Generalization of Suzuki's Method for Altering Distance

Seyed Mohammad Ali Aleomraninejad

Department of Mathematics, Qom University of Technology, Qom, Iran
e-mail : aleomran63@yahoo.com, aleomran@qut.ac.ir

Abstract

In this paper, we introduce the new generalization of contraction mapping by a new control function and an altering distance. We establish some existence results of fixed point for such mappings. Our results reproduce several old and new results in the literature.

MSC: 54H25; 47H10
Keywords: altering distance; contraction mapping; control function; fixed point

Submission date: 28.01.2017 / Acceptance date: 08.08.2019

1. Introduction

The first important result obtained on fixed points for contractive-type mappings was the well-known Banach contraction theorem, published for the first time in 1922 ([1]). In the general setting of complete metric spaces, this theorem runs as follows.

Theorem 1.1. Let (X, d) be a complete metric space, $\beta \in(0,1)$ and let $T: X \rightarrow X$ be a mapping such that for each $x, y \in X$,

$$
d(T x, T y) \leq \beta d(x, y)
$$

Then T has a unique fixed point $a \in X$ such that for each $x \in X, \lim _{n \rightarrow \infty} T^{n} x=a$.
In order to generalize this theorem, several authors have introduced various types of contraction inequalities. In 2002 Branciari proved the following result (see [2]).

Theorem 1.2. Let (X, d) be a complete metric space, $\beta \in(0,1)$ and $T: X \longrightarrow X$ a mapping such that for each $x, y \in X$,

$$
\int_{0}^{d(T x, T y)} f(t) d t \leq \beta \int_{0}^{d(x, y)} f(t) d t
$$

where $f:[0, \infty) \rightarrow(0, \infty)$ is a Lebesgue integrable mapping which is summable (i.e., with finite integral on each compact subset of $[0, \infty)$) and for each $\varepsilon>0, \int_{0}^{\varepsilon} f(t) d t>0$. Then T has a unique fixed point $a \in X$ such that for each $x \in X, \lim _{n \rightarrow \infty} T^{n} x=a$.

Rhoades [3] and Djoudi et al. [4] extended the result of Branciari and proved the following fixed point theorems.

Theorem 1.3. [3] Let (X, d) be a complete metric space, $k \in[0,1), T: X \rightarrow X a$ mapping satisfying for each $x, y \in X$,

$$
\int_{0}^{d(T x, T y)} \varphi(t) d t \leq k \int_{0}^{M(x, y)} \varphi(t) d t
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\}
$$

and $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be as in Theorem 1.2. Then T has a unique fixed point $x \in X$.
Theorem 1.4. [4] Let (X, d) be a complete metric space and $T: X \rightarrow X$ a mapping satisfying for each $x, y \in X$,

$$
\int_{0}^{d(T x, T y)} \varphi(t) d t \leq h\left(\int_{0}^{M(x, y)} \varphi(t) d t\right)
$$

where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

$h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is subadditive, nondecreasing and continuous from the right such that $h(t)<t$, for all $t>0$ and $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be as in Theorem 1.2. Then T has a unique fixed point $x \in X$.

In 1984, M.S. Khan, M. Swalech and S. Sessa [5] expanded the research of the metric fixed point theory to the category Ψ by introducing a new function which they called an altering distance function. For $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$we say that $\psi \in \Psi$ if

1. $\psi(t)=0$ if and only if $t=0$,
2. ψ is monotonically non-decreasing,
3. ψ is continuous.

The following lemma shows that contractive conditions of integral type can be interpreted as contractive conditions involving an altering distance.
Lemma 1.5. Let $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be as in Theorem 1.2. Define $\psi(t)=\int_{0}^{t} \varphi(\tau) d \tau$, for $t \in \mathbb{R}^{+}$. Then ψ is an altering distance.

Khan et al. used this altering distance to extend the Banach Contraction Principle as follows:

Theorem 1.6. [5] Let (X, d) be a complete metric space, $\beta \in(0,1)$ and $T: X \longrightarrow X$ a mapping such that for each $x, y \in X$,

$$
\psi[d(T x, T y)] \leq \beta \psi[d(x, y)]
$$

where $\psi \in \Psi$. Then T has a unique fixed point $a \in X$ such that for each $x \in X$, $\lim _{n \rightarrow \infty} T^{n} x=a$.

It is easy to see that if $\psi(t)=t$, we obtain the Banach Contraction Principle and by Lemma 1.5, we obtain Theorem 1.2. Dutta et al. [6], Dori [7], Choudhury et al. [8] and Morals et al. [9] extended the results of Khan and proved the following fixed point theorems.

Theorem 1.7. [6] Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfying

$$
\psi(d(T x, T y)) \leq \psi(d(x, y))-h(d(x, y))
$$

for each $x, y \in X$, where $\psi, h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$are continuous and non-decreasing function such that $\psi(t)=h(t)=0$ if and only if $t=0$. Then T has a unique fixed point $x \in X$.
Theorem 1.8. [7] Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfying

$$
\psi(d(T x, T y)) \leq \psi(M(x, y))-h(M(x, y)))
$$

for each $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\}
$$

$\psi \in \Psi$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a lower semi-continuous function such that $h(t)=0$ if and only if $t=0$. Then T has a unique fixed point $x \in X$.
Theorem 1.9. [8] Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfying

$$
\psi(d(T x, T y)) \leq \psi(M(x, y))-h(\max \{d(x, y), d(y, T y)\})
$$

for each $x, y \in X$, where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}[d(x, T y)+d(y, T x)]\right\}
$$

$\psi \in \Psi$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous function such that $h(t)=0$ if and only if $t=0$. Then T has a unique fixed point $x \in X$.

Theorem 1.10. [9] Let (X, d) be a complete metric space and $T: X \longrightarrow X$ a mapping which satisfies the following condition:

$$
\psi[d(T x, T y)] \leq a \psi[d(x, y)]+b \psi[m(x, y)]
$$

for all $x, y \in X, a>0, b>0, a+b<1$ where

$$
m(x, y)=d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}
$$

for all $x, y \in X$, where $\psi \in \Psi$. Then T has a unique fixed point $a \in X$ such that for each $x \in X, \lim _{n \rightarrow \infty} T^{n} x=a$.

On the other hand, in 2008, Suzuki introduced a new method in [10] and then his method was extended by some authors (see for example [11], [12], [13]). The aim of this paper is to provide a new and more general condition for T which guarantees the existence of its fixed point. Our results generalize several old and new results in the literature. In this way, consider Φ the set of all control function $\phi:[0, \infty)^{k} \longrightarrow[0, \infty)$ satisfying
(i) $\phi(0,0, \ldots, 0)=0$,
(ii) $\lim _{n \rightarrow \infty} \phi\left(t_{1 n}, t_{2 n}, \ldots, t_{k n}\right) \leq \phi\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ whenever $\left(t_{1 n}, t_{2 n}, \ldots, t_{k n}\right) \rightarrow\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, and R the set of all continuous function $g:[0, \infty)^{5} \longrightarrow[0, \infty)$ satisfying the following conditions:
(i) $g(1,1,1,0,2), g(1,1,1,1,1) \in(0,1]$,
(ii) g is subhomogeneous, i.e.
$g\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}, \alpha x_{4}, \alpha x_{5}\right) \leq \alpha g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ for all $\alpha \geq 0$.
(iii) if $x_{i}, y_{i} \in[0, \infty), x_{i} \leq y_{i}$ for $i=1, \ldots, 5$ we have $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \leq g\left(y_{1}, y_{2}, y_{3}, y_{4}, x_{5}\right)$.

Example 1.11. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{2} \max \left\{x_{i}\right\}_{i=1}^{5}$. It is obvious that $g \in R$.
Example 1.12. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\max \left\{x_{1}, x_{2}, x_{3}, \frac{x_{4}+x_{5}}{2}\right\}$. It is obvious that $g \in R$.

Proposition 1.13. If $g \in R$ and $u, v \in[0, \infty)$ are such that

$$
u<\max \{g(v, v, u, v, u), g(v, u, v, v+u, 0)\}
$$

then $u<v$.
Proof. Without loss of generality, we can suppose $u<g(v, u, v, v+u, 0)$. If $v \leq u$, then

$$
u<g(v, u, v, v+u, 0) \leq g(u, u, u, 2 u, 0) \leq u g(1,1,1,2,0) \leq u
$$

which is a contradiction. Thus $u<v$.
Lemma 1.14. Let $\psi \in \Psi$ and $\phi \in \Phi$ such that for every $t_{i} \in \mathbb{R}^{+}$,

$$
\phi\left(t_{1}, t_{2}, . ., t_{k}\right)<\psi\left(\max _{i=1, \ldots, k} t_{i}\right)
$$

If for $t, s_{i} \in \mathbb{R}^{+}$we have

$$
\psi(t) \leq \phi\left(s_{1}, s_{2}, \ldots, s_{k}\right)
$$

then

$$
t<\max _{i=1, \ldots, k} s_{i} .
$$

Proof. Let $S=\max _{i=1, \ldots, k} s_{i}$. Suppose that $t \geq S$. Then

$$
\psi(t) \geq \psi(S)>\phi\left(s_{1}, s_{2}, \ldots, s_{k}\right)
$$

which is a contradiction.
Lemma 1.15. Suppose that $\left\{s_{n}\right\}$ be a sequence of non-negative real numbers such that $s_{n+1} \leq s_{n}$. Then s_{n} is convergent.

Lemma 1.16. [14] Let (X, d) be a metric space and $\left\{x_{n}\right\}$ be a sequence in X such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 .
$$

If $\left\{x_{n}\right\}$ is not a Cauchy sequence in X, then there exist an $\varepsilon_{0}>0$ and sequences of positive integers m_{k} and n_{k} with $m_{k}>n_{k}>k$ such that

$$
d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \varepsilon_{0}, d\left(x_{m_{k}-1}, x_{n_{k}}\right)<\varepsilon_{0}
$$

and
(i) $\lim _{k \rightarrow \infty} d\left(x_{m_{k}-1}, x_{n_{k}+1}\right)=\varepsilon_{0}$,
(ii) $\lim _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right)=\varepsilon_{0}$,
(iii) $\lim _{k \rightarrow \infty} d\left(x_{m_{k}-1}, x_{n_{k}}\right)=\varepsilon_{0}$.

2. Main Results

The following theorem is the main result of this paper.
Theorem 2.1. Let (X, d) be a complete metric space, $T: X \longrightarrow X$ a mapping, $\alpha \in\left(0, \frac{1}{2}\right]$, $\psi \in \Psi$ and $\phi \in \Phi$ such that for every $t_{i} \in \mathbb{R}^{+}$with $\left(t_{1}, t_{2}, \ldots, t_{k}\right) \neq(0,0, \ldots, 0)$,

$$
\phi\left(t_{1}, t_{2}, . ., t_{k}\right)<\psi\left(\max _{i=1, \ldots, k} t_{i}\right)
$$

Suppose that $\left\{g_{i}\right\}_{i=1}^{k}$ be a sequence in R and $\alpha d(x, T x) \leq d(x, y)$ implies

$$
\psi[d(T x, T y)] \leq \phi\left(g_{1}\left(M_{x y}\right), g_{2}\left(M_{x y}\right), \ldots, g_{k}\left(M_{x y}\right)\right)
$$

for all $x, y \in X$, where

$$
M_{x y}=(d(x, y), d(y, T y), d(x, T x), d(x, T y), d(y, T x))
$$

for all $x, y \in X$. Then T has a unique fixed point in X.
Proof. Fix arbitrary $x_{0} \in X$ and let $x_{1}=T x_{0}$. We have $\alpha d\left(x_{0}, T x_{0}\right)<d\left(x_{0}, x_{1}\right)$. Hence,

$$
\psi\left[d\left(T x_{0}, T x_{1}\right)\right] \leq \phi\left(g_{1}\left(M_{x_{0} x_{1}}\right), g_{2}\left(M_{x_{0} x_{1}}\right), \ldots, g_{k}\left(M_{x_{0} x_{1}}\right)\right)
$$

Then by Lemma 1.14 we have

$$
\begin{gathered}
d\left(x_{1}, T x_{1}\right)<\max _{i=1, \ldots, k} g_{i}\left(M_{x_{0} x_{1}}\right) \\
=\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right), d\left(x_{0}, T x_{0}\right), d\left(x_{0}, T x_{1}\right), d\left(x_{1}, T x_{0}\right)\right) \\
=\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, T x_{1}\right), 0\right) \\
\leq \max _{i=1, \ldots, k} g_{i}\left(d\left(x_{0}, x_{1}\right), d\left(x_{1}, T x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right)+d\left(x_{1}, T x_{1}\right), 0\right) .
\end{gathered}
$$

By Proposition 1.13, we obtain $d\left(x_{1}, T x_{1}\right)<d\left(x_{0}, x_{1}\right)$. Now let $x_{2}=T x_{1}$. Since $\alpha d\left(x_{1}, T x_{1}\right)<d\left(x_{1}, x_{2}\right)$, by using the assumption we have

$$
\psi\left[d\left(T x_{1}, T x_{2}\right)\right] \leq \phi\left(g_{1}\left(M_{x_{1} x_{2}}\right), g_{2}\left(M_{x_{1} x_{2}}\right), \ldots, g_{k}\left(M_{x_{1} x_{2}}\right)\right)
$$

Then by Lemma 1.14 we have

$$
\begin{gathered}
d\left(x_{2}, T x_{2}\right)<\max _{i=1, \ldots, k} g_{i}\left(M_{x_{1} x_{2}}\right) \\
=\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, T x_{1}\right), d\left(x_{1}, T x_{2}\right), d\left(x_{2}, T x_{1}\right)\right) \\
=\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, T x_{2}\right), 0\right) \\
\leq \max _{i=1, \ldots, k} g_{i}\left(d\left(x_{1}, x_{2}\right), d\left(x_{2}, T x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, T x_{2}\right), 0\right) .
\end{gathered}
$$

By Proposition 1.13, we obtain $d\left(x_{2}, T x_{2}\right)<d\left(x_{1}, x_{2}\right)$. Now by continuing this process, we obtain a sequence $\left\{x_{n}\right\}_{n \geq 1}$ in X such that $x_{n+1}=T x_{n}$ and $d\left(x_{n}, x_{n+1}\right)<d\left(x_{n-1}, x_{n}\right)$. So by Lemma 1.15, there is a such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=a$. Hence

$$
\lim _{n \rightarrow \infty} M_{x_{n} x_{n+1}}=(a, a, a, A, 0)
$$

where $A \leq 2 a$. Then

$$
\begin{gathered}
\psi(a)=\lim _{n \rightarrow \infty} \psi\left[d\left(x_{n+1}, x_{n+2}\right)\right] \\
\leq \lim _{n \rightarrow \infty} \phi\left(g_{1}\left(M_{x_{n} x_{n+1}}\right), g_{2}\left(M_{x_{n} x_{n+1}}\right), \ldots, g_{k}\left(M_{x_{n} x_{n+1}}\right)\right) \\
\leq \phi\left(g_{1}(a, a, a, 2 A, 0), g_{2}(a, a, a, 2 A, 0), \ldots, g_{k}(a, a, a, 2 A, 0)\right) .
\end{gathered}
$$

Now by Lemma 1.14 we obtain

$$
a<\max _{i=1, \ldots, k} g_{i}(a, a, a, A, 0) \leq \max _{i=1, \ldots, k} g_{i}(a, a, a, 2 a, 0) \leq a
$$

an then $a=0$. We claim that $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in (X, d). Suppose that $\left\{x_{n}\right\}_{n \geq 1}$ is not a Cauchy sequence, which means that there is a constant $\varepsilon_{0}>0$ such that for each positive integer k, there are positive integers $m(k)$ and $n(k)$ with $m(k)>n(k)>k$ such that

$$
d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon_{0}, d\left(x_{m(k) 1}, x_{n(k)}\right)<\varepsilon_{0}
$$

From Lemma 1.16, we obtain,

$$
\lim _{k \rightarrow \infty} d\left(x_{m(k)+1}, x_{n(k)+1}\right)=\varepsilon_{0} \text { and } \lim _{k \rightarrow \infty} d\left(x_{m(k)+2}, x_{n(k)+2}\right)=\varepsilon_{0}
$$

We claim that for any $y \in X$, one of the flowing relations is held:

$$
\begin{equation*}
\alpha d\left(x_{n}, T x_{n}\right) \leq d\left(x_{n}, y\right) \text { or } \alpha d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, y\right) \tag{2.1}
\end{equation*}
$$

Otherwise, if $\alpha d\left(x_{n}, T x_{n}\right)>d\left(x_{n}, y\right)$ and $\alpha d\left(x_{n+1}, T x_{n+1}\right)>d\left(x_{n+1}, y\right)$, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, y\right)+d\left(x_{n+1}, y\right)<\alpha d\left(x_{n}, T x_{n}\right)+\alpha d\left(x_{n+1}, T x_{n+1}\right) \\
& \quad=\alpha d\left(x_{n}, x_{n+1}\right)+\alpha d\left(x_{n+1}, x_{n+2}\right) \leq 2 \alpha d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

which is a contradiction. Now by using the assumption and relation 2.1, for each $n \geq 1$ one of the following cases holds:
(i) There exists an infinite subset $I \subset \mathbb{N}$ such that

$$
\begin{gathered}
\psi\left[d\left(x_{m(k)+1}, x_{n(k)+1}\right)\right] \\
\leq \phi\left(g_{1}\left(M_{x_{m(k)} x_{n(k)}}\right), g_{2}\left(M_{x_{m(k)} x_{n(k)}}\right), \ldots, g_{k}\left(M_{x_{m(k)} x_{n(k)}}\right)\right)
\end{gathered}
$$

(ii) There exists an infinite subset $J \subset \mathbb{N}$ such that

$$
\begin{gathered}
\psi\left[d\left(x_{m(k)+2}, x_{n(k)+1}\right)\right] \\
\leq \phi\left(g_{1}\left(M_{x_{m(k)+1} x_{n(k)}}\right), g_{2}\left(M_{x_{m(k)+1} x_{n(k)}}\right), \ldots, g_{k}\left(M_{x_{m(k)+1} x_{n(k)}}\right)\right) .
\end{gathered}
$$

Since

$$
\begin{gathered}
M_{x_{m(k)} x_{n(k)}} \\
=\left(d\left(x_{m(k)}, x_{n(k)}\right), d\left(x_{n(k)}, T x_{n(k)}\right), d\left(x_{m(k)}, T x_{m(k)}\right), d\left(x_{m(k)}, T x_{n(k)}\right), d\left(x_{n(k)}, T x_{m(k)}\right)\right) \\
=\left(d\left(x_{m(k)}, x_{n(k)}\right), d\left(x_{n(k)}, x_{n(k)+1}\right), d\left(x_{m(k)}, x_{m(k)+1}\right), d\left(x_{m(k)}, x_{n(k)+1}\right), d\left(x_{n(k)}, x_{m(k)+1}\right)\right) \\
\leq\left(d\left(x_{m(k)}, x_{n(k)}\right), d\left(x_{n(k)}, x_{n(k)+1}\right), d\left(x_{m(k)}, x_{m(k)+1}\right),\right. \\
\left.d\left(x_{m(k)}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{n(k)+1}\right), d\left(x_{n(k)}, x_{m(k)}\right)+d\left(x_{m(k)}, x_{m(k)+1}\right)\right),
\end{gathered}
$$

we have $\lim _{n \rightarrow \infty} M_{x_{m(k)} x_{n(k)}}=\left(\varepsilon_{0}, 0,0, A, B\right)$ where $A \leq \varepsilon_{0}$ and $B \leq \varepsilon_{0}$. Then in case (i), we obtain

$$
\begin{gathered}
\psi\left(\varepsilon_{0}\right) \\
\leq \phi\left(g_{1}\left(\varepsilon_{0}, 0,0, A, B\right), g_{2}\left(\varepsilon_{0}, 0,0, A, B\right), \ldots, g_{k}\left(\varepsilon_{0}, 0,0, A, B\right)\right)
\end{gathered}
$$

and then by Lemma 1.14 we have

$$
\varepsilon_{0}<\max _{i=1, \ldots, k} g_{i}\left(\varepsilon_{0}, 0,0, A, B\right) \leq \max _{i=1, \ldots, k} g_{i}\left(\varepsilon_{0}, 0,0, \varepsilon_{0}, \varepsilon_{0}\right) \leq \varepsilon_{0}
$$

which is a contradiction.
In case (ii), similar to cas(i), we obtain

$$
\varepsilon_{0}<\varepsilon_{0}
$$

which is a contradiction. This proves our claim that $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in (X, d). Let $\lim _{n \rightarrow \infty} x_{n}=x$. By relation 2.1, for each $n \geq 1$ and $y \in X$, either
a) $\psi\left[d\left(T x_{n}, T y\right)\right] \leq \phi\left(g_{1}\left(M_{x_{n} x}\right), g_{2}\left(M_{x_{n} x}\right), \ldots, g_{k}\left(M_{x_{n} x}\right)\right)$
or
b) $\psi\left[d\left(T x_{n+1}, T y\right)\right] \leq \phi\left(g_{1}\left(M_{x_{n+1} x}\right), g_{2}\left(M_{x_{n+1} x}\right), \ldots, g_{k}\left(M_{x_{n+1} x}\right)\right)$

In case (a), by using of Lemma 1.14 we obtain

$$
\begin{gathered}
d(x, T x) \leq d\left(x, T x_{n}\right)+d\left(T x_{n}, T x\right)<d\left(x, T x_{n}\right)+\max _{i=1, \ldots, k} g_{i}\left(M_{x_{n} x}\right) \\
=d\left(x, T x_{n}\right)+\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{n}, x\right), d\left(x_{n}, T x_{n}\right), d(x, T x), d\left(x, T x_{n}\right), d\left(x_{n}, T x\right)\right) .
\end{gathered}
$$

Hence

$$
d(x, T x) \leq \max _{i=1, \ldots, k} g_{i}(0,0, d(x, T x), 0, d(x, T x))
$$

Now by using Proposition 1.13, we have $d(x, T x)=0$ and so $x=T x$.
In case (b), by using Lemma 1.14, we obtain

$$
\begin{gathered}
d(x, T x) \leq d\left(x, T x_{n+1}\right)+d\left(T x_{n+1}, T x\right)<d\left(x, T x_{n}\right)+\max _{i=1, \ldots, k} g_{i}\left(M_{x_{n+1} x}\right) \\
\leq d\left(x, T x_{n+1}\right)+\max _{i=1, \ldots, k} g_{i}\left(d\left(x_{n+1}, x\right), d\left(x_{n+1}, T x_{n+1}\right), d(x, T x), d\left(x, T x_{n+1}\right), d\left(x_{n+1}, T x\right)\right)
\end{gathered}
$$

Hence

$$
d(x, T x) \leq g(0,0, d(x, T x), 0, d(x, T x))
$$

and then by using Proposition 1.13, we have $d(x, T x)=0$. So $x=T x$. We claim that this fixed point is unique. Suppose that there are two distinct points $a, b \in X$ such that $T a=a$ and $T b=b$. Since $d(a, b)>0=\alpha d(a, T a)$, we have the contradiction

$$
\begin{gathered}
0<\psi[d(a, b)]=\psi[d(T a, T b)] \\
\leq \phi\left(g_{1}\left(M_{a b}\right), g_{2}\left(M_{a b}\right), \ldots, g_{k}\left(M_{a b}\right)\right) .
\end{gathered}
$$

Now by Lemma 1.14, we obtain

$$
\begin{aligned}
d(a, b) & <\max _{i=1, \ldots, k} g_{i}(d(a, b), d(a, T a), d(b, T b), d(a, T b), d(b, T a)) \\
& =\max _{i=1, \ldots, k} g_{i}(d(a, b), 0,0, d(a, b), d(b, a)) \leq d(a, b)
\end{aligned}
$$

So $d(a, b)=0$.
Corollary 2.2. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a mapping satisfying

$$
\psi(d(T x, T y)) \leq h(\psi(M(x, y)))
$$

for each $x, y \in X$, where

$$
M(x, y)=\frac{1}{2} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

$\psi \in \Psi$ and $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous function such that $h(t)<t$ for all $t>0$. Then T has a unique fixed point $x \in X$.

Proof. Let $g_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\frac{1}{2} \max \left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$ and define ϕ by $\phi(t)=h(\psi(t))$. It is easy to see that $\phi \in \Phi$ and for every $t>0, \phi(t)<\psi(t)$. Now by using Theorem 2.1, T has a fixed point.

Remark 2.3. By Lemma 1.5, we see that Theorems 1.2, 1.3 and 1.4 are special cases of Theorem 2.1.

Remark 2.4. Theorem 1.7 is a special case of Theorem 2.1.
Proof. Let $g_{1}=g_{2}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}$ and define ϕ by $\phi\left(t_{1}, t_{2}\right)=\phi\left(t_{1}\right)-h\left(t_{2}\right)$. Now by using Theorem 2.1, T has a fixed point.

Remark 2.5. Theorem 1.8 is a special case of Theorem 2.1.
Proof. Let $g_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\max \left\{t_{1}, t_{2}, t_{3}, \frac{1}{2}\left(t_{4}+t_{5}\right)\right\}$ and define $\phi(t)=\psi(t)-h(t)$. Now by using Theorem 2.1, T has a fixed point.

Remark 2.6. Theorem 1.9 is a special case of Theorem 2.1.
Proof. Let $g_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\max \left\{t_{1}, t_{2}, t_{3}, \frac{1}{2}\left(t_{4}+t_{5}\right)\right\}, g_{2}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\max \left\{t_{1}, t_{2}\right\}$ and define $\phi\left(t_{1}, t_{2}\right)=\psi\left(t_{1}\right)-h\left(t_{2}\right)$. Now by using Theorem 2.1, T has a fixed point.
Remark 2.7. Let $g_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}, g_{2}\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{2} \frac{1+t_{3}}{1+t_{1}}$ and define $\phi\left(t_{1}, t_{2}\right)=$ $a \psi\left(t_{1}\right)+b \psi\left(t_{2}\right)$. Then we obtain Theorem 1.10 of Theorem 2.1.

Acknowledgements

I would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was supported by the Qom university of technology.

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922) 133-181.
[2] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Hindawi Publishing Corpration, IJMMS 29 (9) (2002) 531-536.
[3] B.E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013.
[4] A. Djoudi, F. Merghadi, Common fixed point theorems for maps under contractive condition of integral type, J. Math. Anal. Appl. 341 (2008) 953-960.
[5] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull Austral Math Soc. 30 (1984) 1-9.
[6] P.N. Dutta, B.S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl. (2008) https://doi.org/10.1155/2008/406368.
[7] D. Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions, Appl Math Lett. 22 (2009) 1896-1900.
[8] B.S. Choudhury, P. Konar, B.E. Rhoades, N. Metiya, Fixed point theorems for generalized weakly contractive mappings, Nonlinear Anal. 74 (2011) 2116-2126.
[9] J.R. Morals, E.M Rojas, Altering distance function and fixed point theorem through rational expression, Math F.A. 25 (2012).
[10] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Analysis. 71 (2009) 5313-5317.
[11] S.M.A. Aleomraninejad, Sh. Rezapour, N. Shahzad, On fixed point generalizations of Suzuki,s method, Applied Mathematics Letters 24 (2011) 1037-1040.
[12] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Analysis 69 (2008) 2942-2949.
[13] G. Mot, A. Petrusel, Fixed point theory for a new type of contractive multivalued operators, Nonlinear Analysis. 70 (2009) 3371-3377.
[14] G.U.R. Babu, P.P. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric space, Thai Journal of Mathematics 9 (1) (2011) 1-10.

