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1. Introduction

The first important result obtained on fixed points for contractive-type mappings was
the well-known Banach contraction theorem, published for the first time in 1922 ([1]). In
the general setting of complete metric spaces, this theorem runs as follows.

Theorem 1.1. Let (X, d) be a complete metric space, β ∈ (0, 1) and let T : X → X be a
mapping such that for each x, y ∈ X,

d(Tx, Ty) ≤ βd(x, y).

Then T has a unique fixed point a ∈ X such that for each x ∈ X, limn→∞ Tnx = a.

In order to generalize this theorem, several authors have introduced various types of
contraction inequalities. In 2002 Branciari proved the following result (see [2]).

Theorem 1.2. Let (X, d) be a complete metric space, β ∈ (0, 1) and T : X −→ X a
mapping such that for each x, y ∈ X,∫ d(Tx,Ty)

0

f(t)dt ≤ β
∫ d(x,y)

0

f(t)dt,

where f : [0,∞)→ (0,∞) is a Lebesgue integrable mapping which is summable (i.e., with
finite integral on each compact subset of [0,∞)) and for each ε > 0,

∫ ε

0
f(t)dt > 0. Then

T has a unique fixed point a ∈ X such that for each x ∈ X, limn→∞ Tnx = a.
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Rhoades [3] and Djoudi et al. [4] extended the result of Branciari and proved the
following fixed point theorems.

Theorem 1.3. [3] Let (X, d) be a complete metric space, k ∈ [0, 1), T : X → X a
mapping satisfying for each x, y ∈ X,∫ d(Tx,Ty)

0

ϕ(t)dt ≤ k
∫ M(x,y)

0

ϕ(t)dt

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]}

and ϕ : R+ → R+ be as in Theorem 1.2. Then T has a unique fixed point x ∈ X.

Theorem 1.4. [4] Let (X, d) be a complete metric space and T : X → X a mapping
satisfying for each x, y ∈ X,∫ d(Tx,Ty)

0

ϕ(t)dt ≤ h(

∫ M(x,y)

0

ϕ(t)dt)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

h : R+ → R+ is subadditive, nondecreasing and continuous from the right such that
h(t) < t, for all t > 0 and ϕ : R+ → R+ be as in Theorem 1.2. Then T has a unique
fixed point x ∈ X.

In 1984, M.S. Khan, M. Swalech and S. Sessa [5] expanded the research of the metric
fixed point theory to the category Ψ by introducing a new function which they called an
altering distance function. For ψ : R+ → R+ we say that ψ ∈ Ψ if

1. ψ(t) = 0 if and only if t = 0,
2. ψ is monotonically non-decreasing,
3. ψ is continuous.

The following lemma shows that contractive conditions of integral type can be inter-
preted as contractive conditions involving an altering distance.

Lemma 1.5. Let ϕ : R+ → R+ be as in Theorem 1.2. Define ψ(t) =
∫ t

0
ϕ(τ)dτ , for

t ∈ R+. Then ψ is an altering distance.

Khan et al. used this altering distance to extend the Banach Contraction Principle as
follows:

Theorem 1.6. [5] Let (X, d) be a complete metric space, β ∈ (0, 1) and T : X −→ X a
mapping such that for each x, y ∈ X,

ψ[d(Tx, Ty)] ≤ βψ[d(x, y)]

where ψ ∈ Ψ. Then T has a unique fixed point a ∈ X such that for each x ∈ X,
limn→∞ Tnx = a.

It is easy to see that if ψ(t) = t, we obtain the Banach Contraction Principle and by
Lemma 1.5, we obtain Theorem 1.2. Dutta et al. [6], Dori [7], Choudhury et al. [8]
and Morals et al. [9] extended the results of Khan and proved the following fixed point
theorems.
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Theorem 1.7. [6] Let (X, d) be a complete metric space and let T : X → X be a mapping
satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− h(d(x, y))

for each x, y ∈ X, where ψ, h : R+ → R+ are continuous and non-decreasing function
such that ψ(t) = h(t) = 0 if and only if t = 0. Then T has a unique fixed point x ∈ X.

Theorem 1.8. [7] Let (X, d) be a complete metric space and let T : X → X be a mapping
satisfying

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− h(M(x, y)))

for each x, y ∈ X, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]},

ψ ∈ Ψ and h : R+ → R+ is a lower semi-continuous function such that h(t) = 0 if and
only if t = 0. Then T has a unique fixed point x ∈ X.

Theorem 1.9. [8] Let (X, d) be a complete metric space and let T : X → X be a mapping
satisfying

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− h(max{d(x, y), d(y, Ty)})
for each x, y ∈ X, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]},

ψ ∈ Ψ and h : R+ → R+ is a continuous function such that h(t) = 0 if and only if t = 0.
Then T has a unique fixed point x ∈ X.

Theorem 1.10. [9] Let (X, d) be a complete metric space and T : X −→ X a mapping
which satisfies the following condition:

ψ[d(Tx, Ty)] ≤ aψ[d(x, y)] + bψ[m(x, y)]

for all x, y ∈ X, a > 0, b > 0, a+ b < 1 where

m(x, y) = d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)

for all x, y ∈ X, where ψ ∈ Ψ. Then T has a unique fixed point a ∈ X such that for each
x ∈ X, limn→∞ Tnx = a.

On the other hand, in 2008, Suzuki introduced a new method in [10] and then his
method was extended by some authors (see for example [11], [12], [13]). The aim of this
paper is to provide a new and more general condition for T which guarantees the existence
of its fixed point. Our results generalize several old and new results in the literature. In
this way, consider Φ the set of all control function φ : [0,∞)k −→ [0,∞) satisfying
(i) φ(0, 0, ..., 0) = 0,
(ii) limn→∞ φ(t1n, t2n, ..., tkn) ≤ φ(t1, t2, ..., tk) whenever (t1n, t2n, ..., tkn)→ (t1, t2, ..., tk),
and R the set of all continuous function g : [0,∞)5 −→ [0,∞) satisfying the following
conditions:
(i) g(1, 1, 1, 0, 2), g(1, 1, 1, 1, 1) ∈ (0, 1],
(ii) g is subhomogeneous, i.e.
g(αx1, αx2, αx3, αx4, αx5) ≤ αg(x1, x2, x3, x4, x5) for all α ≥ 0.
(iii) if xi, yi ∈ [0,∞), xi ≤ yi for i = 1, ..., 5 we have g(x1, x2, x3, x4, x5) ≤ g(y1, y2, y3, y4, x5).
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Example 1.11. Define g(x1, x2, x3, x4, x5) = 1
2 max{xi}5i=1. It is obvious that g ∈ R.

Example 1.12. Define g(x1, x2, x3, x4, x5) = max{x1, x2, x3, x4+x5

2 }. It is obvious that
g ∈ R.

Proposition 1.13. If g ∈ R and u, v ∈ [0,∞) are such that

u < max{g(v, v, u, v, u), g(v, u, v, v + u, 0)},

then u < v.

Proof. Without loss of generality, we can suppose u < g(v, u, v, v + u, 0). If v ≤ u, then

u < g(v, u, v, v + u, 0) ≤ g(u, u, u, 2u, 0) ≤ ug(1, 1, 1, 2, 0) ≤ u

which is a contradiction. Thus u < v.

Lemma 1.14. Let ψ ∈ Ψ and φ ∈ Φ such that for every ti ∈ R+,

φ(t1, t2, .., tk) < ψ( max
i=1,...,k

ti).

If for t, si ∈ R+ we have

ψ(t) ≤ φ(s1, s2, ..., sk),

then

t < max
i=1,...,k

si.

Proof. Let S = maxi=1,...,k si. Suppose that t ≥ S. Then

ψ(t) ≥ ψ(S) > φ(s1, s2, ..., sk),

which is a contradiction.

Lemma 1.15. Suppose that {sn} be a sequence of non-negative real numbers such that
sn+1 ≤ sn. Then sn is convergent.

Lemma 1.16. [14] Let (X, d) be a metric space and {xn} be a sequence in X such that

lim
n→∞

d(xn, xn+1) = 0.

If {xn} is not a Cauchy sequence in X, then there exist an ε0 > 0 and sequences of
positive integers mk and nk with mk > nk > k such that

d(xmk
, xnk

) ≥ ε0, d(xmk−1, xnk
) < ε0

and
(i) limk→∞ d(xmk−1, xnk+1) = ε0,
(ii) limk→∞ d(xmk

, xnk
) = ε0,

(iii) limk→∞ d(xmk−1, xnk
) = ε0.
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2. Main Results

The following theorem is the main result of this paper.

Theorem 2.1. Let (X, d) be a complete metric space, T : X −→ X a mapping, α ∈ (0, 12 ],
ψ ∈ Ψ and φ ∈ Φ such that for every ti ∈ R+ with (t1, t2, ..., tk) 6= (0, 0, ..., 0),

φ(t1, t2, .., tk) < ψ( max
i=1,...,k

ti).

Suppose that {gi}ki=1 be a sequence in R and αd(x, Tx) ≤ d(x, y) implies

ψ[d(Tx, Ty)] ≤ φ(g1(Mxy), g2(Mxy), ..., gk(Mxy))

for all x, y ∈ X, where

Mxy = (d(x, y), d(y, Ty), d(x, Tx), d(x, Ty), d(y, Tx))

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Fix arbitrary x0 ∈ X and let x1 = Tx0. We have αd(x0, Tx0) < d(x0, x1). Hence,

ψ[d(Tx0, Tx1)] ≤ φ(g1(Mx0x1
), g2(Mx0x1

), ..., gk(Mx0x1
)).

Then by Lemma 1.14 we have

d(x1, Tx1) < max
i=1,...,k

gi(Mx0x1
)

= max
i=1,...,k

gi(d(x0, x1), d(x1, Tx1), d(x0, Tx0), d(x0, Tx1), d(x1, Tx0))

= max
i=1,...,k

gi(d(x0, x1), d(x1, Tx1), d(x0, x1), d(x0, Tx1), 0)

≤ max
i=1,...,k

gi(d(x0, x1), d(x1, Tx1), d(x0, x1), d(x0, x1) + d(x1, Tx1), 0).

By Proposition 1.13, we obtain d(x1, Tx1) < d(x0, x1). Now let x2 = Tx1. Since
αd(x1, Tx1) < d(x1, x2), by using the assumption we have

ψ[d(Tx1, Tx2)] ≤ φ(g1(Mx1x2), g2(Mx1x2), ..., gk(Mx1x2)).

Then by Lemma 1.14 we have

d(x2, Tx2) < max
i=1,...,k

gi(Mx1x2
)

= max
i=1,...,k

gi(d(x1, x2), d(x2, Tx2), d(x1, Tx1), d(x1, Tx2), d(x2, Tx1))

= max
i=1,...,k

gi(d(x1, x2), d(x2, Tx2), d(x1, x2), d(x1, Tx2), 0)

≤ max
i=1,...,k

gi(d(x1, x2), d(x2, Tx2), d(x1, x2), d(x1, x2) + d(x2, Tx2), 0).

By Proposition 1.13, we obtain d(x2, Tx2) < d(x1, x2). Now by continuing this process,
we obtain a sequence {xn}n≥1 in X such that xn+1 = Txn and d(xn, xn+1) < d(xn−1, xn).
So by Lemma 1.15, there is a such that limn→∞ d(xn, xn+1) = a. Hence

lim
n→∞

Mxnxn+1
= (a, a, a,A, 0)

where A ≤ 2a. Then
ψ(a) = lim

n→∞
ψ[d(xn+1, xn+2)]

≤ lim
n→∞

φ(g1(Mxnxn+1
), g2(Mxnxn+1

), ..., gk(Mxnxn+1
))

≤ φ(g1(a, a, a, 2A, 0), g2(a, a, a, 2A, 0), ..., gk(a, a, a, 2A, 0)).
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Now by Lemma 1.14 we obtain

a < max
i=1,...,k

gi(a, a, a,A, 0) ≤ max
i=1,...,k

gi(a, a, a, 2a, 0) ≤ a

an then a = 0. We claim that {xn}n≥1 is a Cauchy sequence in (X, d). Suppose that
{xn}n≥1 is not a Cauchy sequence, which means that there is a constant ε0 > 0 such that
for each positive integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k
such that

d(xm(k), xn(k)) ≥ ε0, d(xm(k)1, xn(k)) < ε0.

From Lemma 1.16, we obtain,

lim
k→∞

d(xm(k)+1, xn(k)+1) = ε0 and lim
k→∞

d(xm(k)+2, xn(k)+2) = ε0.

We claim that for any y ∈ X, one of the flowing relations is held:

αd(xn, Txn) ≤ d(xn, y) or αd(xn+1, Txn+1) ≤ d(xn+1, y). (2.1)

Otherwise, if αd(xn, Txn) > d(xn, y) and αd(xn+1, Txn+1) > d(xn+1, y), we have

d(xn, xn+1) ≤ d(xn, y) + d(xn+1, y) < αd(xn, Txn) + αd(xn+1, Txn+1)

= αd(xn, xn+1) + αd(xn+1, xn+2) ≤ 2αd(xn, xn+1) ≤ d(xn, xn+1)

which is a contradiction. Now by using the assumption and relation 2.1, for each n ≥ 1
one of the following cases holds:
(i) There exists an infinite subset I ⊂ N such that

ψ[d(xm(k)+1, xn(k)+1)]

≤ φ(g1(Mxm(k)xn(k)
), g2(Mxm(k)xn(k)

), ..., gk(Mxm(k)xn(k)
)).

(ii)There exists an infinite subset J ⊂ N such that

ψ[d(xm(k)+2, xn(k)+1)]

≤ φ(g1(Mxm(k)+1xn(k)
), g2(Mxm(k)+1xn(k)

), ..., gk(Mxm(k)+1xn(k)
)).

Since

Mxm(k)xn(k)

= (d(xm(k), xn(k)), d(xn(k), Txn(k)), d(xm(k), Txm(k)), d(xm(k), Txn(k)), d(xn(k), Txm(k)))

= (d(xm(k), xn(k)), d(xn(k), xn(k)+1), d(xm(k), xm(k)+1), d(xm(k), xn(k)+1), d(xn(k), xm(k)+1))

≤ (d(xm(k), xn(k)), d(xn(k), xn(k)+1), d(xm(k), xm(k)+1),

d(xm(k), xn(k)) + d(xn(k), xn(k)+1), d(xn(k), xm(k)) + d(xm(k), xm(k)+1)),

we have limn→∞Mxm(k)xn(k)
= (ε0, 0, 0, A,B) where A ≤ ε0 and B ≤ ε0. Then in case

(i), we obtain

ψ(ε0)

≤ φ(g1(ε0, 0, 0, A,B), g2(ε0, 0, 0, A,B), ..., gk(ε0, 0, 0, A,B))

and then by Lemma 1.14 we have

ε0 < max
i=1,...,k

gi(ε0, 0, 0, A,B) ≤ max
i=1,...,k

gi(ε0, 0, 0, ε0, ε0) ≤ ε0,

which is a contradiction.
In case (ii), similar to cas(i), we obtain

ε0 < ε0,
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which is a contradiction. This proves our claim that {xn}n≥1 is a Cauchy sequence in
(X, d). Let limn→∞ xn = x. By relation 2.1, for each n ≥ 1 and y ∈ X, either
a) ψ[d(Txn, T y)] ≤ φ(g1(Mxnx), g2(Mxnx), ..., gk(Mxnx))
or
b) ψ[d(Txn+1, T y)] ≤ φ(g1(Mxn+1x), g2(Mxn+1x), ..., gk(Mxn+1x))
In case (a), by using of Lemma 1.14 we obtain

d(x, Tx) ≤ d(x, Txn) + d(Txn, Tx) < d(x, Txn) + max
i=1,...,k

gi(Mxnx)

= d(x, Txn) + max
i=1,...,k

gi(d(xn, x), d(xn, Txn), d(x, Tx), d(x, Txn), d(xn, Tx)).

Hence
d(x, Tx) ≤ max

i=1,...,k
gi(0, 0, d(x, Tx), 0, d(x, Tx)).

Now by using Proposition 1.13, we have d(x, Tx) = 0 and so x = Tx.
In case (b), by using Lemma 1.14, we obtain

d(x, Tx) ≤ d(x, Txn+1) + d(Txn+1, Tx) < d(x, Txn) + max
i=1,...,k

gi(Mxn+1x)

≤ d(x, Txn+1)+ max
i=1,...,k

gi(d(xn+1, x), d(xn+1, Txn+1), d(x, Tx), d(x, Txn+1), d(xn+1, Tx)).

Hence
d(x, Tx) ≤ g(0, 0, d(x, Tx), 0, d(x, Tx)),

and then by using Proposition 1.13, we have d(x, Tx) = 0. So x = Tx. We claim that
this fixed point is unique. Suppose that there are two distinct points a, b ∈ X such that
Ta = a and Tb = b. Since d(a, b) > 0 = αd(a, Ta), we have the contradiction

0 < ψ[d(a, b)] = ψ[d(Ta, Tb)]

≤ φ(g1(Mab), g2(Mab), ..., gk(Mab)).

Now by Lemma 1.14, we obtain

d(a, b) < max
i=1,...,k

gi(d(a, b), d(a, Ta), d(b, T b), d(a, Tb), d(b, Ta))

= max
i=1,...,k

gi(d(a, b), 0, 0, d(a, b), d(b, a)) ≤ d(a, b).

So d(a, b) = 0.

Corollary 2.2. Let (X, d) be a complete metric space and T : X → X be a mapping
satisfying

ψ(d(Tx, Ty)) ≤ h(ψ(M(x, y)))

for each x, y ∈ X, where

M(x, y) =
1

2
max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

ψ ∈ Ψ and h : R+ → R+ is a continuous function such that h(t) < t for all t > 0. Then
T has a unique fixed point x ∈ X.

Proof. Let g1(t1, t2, t3, t4, t5) = 1
2 max{t1, t2, t3, t4, t5} and define φ by φ(t) = h(ψ(t)). It

is easy to see that φ ∈ Φ and for every t > 0, φ(t) < ψ(t). Now by using Theorem 2.1, T
has a fixed point.

Remark 2.3. By Lemma 1.5, we see that Theorems 1.2, 1.3 and 1.4 are special cases of
Theorem 2.1.
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Remark 2.4. Theorem 1.7 is a special case of Theorem 2.1.

Proof. Let g1 = g2(t1, t2, t3, t4, t5) = t1 and define φ by φ(t1, t2) = φ(t1)− h(t2). Now by
using Theorem 2.1, T has a fixed point.

Remark 2.5. Theorem 1.8 is a special case of Theorem 2.1.

Proof. Let g1(t1, t2, t3, t4, t5) = max{t1, t2, t3, 12 (t4 + t5)} and define φ(t) = ψ(t) − h(t).
Now by using Theorem 2.1, T has a fixed point.

Remark 2.6. Theorem 1.9 is a special case of Theorem 2.1.

Proof. Let g1(t1, t2, t3, t4, t5) = max{t1, t2, t3, 12 (t4+t5)}, g2(t1, t2, t3, t4, t5) = max{t1, t2}
and define φ(t1, t2) = ψ(t1)− h(t2). Now by using Theorem 2.1, T has a fixed point.

Remark 2.7. Let g1(t1, t2, t3, t4, t5) = t1, g2(t1, t2, t3, t4, t5) = t2
1+t3
1+t1

and define φ(t1, t2) =

aψ(t1) + bψ(t2). Then we obtain Theorem 1.10 of Theorem 2.1.
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