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1. Introduction

A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
One of the most famous inequality for convex functions is so called Hermite-Hadamard

inequality as follows: Let f : I ⊆ R → R be a convex function and a, b ∈ I with a < b,
then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (1.1)

Since its discovery in 1983, Hermite-Hadamard’s inequality has been considered the most
useful inequality in mathematical analysis. A number of the papers have been written on
this inequality providing new proofs, noteworthy extensions, generalizations and numer-
ous applications, see and references therein ([1],[2]). s-convex function in the second sense
was introduced in Breckner’s paper [3] and a number of properties and connections with
s-convexity in the first sense are discussed in paper [4]. For more study, see([5],[6],[7])
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Definition 1.1. A function f : R+ → R is said to be s-convex in the second sense if

f(αx+ βy) ≤ αsf(x) + βsf(y)

for all x, y ∈ R+ and all α, β ≥ 0 with α+ β = 1.

We denote this by K2
s . It is obvious that the s-convexity means just the convexity

when s = 1.
In [7] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds

for s-convex functions in the second sense as follows:

Theorem 1.2. Suppose that f : [0,∞) → [0,∞) is an s-convex function in the second
sense, where s ∈ (0, 1] and let a, b ∈ [0,∞), a < b. If f ∈ L1[a, b] then the following
inequality hold:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s+ 1
. (1.2)

The constant k = 1
s+1 is the best possible in the second inequality in (1.2).

Theory of convex functions has great importance in various fields of pure and applied
sciences. It is known that theory of convex functions is closely related to theory of
inequalities. Many interesting convex functions inequalities established via Riemann-
Liouville fractional integrals. To understand these studies, let’s give some necessary
definition and mathematical preliminaries of fractional calculus theory as follows, which
are used further in this study. For more details, one can consult ([8–12]).

Definition 1.3. Let f ∈ L1[a, b]. The Riemann-Lioville integrals Jαa+f and Jαb−f of order
α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively. Here Γ(t) is the Gamma function and its definition is
Γ(t) =

∫∞
0
e−xxt−1dx. It is to be noted that J0

a+f(x) = J0
b−f(x) = f(x) in the case of

α = 1, the fractional integral reduces to the classical integral.

The beta function is defined as follows:

B (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1 (1− t)b−1 dt, a, b > 0,

where Γ (α) is Gamma function. The Incomplete beta function is defined by

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt.

For x = 1, the incomplete beta function coincides with the complete beta function.
In [13], Sarıkaya et al. gave a remarkable integral inequalities of Hermite-Hadamard

type involving Riemann-Liouville fractional integrals as follows:
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Theorem 1.4. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ [a, b]. If
f is convex function on [a, b], then the following inequality for fractional integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)] ≤ f (a) + f (b)

2
. (1.3)

It is obviously seen that, if we take α = 1 in Theorem 1.4, then the inequality (1.3)
reduces to well known Hermite-Hadamard’s inequality as (1.1).

Hermite Hadamard type inequality for s-convex functions on Riemann-Liouville frac-
tional integral is given in [14] as follows:

Theorem 1.5. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is s-convex mapping in the second sense on [a, b], then the following inequality for
fractional integral with α > 0 and s ∈ (0, 1] hold:

2s−1f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)]

≤
[ 1

α+ s
+B(α, s+ 1)]

f (a) + f (b)

2
(1.4)

where B(a,b) is beta function.

In [15], Zhu et al. established a new identity for differentiable convex mappings via
Riemann-Liouville fractional integral. In this work we will generalize this identity for
conformable fractional integral in section 2.

Lemma 1.6. [15] Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f
′ ∈ [a, b], then the following equality for fractional integrals hold:

Γ(α+ 1)

2(b− a)α
[(Jaα−f)(b) + (Jbα+f)(a)]− f

(
a+ b

2

)
(1.5)

=
b− a

2

[ ∫ 1

0

k(t)f
′
(ta+ (1− t)b)dt−

∫ 1

0

[(1− t)α − tα]f
′
(ta+ (1− t)b)dt

where

k(t) =

{
1 , 0 < t ≤ 1

2
−1 , 12 < t ≤ 1.

Using the above identity, they gave the following result on Riemann-Liouville fractional
intagral.

Theorem 1.7. [15] Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b.

If |f ′ | is convex on [a, b], then the following fractional inequality for fractional integrals
holds: ∣∣∣∣ Γ(α+ 1)

2(b− a)α
[(Jaα−f)(b) + (Jbα+f)(a)]− f

(
a+ b

2

) ∣∣∣∣ (1.6)

≤ b− a
4(α+ 1)

(
α+ 3− 1

2α−1
)
[|f
′
(a)|+ |f

′
(b)|].
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In this work we will study on conformable fractional integrals. In the following, we
give some definitions and properties of conformable fractional integrals which helps obtain
main identity and Theorems in section 2. Recently, some authors started to study on
conformable fractional integral. In the paper numbered with [16], Khalil et al. defined
the fractional integral of order 0 < α ≤ 1 only. In [17], Abdeljawad gave the definition of
left and right conformable fractional integrals of any order α > 0.

Definition 1.8. Let α ∈ (n, n+ 1] and set β = α−n then the left conformable fractional
integral starting at a if order α is defined by

(Iaαf)(t) =
1

n!

∫ t

a

(t− x)n(x− a)β−1f(x)dx

Analogously, the right conformable fractional integral is defined by

(bIαf)(t) =
1

n!

∫ b

t

(x− t)n(b− x)β−1f(x)dx.

Notice that if α = n + 1 then β = α − n = n + 1 − n = 1 where n = 0, 1, 2... and
hence (Iaαf)(t) = (Jan+1f)(t). In [18] Set et.al. gave Hermite Hadamard’s inequality for
conformable fractional integral as follows:

Theorem 1.9. Let f : [a, b] → R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f
is a convex function on [a, b], then the following inequalities for conformable fractional
integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f (a) + f (b)

2
(1.7)

with α ∈ (n, n+ 1], where Γ is Euler Gamma function.

For some new studies on conformable fractional integral, see ([19],[20],[21]). In papers
([22]-[26]) Set et.al obtained some new Hermite- Hadamard, Ostrowski , Chebyshev type
inequalities by using conformable fractional integrals for various classes of functions. The
aim of this study is to established new Hermite-Hadamard’s inequalities for conformable
fractional integral related to fractional integral.

In [22], Set et al. established a generalization of Hermite-Hadamard type inequality
for s-convex functions via conformable fractional integrals as follows:

Theorem 1.10. Let f : [a, b] → R be a function with 0 ≤ a < b, s ∈ (0, 1] and
f ∈ L1[a, b]. If f is s-convex function in the second sense on [a, b], then the following
inequalities for conformable fractional integrals hold:

Γ(α− n)

Γ(α+ 1)
f

(
a+ b

2

)
≤ 1

(b− a)α2s
[(Iaαf)(b) + (bIαf)(a)] (1.8)

≤
[
B(n+ s+ 1, α− n) +B(n+ 1, α− n+ s)

n!

]
f (a) + f (b)

2s

with α ∈ (n, n+ 1], n ∈ N, n = 0, 1, 2...where Γ is Euler Gamma function and B(a, b) is
a beta function.

They also noticed the relation with fractional and classical Hermite Hadamard type
integral inequalities as follows;
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Remark 1.11. If we choose s = 1 in Theorem 1.10, using relation between Γ and B
functions properties, the inequality (1.8) reduced to inequality (1.7).

Remark 1.12. If we choose α = n + 1 in Theorem 1.10, the inequality (1.8) reduced
to inequality (1.4). And also if we choose α, s = 1 in the inequality (1.8), then we get
well-known Hermite Hadamard’s inequality as (1.1).

2. Main Results

In order to achieve our aim, we will have a important conformable fractional identity
for differentiable functions involving conformable fractional integrals as follows;

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f
′ ∈ L[a, b], then the following equality for conformable fractional integrals holds:

n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
) (2.1)

=
b− a

2

{∫ 1

0

k(t)f
′
(ta+ (1− t)b)dt

−
∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f
′
((ta+ (1− t)b)dt

}
,

where

k(t) =

{
B(n+ 1, α− n) , 0 < t ≤ 1

2
−B(n+ 1, α− n) , 12 < t ≤ 1

and α ∈ (n, n + 1], n ∈ N, n = 0, 1, 2...where Γ is Euler Gamma function and B(a, b) is
a beta function, Bt(a, b) is an incompleted beta function.

Proof. It sufficies to note that

I =

∫ 1
2

0

B(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

−
∫ 1

1
2

B(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

−
∫ 1

0

B1−t(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

+

∫ 1

0

Bt(n+ 1, α− n)f
′
(ta+ (1− t)b)dt. (2.2)

Integrating by parts, we have ;

I1 = B(n+ 1, α− n)

∫ 1
2

0

f
′
(ta+ (1− t)b)dt

=
B(n+ 1, α− n)

b− a

[
f(b)− f(

a+ b

2
)

]
, (2.3)
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I2 = −B(n+ 1, α− n)

∫ 1

1
2

f
′
(ta+ (1− t)b)dt

=
B(n+ 1, α− n)

b− a

[
f(a)− f(

a+ b

2
)

]
, (2.4)

Changing variables with x = ta+ (1− t)b in following integration, we get

I3 = −
∫ 1

0

B1−t(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

= −
∫ 1

0

(∫ 1−t

0

xn(1− x)α−n−1dx

)
f
′
(ta+ (1− t)b)dt

= −
(∫ 1−t

0

xn(1− x)α−n−1dx

)
f(ta+ (1− t)b)dt

a− b

∣∣∣∣1
0

−
∫ 1

0

(1− t)ntα−n−1f(ta+ (1− t)b) dt

a− b

=

(∫ 1

0

xn(1− x)α−n−1dx

)
f(b)

a− b

+
1

a− b

∫ b

a

(x− a
b− a

)n(b− x
b− a

)α−n−1
f(x)

dx

a− b

= −B(n+ 1, α− n)
f(b)

b− a
+

n!

(b− a)α+1
(bIαf)(a) (2.5)

I4 =

∫ 1

0

Bt(n+ 1, α− n)f
′
((ta+ (1− t)b)dt

= Bt(n+ 1, α− n)
f(ta+ (1− t)b)

a− b
∣∣1
0

−
∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b) dt

a− b

= −B(n+ 1, α− n)
f(a)

b− a
+

1

b− a

∫ b

a

(b− x
b− a

)n(x− a
b− a

)α−n−1
f(x)

dx

b− a

= −B(n+ 1, α− n)
f(a)

b− a
+

n!

(b− a)α+1
(Iaαf)(b) (2.6)

Submitting (2.3), (2.4), (2.5), (2.6) in (2.2) we get,

I =
−2B(n+ 1, α− n)

b− a
f(
a+ b

2
) +

n!

(b− a)α+1
[(Ibαf)(a) + (bIαf)(a)].

Thus, by multiplying both sides by b−a
2 , we have desired result.

Remark 2.2. If we choose α = n + 1 in Lemma 2.1, the equality (2.1) becomes the
equality (1.5)
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Now, using the obtained identity, we will establish some inequalities connected with
the left part of the inequality (1.8). We shall offer some results, which embodied in the
following two theorems.

Theorem 2.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If

f
′ ∈ L[a, b] and |f ′ | is s-convex in the second sense, then the following inequality for

conformable fractional integrals holds:∣∣∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)

∣∣∣∣∣
≤ (b− a)

2(s+ 1)

(∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣)

×

[
2B(n+ 1, α− n) +B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

−B 1
2
(α− n, n+ s+ 2)−B 1

2
(n+ 1, α− n+ s+ 1)

]
,

α ∈ (n, n+ 1], n ∈ N, n = 0, 1, 2...where B(a, b) is a beta function, Bt(a, b) is an incom-
pleted beta function.

Proof. Using Lemma 2.1 and the s-convexity of |f ′ |, we get the following inequalities;∣∣∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)

∣∣∣∣∣
=

(b− a)

2

{∣∣∣∣∣
∫ 1

0

k(t)f
′
(ta+ (1− t)b)dt

−
∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f
′
(ta+ (1− t)b)dt

∣∣∣∣∣
}

≤ (b− a)

2

{∣∣∣∣ ∫ 1
2

0

B(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

−
∫ 1

1
2

B(n+ 1, α− n)f
′
(ta+ (1− t)b)

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

(
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

)
f
′
(ta+ (1− t)b)

∣∣∣∣
}
dt

≤ (b− a)

2

{∫ 1
2

0

B(n+ 1, α− n)
∣∣f ′(ta+ (1− t)b)

∣∣dt
+

∫ 1

1
2

B(n+ 1, α− n)
∣∣f ′(ta+ (1− t)b)

∣∣dt
+

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt
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+

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt}

≤ (b− a)

2

{∫ 1

0

B(n+ 1, α− n)

(
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)

+

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

](
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

+

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

](
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

}

:=
(b− a)

2
(Φ1 + Φ2 + Φ3) (2.7)

In fact noticed that, well-known Newton Leibnits formula is as follow

d

dt

∫ u(t)

v(t)

f(x)dx = f(u(t))u
′
(t)− f(v(t))v

′
(t).

Since |f ′ | is s- convex and using the above equation, we can compute the following inte-
grals;

Φ1 =

∫ 1

0

B(n+ 1, α− n)
[
ts
∣∣f ′(a)

∣∣+ (1− t)s
∣∣f ′(b)∣∣] dt (2.8)

=
B(n+ 1, α− n)

s+ 1

[∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣] .

Φ2 =

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

](
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

=

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)(
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

= |f
′
(a)|

{(∫ 1−t

t

xn(1− x)α−n−1dx

)
ts+1

s+ 1

∣∣∣∣ 12
0

− 1

s+ 1

∫ 1
2

0

[
− 1.(1− t)ntα−n−1 − 1.tn(1− t)α−n−1

]
ts+1dt

}

+|f
′
(b)|

{(∫ 1−t

t

xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

∣∣∣∣ 12
0

+
1

s+ 1

∫ 1
2

0

[
− 1.(1− t)ntα−n−1 − 1.tn(1− t)α−n−1

]
(1− t)s+1dt

}

= |f
′
(a)|

{
1

s+ 1

∫ 1
2

0

(1− t)ntα−n+sdt+
1

s+ 1

∫ 1
2

0

tn+s+1(1− t)α−n−1dt

}
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+|f
′
(b)|

{
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx− 1

s+ 1

∫ 1
2

0

tα−n−1(1− t)n+s+1dt

− 1

s+ 1

∫ 1
2

0

tn(1− t)α−n+sdt

}

=
|f ′(a)|
s+ 1

[
B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

]
(2.9)

+
|f ′(b)|
s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)−B 1

2
(n+ 1, α− n+ s+ 1)

]

Φ3 =

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

](
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

=

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)(
ts|f

′
(a)|+ (1− t)s|f

′
(b)|
)
dt

= |f
′
(a)|

{(∫ t

1−t
xn(1− x)α−n−1dx

)
ts+1

s+ 1

∣∣∣∣1
1
2

− 1

s+ 1

∫ 1

1
2

[
1.tn(1− t)α−n−1 + 1.(1− t)ntα−n−1

]
ts+1dt

}

+|f
′
(b)|

{(∫ t

1−t
xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

∣∣∣∣1
1
2

+
1

s+ 1

∫ 1

1
2

[
1.tn(1− t)α−n−1 + 1.(1− t)ntα−n−1

]
(1− t)s+1dt

}

= |f
′
(a)|

{
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx− 1

s+ 1

∫ 1

1
2

tn+s+1(1− t)α−n−1dt

− 1

s+ 1

∫ 1

1
2

tα−n+s(1− t)ndt

}

+|f
′
(b)|

{
1

s+ 1

∫ 1

1
2

tn(1− t)α−n+sdt+
1

s+ 1

∫ 1

1
2

tα−n−1(1− t)n+s+1dt

}

=
|f ′(a)|
s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)−B 1

2
(n+ 1, α− n+ s+ 1)

]
+
|f ′(b)|
s+ 1

[
B 1

2
(n+ s+ 2, α− n) +B 1

2
(α− n+ s+ 1, n+ 1)

]
(2.10)

Combining (2.8), (2.9), (2.10) with (2.7), we get desired result.
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Corollary 2.4. Taking s = 1 in Theorem 2.3 i.e. |f ′ | is convex, we get the following
result: ∣∣∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)

∣∣∣∣∣ (2.11)

≤ (b− a)

4

(∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣) [2B(n+ 1, α− n) +B 1

2
(α− n+ 2, n+ 1)

+B 1
2
(n+ 3, α− n)−B 1

2
(α− n, n+ 3)−B 1

2
(n+ 1, α− n+ 2)

]
.

Remark 2.5. Taking α = n + 1 in Corollary 2.4, the inequality (2.11) reduces the
inequality (1.6).

Theorem 2.6. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and

s ∈ (0, 1]. If f
′ ∈ L[a, b] and |f ′ |q is s-convex in the second sense, then the following

inequality for conformable fractional integrals holds:

∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)
∣∣∣ (2.12)

≤ b− a
2

(
B(n+ 1, α− n)(

1

2
)

1
p + δ

1
p

){[
( 1
2 )s+1|f ′(a)|q + (1− ( 1

2 )s+1)|f ′(b)|q]
s+ 1

] 1
q

+

[
(1− ( 1

2 )s+1)|f ′(a)|q + ( 1
2 )s+1|f ′(b)|q]

s+ 1

] 1
q
}

where δ =

∫ 1
2

0

(∫ 1−t

t

xn(1−x)α−n−1dx
)p
dt, α ∈ (n, n+1], n = 0, 1, 2..., B(a, b), Bt(a, b)

are beta and incompleted beta functions with 1
p + 1

q = 1, q > 1.

Proof. Using Lemma 2.1, s-convexity of |f ′ |q and well-known Hölder inequality, we obtain

∣∣∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)

∣∣∣∣∣
≤ (b− a)

2

{∣∣∣∣ ∫ 1
2

0

B(n+ 1, α− n)f
′
(ta+ (1− t)b)dt

−
∫ 1

1
2

B(n+ 1, α− n)f
′
(ta+ (1− t)b)

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

(
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

)
f
′
(ta+ (1− t)b)

∣∣∣∣
}
dt
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≤ (b− a)

2

{∫ 1
2

0

B(n+ 1, α− n)
∣∣f ′(ta+ (1− t)b)

∣∣dt
+

∫ 1

1
2

B(n+ 1, α− n)
∣∣f ′(ta+ (1− t)b)

∣∣dt
+

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt

+

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt}

≤ (b− a)

2

{(∫ 1
2

0

B(n+ 1, α− n)pdt

) 1
p
[ ∫ 1

2

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

+

(∫ 1

1
2

B(n+ 1, α− n)pdt

) 1
p
[ ∫ 1

1
2

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

+

(∫ 1
2

0

[ ∫ 1−t

t

xn(1− x)α−n−1dx

]p
dt

) 1
p
[ ∫ 1

2

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

+

(∫ 1

1
2

[ ∫ t

1−t
xn(1− x)α−n−1dx

]p
dt

) 1
p
[ ∫ 1

1
2

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

}
,

(2.13)

Let’s calculate the following simple integral equations;∫ 1
2

0

B(n+ 1, α− n)pdt =
B(n+ 1, α− n)p

2
=

∫ 1

1
2

B(n+ 1, α− n)pdt.

(2.14)

Since |f ′ |q is s-convex, we get the following simple computation;∫ 1
2

0

∣∣f ′(ta+ (1− t)b)
∣∣q =

∫ 1
2

0

(
ts|f

′
(a)|q + (1− t)s|f

′
(b)|q

)
dt (2.15)

=
[( 1

2 )s+1|f ′(a)|q + (1− ( 1
2 )s+1)|f ′(b)|q]

s+ 1
,

∫ 1

1
2

∣∣f ′(ta+ (1− t)b)
∣∣q =

∫ 1

1
2

(
ts|f

′
(a)|q + (1− t)s|f

′
(b)|q

)
dt (2.16)

=
[(1− ( 1

2 )s+1)|f ′(a)|q + ( 1
2 )s+1|f ′(b)|q]

s+ 1
.

In fact noticed that, changing variables with u = 1−t we can write the following equality;

δ =

∫ 1
2

0

[ ∫ 1−t

t

xn(1− x)α−n−1dx

]p
dt =

∫ 1

1
2

[ ∫ u

1−u
xn(1− x)α−n−1dx

]p
du.

(2.17)
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Thus combining the equalities (2.14)-(2.17) with (2.13) we get desired result as (2.12).

Corollary 2.7. For s = 1 in Theorem 2.6, we have;∣∣∣ n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]−B(n+ 1, α− n)f(

a+ b

2
)
∣∣∣

≤ b− a
2

(
B(n+ 1, α− n)(

1

2
)

1
p + δ

1
p

)

×

{[
|f ′(a)|q + 3|f ′(b)|q

8

] 1
q

+
[3|f ′(a)|q + |f ′(b)|q

8

] 1
q

}
.

Corollary 2.8. If we take α = n+ 1 in Corollary 2.7, we get

δ =

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx
)p
dt

=

∫ 1
2

0

( (1− t)α − tα

α

)p
≤ 1

αp

∫ 1
2

0

(1− 2t)αpdt

=
1

αp
1

2(αp+ 1)

where we used the fact that, for α ∈ (0, 1] and ∀t1, t2 ∈ [0, 1] then |tα1 − tα2 | ≤ |t1 − t2|α
holds. Thus, ∣∣∣ Γ(α+ 1)

2(b− a)α
[Iaαf(b) +b Iαf(a)]− f(

a+ b

2
)
∣∣∣

≤ b− a
2

[
(
1

2
)

1
p
[
1 + (

1

αp+ 1
)

1
p
]]

×

{[
|f ′(a)|q + 3|f ′(b)|q

8

] 1
q

+
[3|f ′(a)|q + |f ′(b)|q

8

] 1
q

}
.

and if we take α = 1 in the above inequality then∣∣∣ 1

b− a

∫ b

a

f(x)dx− f(
a+ b

2
)
∣∣∣

≤ b− a
2

[
(
1

2
)

1
p
[
1 + (

1

p+ 1
)

1
p
]]

×

{[
|f ′(a)|q + 3|f ′(b)|q

8

] 1
q

+
[3|f ′(a)|q + |f ′(b)|q

8

] 1
q

}
holds.
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fractional integrals and related fractional inequalities, Math. Comput. Model. 57
(2013) 2403–2407.
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[26] E. Set, A.O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable frac-
tional integrals, Miskolc Mathematical Notes 20 (2) (2019) 1227–1236.


	Introduction
	Main Results

