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1. INTRODUCTION

The first important result obtained on fixed points for contractive-type mappings was
the well-known Banach contraction theorem, published for the first time in 1922 ([1]). In
the general setting of complete metric spaces, this theorem runs as follows.

Theorem 1.1. Let (X,d) be a complete metric space, § € (0,1) and let T : X — X be a
mapping such that for each x,y € X,

d(Tz, Ty) < Bd(z,y).
Then T has a unique fized point a € X such that for each x € X, lim,_, o, T"x = a.

In order to generalize this theorem, several authors have introduced various types of
contraction inequalities. In 2002 Branciari proved the following result (see [2]).

Theorem 1.2. Let (X,d) be a complete metric space, 8 € (0,1) and T : X — X a
mapping such that for each x,y € X,

d(Tz,Ty) d(z,y)
/ F(t)dt < 8 / F(b)dr,

where [ :[0,00) = (0,00) is a Lebesgue integrable mapping which is summable (i.e., with
finite integral on each compact subset of [0,00)) and for each € > 0, foe f(®)dt > 0. Then
T has a unique fized point a € X such that for each x € X, lim,, 0o T"x = a.
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Rhoades [3] and Djoudi et al. [1] extended the result of Branciari and proved the
following fixed point theorems.

Theorem 1.3. [3] Let (X,d) be a complete metric space, k € [0,1), T : X — X a
mapping satisfying for each x,y € X,

d(Tz,Ty) M (z,y)
/ p(t)dt < k/ p(t)dt
0 0

M (2, ) = max{d(,y), d(z, Tz}, dly, Ty), 31d(z, Ty) + d(y, )}

where

and ¢ : Rt — RT be as in Theorem 1.2. Then T has a unique fized point x € X.

Theorem 1.4. [1] Let (X,d) be a complete metric space and T : X — X a mapping
satisfying for each x,y € X,

d(Tz,Ty) M(z,y)
[ emden [ etan
0 0

M(xa y) = max{d(x, y)v d(l’, Tm)a d(ya Ty)v d((L’, Ty)v d<ya T.’ﬂ)},
h : RT — RT is subadditive, nondecreasing and continuous from the right such that
h(t) < t, for allt > 0 and ¢ : R™ — RT be as in Theorem 1.2. Then T has a unique
fized point x € X.

where

In 1984, M.S. Khan, M. Swalech and S. Sessa [5] expanded the research of the metric
fixed point theory to the category ¥ by introducing a new function which they called an
altering distance function. For ¢ : Rt — RT we say that ¢ € ¥ if

1. ¥(t) =0 if and only if t = 0,
2. 1 is monotonically non-decreasing,
3. v is continuous.

The following lemma shows that contractive conditions of integral type can be inter-
preted as contractive conditions involving an altering distance.

Lemma 1.5. Let ¢ : RT — R be as in Theorem 1.2. Define (t) = fot o(T)dr, for
t € RT. Then % is an altering distance.

Khan et al. used this altering distance to extend the Banach Contraction Principle as
follows:

Theorem 1.6. [5] Let (X,d) be a complete metric space, 8 € (0,1) and T : X — X a
mapping such that for each x,y € X,

Yld(Tx, Ty)] < pld(z,y))

where ¥ € W. Then T has a unique fized point a € X such that for each v € X,
lim,, yoo T"x = a.

It is easy to see that if ¥ (t) = ¢, we obtain the Banach Contraction Principle and by
Lemma 1.5, we obtain Theorem 1.2. Dutta et al. [6], Dori [7], Choudhury et al. [8]
and Morals et al. [9] extended the results of Khan and proved the following fixed point
theorems.
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Theorem 1.7. [0] Let (X, d) be a complete metric space and let T : X — X be a mapping
satisfying

Y(d(Tz,Ty)) < P(d(z,y)) — h(d(z,y))
for each z,y € X, where ¥, h : RT — RT are continuous and non-decreasing function
such that ¢ (t) = h(t) = 0 if and only if t = 0. Then T has a unique fixed point x € X.

Theorem 1.8. [7] Let (X, d) be a complete metric space and let T : X — X be a mapping
satisfying
for each x,y € X, where

1
) i[d(xv Ty) + d(y7 Tl’)}},
€W and h : RT — RY is a lower semi-continuous function such that h(t) = 0 if and
only if t =0. Then T has a unique fized point x € X.

M(xa y) = max{d(x, y)v d(l’, TLL'), d(ya Ty)

Theorem 1.9. [38] Let (X, d) be a complete metric space and let T : X — X be a mapping
satisfying

P(d(Tz,Ty)) < p(M(z,y)) — h(max{d(z,y),d(y,Ty)})
for each x,y € X, where

M(r,y) = max{d(r, ), dx, Ta), d(y, Ty), 3 d(r, Ty) + dly, To)]}

eV and h: RY — RT is a continuous function such that h(t) = 0 if and only if t = 0.
Then T has a unique fized point x € X.

Theorem 1.10. [9] Let (X,d) be a complete metric space and T : X — X a mapping
which satisfies the following condition:

Yld(Tz, Ty)] < ayld(z, y)] + by [m(z,y)]
forallz,ye X,a>0,b>0,a+b<1 where
1+d(z,Tx)

m(z,y) = d(y, Ty) T+ d(.y)

for all x,y € X, where ¢ € ¥. Then T has a unique fixed point a € X such that for each
re X, lim, ,oo T"x = a.

On the other hand, in 2008, Suzuki introduced a new method in [10] and then his
method was extended by some authors (see for example [11], [12], [13]). The aim of this
paper is to provide a new and more general condition for 7" which guarantees the existence
of its fixed point. Our results generalize several old and new results in the literature. In
this way, consider ® the set of all control function ¢ : [0, 00)* — [0, c0) satisfying
(i) $(0,0,..,0) = 0,

(ii) limy, 00 @(t10, ton, -y tkn) < ¢(t1, to, ..., tk) whenever (tl'ru tony ey tkn) — (tl, to, ...y tk),
and R the set of all continuous function g : [0,00)% — [0, 00) satisfying the following
conditions:

(i) g(17 17 17 0’ 2)’ g(17 ]" 17 17 1) E (07 1]’

(ii) g is subhomogeneous, i.e.

glazy, axg, axs, axy, axs) < ag(xy, xe, 3,24, x5) for all a > 0.

(iii) if z;, y; € [0,00), ; < y; fori =1,...,5 we have g(z1, 22, 3,24, 25) < g(y1, Y2, Y3, Y4, T5)-
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Example 1.11. Define g(z1, 22, x5, 24, 25) = %max{azi 9_,. It is obvious that g € R.

Example 1.12. Define g(x1, 2, x3, 4, x5) = max{zy, o, T3, %} It is obvious that
g€ R.

Proposition 1.13. If g € R and u,v € [0,00) are such that
u < max{g(v,v,u,v,u), g(v,u,v,v+u,0)},
then u < v.
Proof. Without loss of generality, we can suppose u < g(v,u,v,v + u,0). If v < u, then
u < g(v,u,v,v 4+ u,0) < g(u,u,u,2u,0) <ug(1,1,1,2,0) <u

which is a contradiction. Thus u < v. n

Lemma 1.14. Let ¢ € U and ¢ € ® such that for every t; € RT,

d(tr,ta, o tr) < ( maxkti).

i=1,..,
If for t,s; € R we have
P(t) < d(s1,82, ..., Sk ),
then

t < max s;.
i=1,...,k

Proof. Let S = max;—1

.....

1/1(t) > ¢(S) > ¢(317 8§25 euey sk)7
which is a contradiction. ]

Lemma 1.15. Suppose that {s,} be a sequence of non-negative real numbers such that
Sn+1 < Sn. Then s, is convergent.

Lemma 1.16. [14] Let (X,d) be a metric space and {x,} be a sequence in X such that

nll)n;o d(Xp, py1) = 0.

If {z,} is not a Cauchy sequence in X, then there exist an ey > 0 and sequences of
positive integers my and ng with my > ng > k such that

d(l'mk»xnk) 2 607 d(xmkflvmnk) < 60

and

(1) limg o0 d(Tmy -1, Tnyt1) = €0,
(i) limp s 00 (X, , Tn,, ) = €0,
() limy 00 d(Tmy—1, Tny, ) = €o-
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2. MAIN RESULTS
The following theorem is the main result of this paper.

Theorem 2.1. Let (X, d) be a complete metric space, T : X — X a mapping, o € (0, %],
€W and ¢ € D such that for every t; € RY with (t1,t2,...,tx) # (0,0, ...,0),

B(t1,ta, o tr) < Y( IIllanti)~

Suppose that {g;}¥_, be a sequence in R and ad(z, Tx) < d(z,y) implies
Pld(Tz, Ty)] < ¢(91(May), g2(May), -, gr(May))
for all x,y € X, where
My = (d(z,y),d(y, Ty), d(z, Tx), d(x, Ty), d(y, Tx))

for all x,y € X. Then T has a unique fized point in X.
Proof. Fix arbitrary xo € X and let 1 = T'xg. We have ad(zo, Txo) < d(xo,x1). Hence,

Yld(Txo, T1)] < ¢(91(Maga, ); 92 (Moo, )5 s G (Mo, ))-
Then by Lemma 1.14 we have

d(z1,T21) < i_maxkgi(Mxoxl)

=1,...;

= max g;(d(xg,z1),d(x1,Tx1),d(x0, Tx0),d(x0, Tx1),d(x1,T20))

i=1,...,
= i:Hllangi(d(SUo,3?1),d($17T331)7d($0,xl),d(fﬂo7T331)70)
< ‘_Irllaxkgi(d(xmxl),d(acl,Tscl), d(xo, 1), d(x0, 1) + d(x1,Tx1),0).

By Proposition 1.13, we obtain d(z1,Tz1) < d(xg,x1). Now let zo = Tx;. Since
ad(z1,Tx1) < d(x1,x2), by using the assumption we have

w[d(T‘rlvTxQ)} < ¢(91(M11E2)792(M1’11’2)7 "'vgk(MﬂflIQ))'
Then by Lemma 1.14 we have
d(x2,Txe) < ‘_maxkgi(Mwm)

=1,..,

= max g;(d(x1,22),d(x2, Tx2),d(x1,T21),d(x1, Tx2),d(x2, T21))

i=1,....k

= max 9i(d(z1,22),d(x2, Txs),d(x1,x2),d(x1, T22),0)

i=1,...,

< iznllaxkgi(d(xhx2)7d(x2aT'/E2)’ d(x17x2)7d(xlax2) + d(anTx2)a 0)

By Proposition 1.13, we obtain d(zq,Tz2) < d(x1,z2). Now by continuing this process,
we obtain a sequence {x,, },>1 in X such that z,,41 = Tx,, and d(zp, Tpt1) < d(Tn—1,Zn)-
So by Lemma 1.15, there is a such that lim,, o d(2y, Tp+1) = a. Hence

nh—>Holo Mz = (a,a,a,A,0)
where A < 2a. Then
dla) = lim Pd(zni1,nt2)]
S nh~>nc}o ¢(gl (M”En-’tn+1 )7 92 (Ma?nfn-u )7 cey gk (M1377,In+1 ))

S (Zs(gl(a? a7 a” 2A7 O)7g2(a7 a” a7 2A’ 0)’ "')gk(a” a) a7 2A’ O))'
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Now by Lemma 1.14 we obtain

a< ‘rrllaxkgi(a,a,a,A,O) < ‘Hllaxkgi(a7a,a72a,0) <a
3

=Ly =1,
an then ¢ = 0. We claim that {z,},>1 is a Cauchy sequence in (X,d). Suppose that
{Zn}n>1 is not a Cauchy sequence, which means that there is a constant €9 > 0 such that
for each positive integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k
such that

AT (k) Tr(k)) = €05 ATm(k)1> Tn(r)) < €0-
From Lemma 1.16, we obtain,

li = i = &p.
kLH;od(xm(k)+1,$n(k)+1) €0 and klingod(mm(k)+2amn(k)+2) €0

We claim that for any y € X, one of the flowing relations is held:
ozd(mexn) < d(znay) or ad(mn+1aTx7L+1) < d(l’n+1,y). (21)
Otherwise, if ad(z,, Tx,) > d(x,,y) and ad(xpt1, Tepy1) > d(Tpe1,y), we have
A(Xn, Tpt1) < d(@n,y) + d(@nt1,Y) < ad(@p, T2y) + ad(@pi1, TTpi1)
= ad(l‘na zn—&-l) + Oéd($n+1, xn+2) < 204d(1'n7 xn—&-l) < d(In, $n+1)

which is a contradiction. Now by using the assumption and relation 2.1, for each n > 1

one of the following cases holds:

(i) There exists an infinite subset I C N such that
w[d(xm(k:)+1a xn(k)+1)]

< ¢(gl( wm(k)ﬂﬂn(k)) 92(Mwm(k)93n(k))v"'7gk(Mwm(k)93n(k)))'

(ii) There exists an infinite subset J C N such that

w[d(xm(k:)+2a xn(k)+1)]

< (91 (Mo, 12000 )2 92(Ma 1y 100y )5 -0 I8 (M 41 200)) -
Since
M, ey
= (d(Zm(k) Trk))s ATnk), TTnk))s ATmk)s TOmk)), A @Tmk)s Tnk)), d(@nk)s TTmk)))
= (d(@m(k)s Trk))s ATn k), Tnir)+1)> ATmk) Tk +1), A Zm(k)s Trk)+1)s ATn(k)s Tm(e)+1))
< ( (xm (k)» xn(k))a d(xn(k)7 xn(k)+1)a d(xm(k)7 xm(k)+1)7
AT (k)s Tnr)) + ATy Tnr)+1)s ATnk) Tmk)) + ATmE), Tmk)+1)),
we have limy, 0o Mz, 200 = (€0,0,0, A, B) where A < ¢y and B < gp. Then in case
(i), we obtain
¥(eo0)
S Qb(gl(gOv 07 07 Av B)792(507 07 0) Av B)v ceey gk(507 07 0) Av B))

and then by Lemma 1.14 we have

go < ,max gz(eo,O 0,A,B) < max gz(so,O 0,e0,¢0) < €o,

i=1,.

which is a contradlctlon.
In case (ii), similar to cas(i), we obtain

g0 < €g,
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which is a contradiction. This proves our claim that {z,},>1 is a Cauchy sequence in
(X,d). Let lim,, o0 2, = z. By relation 2.1, for each n > 1 and y € X, either

a) Y[d(Tzn, Ty)] < ¢(g1( Mz, ), g2(Ma,,2)s s gr(Ma, )

or

b) w[d(T‘rnJrlva)] < ¢(gl( 1n+196) gQ(MIn-HOC)? ""gk(MEn+1I))
In case (a), by using of Lemma 1.14 we obtain

d(x,Tx) < d(x,Tx,) + d(Tz,,Tx) < d(x, Tx,) + gnax 9i(My, )

=d(z,Tz,) + maxkg,(d(xn,x),d(xn,Tmn) d(z,Tz),d(x, Txy), d(xn, Tx)).

Hence
d(z,Tx) < ,max 9:(0,0,d(x,Tx),0,d(z, Tx)).

Now by using Proposition 1.13, we have d(z,Tx) = 0 and so x = Tx.
In case (b), by using Lemma 1.14, we obtain

d(x,Tz) <d(x,Txpi1) + d(Txpi1, Tx) < d(z, Tx,) +  max 9i(Mz,, . z)

[RRRE}

< d(x, T./,Cn+1)+‘_nilaxkgi(d($n+1, x), d(Xpi1, TTpy1),d(z, Tx), d(x, T:En+1), d(xpy1,T)).

Hence

d(x,Tx) < ¢(0,0,d(x,Tx),0,d(x, Tx)),
and then by using Proposition 1.13, we have d(z,Txz) = 0. So x = Tx. We claim that
this fixed point is unique. Suppose that there are two distinct points a,b € X such that
Ta = a and Tbh = b. Since d(a,b) > 0 = ad(a,Ta), we have the contradiction

0 < ¢[d(a,b)] = Y[d(Ta,Th)]
< 091 (Map), 92(Ma), -, gr(Mab))-
Now by Lemma 1.14, we obtain
d(a,b) < nllaxkgz(d(a, b),d(a,Ta),d(b,Tb),d(a,Tb),d(b,Ta))

[RRRE}

= max g;(d(a,b),0,0,d(a,b),d(b,a)) < d(a,b).

i=1,...,

So d(a,b) = 0. m

Corollary 2.2. Let (X,d) be a complete metric space and T : X — X be a mapping
satisfying

Y(d(Tz, Ty)) < h((M(z,y)))
for each x,y € X, where

1
M(z,y) = 5 max{d(z,y),d(z, Tz), d(y, Ty), d(z, Ty),d(y, Tx)},
¥ €W and h : RY — RT is a continuous function such that h(t) <t for all t > 0. Then
T has a unique fixed point x € X.

Proof. Let g1(ty1,ta,t3,ts,t5) = %max{t17t2,t3,t4,t5} and define ¢ by ¢(t) = h(v(t)). It
is easy to see that ¢ € ® and for every ¢t > 0, ¢(t) < 1(t). Now by using Theorem 2.1, T'
has a fixed point. =

Remark 2.3. By Lemma 1.5, we see that Theorems 1.2, 1.3 and 1.4 are special cases of
Theorem 2.1.
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Remark 2.4. Theorem 1.7 is a special case of Theorem 2.1.

Proof. Let g1 = ga(t1,t2,13,%4,t5) = t1 and define ¢ by ¢(t1,t2) = ¢(t1) — h(t2). Now by
using Theorem 2.1, T has a fixed point. [

Remark 2.5. Theorem 1.8 is a special case of Theorem 2.1.

Proof. Let g1(t1,ta,t3,t4,t5) = max{ty, ta,t3, %(t4 +t5)} and define ¢(t) = ¥(t) — h(t).
Now by using Theorem 2.1, T has a fixed point. [

Remark 2.6. Theorem 1.9 is a special case of Theorem 2.1.

P’f’OOf. Let g1 (tl, t2, t3, t4, t5) = max{tl, tQ, ts, %(t4 +t5)}, gg(tl, tz, t3, t4, t5) = max{tl, tg}
and define ¢(t1,t2) = ¥(t1) — h(t2). Now by using Theorem 2.1, T has a fixed point. m

Remark 2.7. Let g1 (t1, ta, t3,ta,t5) = t1, g2(t1,t2,t3, ta, t5) = ta }Ei’ and define ¢(t1,t2) =
a)(t1) + bi(tz). Then we obtain Theorem 1.10 of Theorem 2.1.
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