheshmavar\*

Department of Mathematics, Payame Noor University, P.O.Box 19395-3697 Tehran, Iran e-mail : kamelhosseini@chmail.ir (S.K. Hosseini); j\_cheshmavar@pnu.ac.ir (J. Cheshmavar)

**Abstract** In this paper we provide a necessary and sufficient conditions for the Lambert operators to be invertible. Also, some properties of these type of operators will be investigated.

#### MSC: 47B20; 47B38

Keywords: Lambert operator; Lambert multiplier; conditional expectation operator; essential range; Fredholm operator

Submission date: 18.09.2018 / Acceptance date: 10.05.2020

## 1. INTRODUCTION

Operator in function spaces defined by conditional expectations have been studied since the work of Chen and Moy [1] and Sidak [2], see for example Brunk [3], in the setting of  $L^p$ spaces. This class of operators was further studied by Lambert [4, 5] to study hyponormal composition operators, the concept of  $L^p$  multipliers and Herron [6], to present the basic properties of the class of bounded weighted conditional expectation operators defined on the  $L^p$  spaces. Lambert showed that the relationship between a chain of sigma algebras and the set of multiplication operators which are the contractive idempotent, the so-called conditional expectation operators. Further work in this direction can be found in [7, 8]. Later, Jabbarzadeh and Sarbaz in [9] have characterized the Lambert multipliers acting between two  $L^p$ -spaces, by using some properties of conditional expectation operators to be invertible. Also we show that they can be characterized in terms of the conditional expectation induced by an associated  $\sigma$ -finite subalgebra. Some new properties of these type of operators will be investigated. Our exposition regarding Lambert multipliers follows [5, 6, 10].

Let  $(X, \Sigma, \mu)$  be a complete  $\sigma$ -finite measure space,  $\mathcal{A} \subseteq \Sigma$  be complete  $\sigma$ -finite subalgebra and  $1 \leq p \leq \infty$ . We view  $L^p(\mathcal{A}) = L^p(X, \mathcal{A}, \mu|_{\mathcal{A}})$  as a Banach subspace of  $L^p(\Sigma)$ . Denote the linear space of all complex-valued  $\Sigma$ -measurable functions on X by  $L^0(\Sigma)$ .

For each nonnegative  $f \in L^0(\Sigma)$  or  $f \in L^p(\Sigma)$ , by the Radon-Nikodym theorem, there exists a unique measurable function E(f) with the following conditions:

<sup>\*</sup>Corresponding author.

(i) E(f) is  $\mathcal{A}$ -measurable;

(ii) If A is any A-measurable set for which  $\int_A f d\mu$  converges, we have

$$\int_A f d\mu = \int_A E(f) d\mu.$$

For every complete  $\sigma$ -finite subalgebra  $\mathcal{A} \subseteq \Sigma$ , the mapping  $f \mapsto E(f)$ , from  $L^p(\Sigma)$ to  $L^p(\mathcal{A}), 1 \leq p \leq \infty$ , is called the *conditional expectation operator with respect to*  $\mathcal{A}$ . If E(f) exists for a function  $f \in L^0(\Sigma)$ , then we say that f is *conditionable*. We will need the following standard facts concerning E(f), for more details of the properties of E, we refer the interested reader to [6, 7, 11]:

- If g is  $\mathcal{A}$ -measurable then E(fg) = E(f)g;
- $|E(f)|^p \leq E(|f|^p);$
- $||E(f)||_p \le ||f||_p;$
- If  $f \ge 0$  then  $E(f) \ge 0$ ; if f > 0 then E(f) > 0;
- E(1) = 1.

As an operator on  $L^p(\Sigma)$ ,  $E(\cdot)$  is the contractive idempotent and

$$E(L^p(\Sigma)) = L^p(\mathcal{A})$$

Let  $f, g \in L^0(\Sigma)$  be conditionable. We define

$$f \star g = fE(g) + gE(f) - E(f)E(g).$$
 (1.1)

Let  $1 \leq p \leq \infty$ . A conditional function  $u \in L^0(\Sigma)$  for which  $u \star f \in L^p(\Sigma)$  for each  $f \in L^p(\Sigma)$ , is called *Lamber multiplier*. In other words, a conditionable function  $u \in L^0(\Sigma)$  is Lambert multiplier if and only if the corresponding  $\star$ -multiplication operator  $T_u : L^p(\Sigma) \to L^p(\Sigma)$  defined as  $T_u f = u \star f$  is bounded. In this case  $T_u$  is called *Lambert operator*.

Define  $K_p^*, (1 \le p \le \infty)$ , the set of all Lambert multipliers from  $L^p(\Sigma)$  into  $L^p(\Sigma)$ , as follows:

$$K_p^{\star} = \{ u \in L^0(\Sigma) : u \text{ is conditionable}, \ u \star L^p(\Sigma) \subseteq L^p(\Sigma) \}$$
(1.2)

As that shown in [9] that if we define

$$\|u\|_{K_n^{\star}} = \|E(|u|^p)\|_{\infty}^{1/p},\tag{1.3}$$

for every  $u \in K_p^{\star}$ , then  $K_p^{\star}$  is a Banach space with the norm  $\| \cdot \|_{K_p^{\star}}$  and

$$\|u\|_{K_n^*} \le \|T_u\| \le 3\|u\|_{K_n^*}. \tag{1.4}$$

In the following section, we provide a necessary and sufficient condition for the Lambert operators to be invertible, where  $\mathcal{A}$  is a non-atomic measure space. We show that they can be characterized in terms of the conditional expectation induced by an associated  $\sigma$ -finite subalgebra  $\mathcal{A}$ . Some new properties of these type of operators will be investigated. We use some ideas of [12].

## 2. The Results

Recall that the Lambert operator  $T_u$  is said to be a Fredholm operator if  $\mathcal{R}(T_u)$  is closed,  $\dim \mathcal{N}(T_u) < \infty$  and  $\operatorname{codim} \mathcal{R}(T_u) < \infty$ , where  $\mathcal{R}(T_u)$  and  $\mathcal{N}(T_u)$  denotes the kernel and the range of  $T_u$ , respectively. Also recall that an  $\mathcal{A}$ -atom of the measure  $\mu$  is an element  $A \in \mathcal{A}$  with  $\mu(A) > 0$  such that for each  $F \in \Sigma$ , if  $F \subseteq A$  then either  $\mu(F) = 0$ or  $\mu(F) = \mu(A)$ . A measure with no atoms is called non-atomic. It is a well-known fact that every  $\sigma$ -finite measure space  $(X, \mathcal{A}, \mu|_{\mathcal{A}})$  can be uniquely decomposed as

$$X = \left(\bigcup_{n \in \mathbb{N}} A_n\right) \cup B,$$

where  $\{A_n\}_{n\in\mathbb{N}}$  is a collection of disjoint  $\mathcal{A}$ -atoms and B is non-atomic part of X see e.g. [8, 13].

The necessary and sufficient condition for the operator  $T_u$  to be Fredholm operator is the following:

**Theorem 2.1.** [9] Suppose that  $u \in K_p^*$  and  $\mathcal{A}$  is a non-atomic measure space. Then the operator  $T_u$  is Fredholm on  $L^p(\Sigma), (1 \leq p < \infty)$  if and only if  $|E(u)| \geq \delta$  almost everywhere on X for some  $\delta > 0$ .

Let now  $\mathcal{R}_p = \{T_u : u \in K_p^*\}$ . The following elementary lemmas, we show that the set of all Lambert operators  $T_u, u \in K_p^*$  is a commutative Banach algebra and also, we characterize the operator  $T_u$  in terms of the conditional expectation induced by  $\mathcal{A}$ :

**Lemma 2.2.** For every  $u, v \in K_p^*$  and  $\lambda \in \mathbb{C}$ , the following statements hold:

(i)  $T_{u+v} = T_u + T_v;$ (ii)  $T_{\lambda u} = \lambda T_u;$ (iii)  $T_u T_v = T_{u*v};$ (iv)  $\mathcal{R}_p$  is commutative and has an identity; (v)  $\mathcal{R}_p$  is a closed subalgebra of all bounded linear operators on  $L^p(\Sigma)$ .

*Proof.* The proof of (i) and (ii) are obvious. For (iii),

$$T_u T_v f = T_u (vE(f) + fE(v) - E(v)E(f))$$
  
=  $(u \star v)E(f) + fE(u \star v) - E(u \star v)E(f)$   
=  $T_{u\star v}f.$ 

Since  $u \star v \in K_p^{\star}$ ,  $\mathcal{R}_p$  is closed under composition operators. (iv)

$$T_u T_v = T_{u \star v} = T_{v \star u} = T_v T_u$$

Therefore,  $\mathcal{R}_p$  is commutative. Let  $T_u \in \mathcal{R}_p$ , then

$$T_1 T_u = T_{1 \star u} = T_u = T_{u \star 1} = T_u T_1,$$

that is,  $T_1$  is an identity of  $\mathcal{R}_p$ .

Consequently  $\mathcal{R}_p$  is a commutative subalgebra of all bounded linear operators on  $L^p(\Sigma)$ . (v) Let  $\{T_{u_n}\}_{n\in\mathbb{N}}$  be a Cauchy sequence in  $\mathcal{R}_p$ . By the first inequality of (1.4) and (i),  $\{u_n\}_{n\in\mathbb{N}}$  is a Cauchy sequence in  $K_p^*$ , it follows that there is  $u \in K_p^*$  such that  $\{u_n\}_{n\in\mathbb{N}}$  converges to u. Now by the second inequality of (1.4) and (i),  $\{T_{u_n}\}_{n\in\mathbb{N}}$  converges to  $T_u$ .

**Corollary 2.3.**  $\mathcal{R}_p$  is a commutative Banach algebra with an identity.

**Lemma 2.4.** Let  $u \in K_p^{\star}$ . Then the following holds:

- (i) If  $T_u$  is invertible operator, then there is  $w \in K_p^*$  such that  $(T_u)^{-1} = T_w$  and  $E(w) = \frac{1}{E(u)}$ ;
- (ii) If  $u \in L^{\infty}(\mathcal{A})$  and  $T_u$  is invertible, then  $(T_u)^{-1} = T_{\perp}$ ;
- (iii) If  $|E(u)| \ge \delta$  almost everywhere on X for some  $\delta > 0$ , then  $T_u$  is injective.

*Proof.* (i) Let  $T_u$  be invertible, there is  $w \in K_p^*$  such that

$$T_{u\star w} = T_u T_w = T_1,$$

that is,  $u \star w = 1$ ,  $(T_u)^{-1} = T_w$  and

$$1 = E(1) = E(u \star w) = E(uE(w)) + wE(u) - E(u)E(w) = E(u)E(w)$$

(ii) Suppose that  $u \in L^{\infty}(\mathcal{A})$  and  $T_u$  is invertible, then  $|u| \geq \delta$  for some  $\delta > 0$ . Therefore, we have  $\frac{1}{u} \in K_p^{\star}$ . Let  $f \in L^p(\Sigma)$ . Then, we have

$$T_u T_{\frac{1}{u}} f = T_u \left(\frac{1}{u} Ef + fE\frac{1}{u} - E\frac{1}{u} Ef\right)$$
$$= T_u \left(f\frac{1}{u}\right)$$
$$= uE(f\frac{1}{u}) + f\frac{1}{u}Eu - EuE(f\frac{1}{u}) = f,$$

similarly,  $T_{\frac{1}{u}}T_{u}f = f$ . Therefore,  $(T_{u})^{-1} = T_{\frac{1}{u}}$ .

(iii) For  $f \in L^p(\Sigma)$ , let  $T_u f = 0$ . Then,

$$0 = E(T_u f) = E(uEf + fEu - EfEu)$$
  
=  $EuEf + EuEf - EuEf$   
=  $EuEf$ .

Now by the hypothesis, Ef = 0. Thus,

$$0 = T_u f = uEf + fEu - EfEu = fEu.$$

Therefore, f = 0.

Let us consider the case that  $\mathcal{A}$  is a non-atomic measure space. We prove an analogue of Proposition (3) in [12] in the  $K_p^{\star}$ -setting.

**Theorem 2.5.** Suppose that  $\mathcal{A}$  is a non-atomic measure space. Let  $T_u$  be a Lambert operator on  $L^p(\Sigma), (1 \leq p < \infty)$ , where  $u \in K_p^*$ . Then the following are equivalent:

- (i)  $T_u$  is an invertible operator;
- (ii)  $T_u$  is an Fredholm operator;
- (iii)  $\mathcal{R}(T_u)$  is closed and  $codim \mathcal{R}(T_u) < \infty$ ;
- (iv)  $|E(u)| \ge \delta$  almost everywhere on X for some  $\delta > 0$ .

*Proof.* We here show that (*iii*) implies (*iv*), because the implications (*iv*)  $\Rightarrow$  (*i*)  $\Rightarrow$  (*ii*)  $\Rightarrow$  (*iii*) are obvious.

Suppose that  $\mathcal{R}(T_u)$  is closed and  $codim\mathcal{R}(T_u) < \infty$ . We claim that  $T_u$  is onto. If it were false, pick  $g \in L^p(\Sigma) \setminus \mathcal{R}(T_u)$ . Since  $\mathcal{R}(T_u)$  is closed, we can find a function  $g^* \in L^q(\Sigma)$ , the dual space of  $L^p(\Sigma)$ , such that

$$\int_X \overline{g}g^* d\mu = 1 \quad \text{and} \quad \int_X \overline{T_u f}g^* d\mu = 0,$$

.

for all  $f \in L^p(\Sigma)$ . From the first equality,  $\int_X E(\overline{g}g^*)d\mu = 1$ . Hence the set  $E_{\delta} = \{x \in X : |E(\overline{g}g^*)(x)| > \delta\}$  must have positive measure for some  $\delta > 0$ . As  $\mathcal{A}$  is non-atomic, we can chose a sequence  $\{E_n\}$  of subsets of  $E_{\delta}$  with  $0 < \mu(E_n) < \mu(E_{\delta})$  and  $E_m \bigcap E_n = \emptyset$  for some  $m \neq n$ . Let  $g_n^* = \chi_{E_n} g^*$ , where the symbol  $\chi_E$  is the characteristic function of  $E \in \Sigma$ . Then,  $0 \neq g_n^* \in L^q(\Sigma)$ , because

$$\int_X |\overline{f_0}g_n| d\mu \ge \int_{E_n} |\overline{g}g_n^*| d\mu = \int_{E_n} E(|\overline{g}g_n^*|) d\mu \ge \int_{E_n} |E(\overline{g}g_n^*)| d\mu \ge \delta\mu(E_n) > 0$$

for each n. Now for any  $f \in L^p(\Sigma)$ ,  $\chi_{E_n} f \in L^p(\Sigma)$  and so

$$(T_u^*g_n^*, f) = (g_n^*, T_u f) = \int_{E_n} \overline{T_u f} g^* d\mu = \int_X \overline{T_u(\chi_{E_n} f)} g^* d\mu = (g^*, T_u(\chi_{E_n} f)),$$

which implies that  $T_u^* g_n^* = 0$  and so  $g_n^* \in \mathcal{N}(T_u^*)$ . Thus sequence  $\{g_n^*\}$  forms a linearly independent subset of  $\mathcal{N}(T_u^*)$ . This contradicts the fact that  $\dim \mathcal{N}(T_u^*) = \operatorname{codim} \mathcal{R}(T_u) < \infty$ . Hence  $T_u$  is onto and the result follows from the lemma (2.4).

Recall that the spectrum of an operator T is the set

ş

$$p(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\},\$$

and recall that the essential range of a function  $f: X \longrightarrow \mathbb{C}$  is the set of all  $\lambda \in \mathbb{C}$  such that  $f^{-1}(\mathcal{O})$  has positive measure for every open neighborhood  $\mathcal{O}$  of  $\lambda$ , that is

ess range $(f) = \{\lambda \in \mathbb{C} : \mu\{x \in X : |f(x) - \lambda| < \varepsilon\} \neq 0, \forall \varepsilon > 0\}.$ 

**Proposition 2.6.** Let  $u \in K_p^*$  and let  $\mathcal{A}$  be a non-atomic measure space. Then  $sp(T_u) = ess \ range(Eu)$ .

*Proof.* Suppose that  $\lambda \notin \text{ess range}(Eu)$ , then there exists  $\varepsilon_0 > 0$  such that  $|Eu - \lambda| \ge \varepsilon_0$ almost everywhere, but  $Eu - \lambda = E(u - \lambda)$  and  $u - \lambda \in K_p^*$ , then by theorem (2.5)  $T_u - \lambda I = T_{u-\lambda}$  is invertible, that is,  $\lambda \notin sp(T_u)$ .

Conversely, let  $\lambda \notin sp(T_u)$ . Then,  $T_u - \lambda I = T_{u-\lambda}$  is invertible, that is, there exists  $\varepsilon_0 > 0$  such that  $|E(u - \lambda)| = |Eu - \lambda| \ge \varepsilon_0$  almost everywhere. Then,  $\lambda \notin ess range(Eu)$ .

Let  $\mathcal{B}(\mathcal{H})$  denote the algebra of all bounded linear operators on a complex Hilbert space  $\mathcal{H}$ . An operator  $T \in \mathcal{B}(\mathcal{H})$  is called unitary if  $TT^* = T^*T = I$ , T is called projection if  $T = T^*$  and  $T^2 = T$ , T is called positive if  $\langle Tx, x \rangle \geq 0$  holds for every  $x \in \mathcal{H}$  and T is a partial isometry if ||Th|| = ||h|| for h orthogonal to the kernel of T. It is known that an operator T on a Hilbert space is partial isometry if and only if  $TT^*T = T$ . In the following proposition we consider particular case p = 2 to characterizing projection, unitary and positive operators on  $L^2(\Sigma)$ . First, we have the following Proposition stated in [9]:

**Proposition 2.7.** Let  $u \in K_2^*$ . Then the following claims are true:

- (i)  $T_u$  is a normal operator if and only if  $u \in L^{\infty}(\mathcal{A})$ ,
- (ii)  $T_u$  is a self adjoint operator if and only if  $u \in L^{\infty}(\mathcal{A})$  is real valued.

**Proposition 2.8.** Let  $u \in K_2^*$ . Then the following holds:

- (i)  $T_u$  is a unitary operator if and only if  $u \in L^{\infty}(\mathcal{A})$  and |u| = 1;
- (ii)  $T_u$  is a projection operator if and only if  $u \in L^{\infty}(\mathcal{A})$  is real valued and  $u^2 = u$ ;
- (iii)  $T_u$  is a positive operator if and only if  $u \in L^{\infty}(\mathcal{A})$  and  $u \geq 0$ ;

(iv) If  $T_u$  is partial isometry, then  $E(|u|^2) + |Eu|^2 = 1$  on  $\sigma(E(u))$ .

*Proof.* (i) Assume  $T_u$  is unitary. Then its normal operator and  $u \in L^{\infty}(\mathcal{A})$ . Moreover, for each  $f \in L^2(\Sigma)$ , apply Prop. (Prop. 3.1 in [9]) with n = 1, we have  $T_u^* f = E(\bar{u}f) + E\bar{u}(f - Ef)$ , and then

$$\begin{split} E(T_u^*f) &= E(E(\bar{u}f) + Eu(f - Ef)) = E(E(\bar{u}f)) + Eu(Ef - Ef) = E(\bar{u}f) \\ T_u(T_u^*f) &= uE(T_u^*f) + T_u^*fEu - EuE(T_u^*f) \\ &= uE(\bar{u}f) + (E(\bar{u}f) + \bar{Eu}(f - Ef))Eu - Eu\bar{Eu} \\ &= u\bar{u}Ef + |u|^2f - u\bar{u}Ef = |u|^2f. \end{split}$$

That is,  $|u|^2 f = f$  and then |u| = 1.

Conversely, suppose that  $u \in L^{\infty}(\mathcal{A})$  and |u| = 1. Therefore,  $T_u$  is normal. We take  $f \in L^2(\Sigma)$ . Then  $f = |u|^2 f = T_u T_u^* f$ , and hence  $T_u$  is unitary.

(ii) Assume  $T_u$  is projection. Then its self-adjoint operator and  $u \in L^{\infty}(\mathcal{A})$  is real valued. Moreover, for each  $f \in L^2(\Sigma)$ ;

$$u^{2}f = u^{2}Ef + u^{2}f - u^{2}Ef$$
  
=  $uE(uf) + ufEu - EuE(uf)$   
=  $T_{u}(T_{u}f).$ 

On the other hand,

$$T_u^2 f = T_u f$$
  
=  $uEf + fEu - EuEf$   
=  $uEf + uf - uEf = uf.$ 

Therefore,  $u^2 = u$ .

Conversely, suppose that  $u \in L^{\infty}(\mathcal{A})$  is real valued and  $u^2 = u$ . Then  $T_u$  is self-adjoint. We take  $f \in L^2(\Sigma)$ . Then

 $T_u^2 f = u^2 f = u f = T_u f$ , and hence  $T_u$  is projection.

(iii) Assume  $T_u$  is positive. Then  $u \in L^{\infty}(\mathcal{A})$  is real valued.

Let  $F = \{x \in X : u(x) < 0\}$ . We take  $f \in L^2(\Sigma)$ . Then  $\int_F u |f|^2 d\mu = 0$ . Therefore  $u \ge 0$ . Conversely, suppose that  $u \in L^{\infty}(\mathcal{A})$  and  $u \ge 0$ .

Hence, for each  $f \in L^2(\Sigma)$  we have

$$\langle T_u f, f \rangle = \langle uf, f \rangle = \int_X u f \overline{f} d\mu = \int_X u |f|^2 d\mu \ge 0.$$

Therefore,  $T_u$  is positive.

(iv) Let  $T_u$  is partial isometry. Then  $T_u T_u^* T_u = T_u$ , that is,

$$E(u)E(f) = E(u)E(|u|^2)E(f) + |E(u)|^2E(f)E(u),$$

and hence  $E(u)(E(|u|^2) + |E(u)|^2 - 1)E(f) = 0$  for all  $f \in L^2(\Sigma)$ . We get that  $E(|u|^2) + |E(u)|^2 = 1$  on  $\sigma(E(u))$ .

#### ACKNOWLEDGEMENTS

We would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by the Payame Noor University.

### References

- S.T. Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954) 47–63.
- S. Sidak, On relations between strick sense and wide sense conditional expectation, Theory of Prob. Appl. 2 (1957) 267–271.
- [3] H.D. Brunk, On an extension of the concept conditional expectation, Proc. Amer. Math. Soc. 14 (1963) 298–304.
- [4] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18 (4) (1986) 395-400.
- [5] A. Lambert, L<sup>p</sup> Multipliers and nestedsigma-algebras, Oper. Theory Adv. Appl. 104 (1998) 147–153.
- [6] J.D. Herron, Weighted Conditional Expectation Operators of L<sup>p</sup> Space, ProQuest LLC, Ann Arbor, MI, 2004.
- [7] A. Lambert, Localising sets for sigma-algebras and related point transformations, Proc. Roy. Soc. Edinburgh Ser. A 118 (1991) 111–118.
- [8] H. Takagi, K. Yokouchi, Multiplication and composition operators between two L<sup>p</sup>spaces, Contemp. Math. 232 (1999) 321–338.
- M.R. Jabbarzadeh, S. Khalil Sarbaz, Lambert multipliers between L<sup>p</sup>-spaces, Czech. Math. J. 60 (135) (2010) 31–43.
- [10] J. Cheshmavar, S.K. Hosseini S. Khalil Sarbaz, A note on Lambert Multipliers between L<sup>p</sup>-spaces, In Review.
- [11] M.M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.
- [12] H. Takagi, Fredholm weighted composition operators, Integr. Equat. Oper. Th. 16 (1993) 267–276.
- [13] A.C. Zaanen, Integration, 2nd ed. North-Holland, Amsterdam, 1967.