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Abstract The work of Kundu and Majumder (Kundu and Majumder, 2016) leads to an approach

to determine the k-hop domination number of a connected graph by examining the k-hop domination

numbers of its spanning trees. Given this approach, a quadratic-time algorithm to compute the k-

hop domination number of a unicyclic graph can be derived. In this article, we prove that the k-hop

domination numbers of a unicyclic graph and its spanning trees differ by at most one, thus yielding a

linear-time algorithm for finding a near-optimal k-hop dominating set with the tightly bounded error of
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1. Introduction

In wireless sensor networks or mobile ad hoc networks, the successful efficient commu-
nication between nodes is often found through cluster formation in which certain nodes
are elected as cluster heads [1–3]. A cluster head functions as a gateway for inter-cluster
communication while messages from and to sensor nodes within a cluster are distributed
via it. The communication between nodes in the cluster is adequately determined by
the cluster head’s coverage. That is, some nodes might not be able to communicate if
they are over some distance from its cluster head. In graph theory, the concept of cluster
formation corresponds to the notion of domination in graphs that represent the networks.
A basic problem in graph domination is required to find a small subset of graph vertices
called dominating set such that every vertex not in the set is adjacent to some vertex
in the set [4]. A more generalized notion of graph domination, called k-hop domination,
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considers a k-hop dominating set in which the distance from every vertex not in the set
to some vertex in the set is required to be at most some constant [5].

The mathematical formulation of domination and k-hop domination in graphs can be
described as follows: Let G = (V,E) be an undirected graph, where V is a set of n vertices
and E is a set of m edges. A dominating set of G is a subset S ⊆ V such that each vertex
v ∈ V is either in S or adjacent to at least one vertex in S. The domination number of G,
denoted by γ(G), is the smallest cardinality of a dominating set of G. A dominating set
S of G is optimal if and only if |S| = γ(G). In this article, we consider a generalization of
dominating set called k-hop dominating set [5]. A k-hop dominating set of G is a subset
D ⊆ V such that each vertex in V is either in D or at distance k or less from some vertex
in D. Likewise, the k-hop domination number of G, denoted by γk(G), is the smallest
cardinality of a k-hop dominating set of G. A k-hop dominating set D of G is optimal if
and only if |D| = γk(G).

Applications of domination in graphs are known in several areas such as wireless sensor
networks [1], mobile ad hoc networks [2, 3], warehouse and station placement [4], viral
marketing in social networks [6], etc. From the algorithmic and complexity standpoint,
most variants of the problem attempting to find a dominating set of smallest cardinality
are known to be intractable in general graphs. In particular, for a given arbitrary graph
G and integer B, the problem to decide whether γ(G) ≤ B is a classical NP-complete
problem called Dominating Set Problem [7]. The problem to decide whether γk(G) ≤
B is at least as hard as the Dominating Set Problem, since every dominating set
of G is a k-hop dominating set of G, for k = 1. Recently, there have been a number
of works devoted to finding efficient algorithms for determining the k-hop domination
number as well as an optimal k-hop dominating set on some restricted graph classes. In
[8], Demaine et al. gave an algorithm to test whether a given planar or map graph has a
k-hop dominating set of size at most p in time O((2k+1)O(k

√
p)n+n4). In [9], Borradaile

and Le gave an algorithm that finds an optimal k-hop dominating set of a graph with
bounded treewidth in time O((2k + 1)twn), where tw is the treewidth of the graph. In
[10], Kundu and Majumder proposed a linear-time algorithm for constructing an optimal
k-hop dominating set of a tree.

In addition to the linear-time algorithm given in [10], Kundu and Majumder showed
that for a connected graph G, there exists a spanning tree T of G such that γk(G) = γk(T ).
Their results imply an approach to determine the k-hop domination number of a connected
graph by examining the k-hop domination numbers of its spanning trees. For this work,
we extend the results to the class of unicyclic graphs, that is, the class of connected
graphs containing exactly one cycle. Given the aforementioned approach, a quadratic-
time algorithm for computing the k-hop domination number of a unicyclic graph can be
derived. In this article, we consider the k-hop domination numbers of spanning trees
of a unicyclic graph G. For any spanning tree T of a unicyclic graph G, we show that
γk(G) ≤ γk(T ) ≤ γk(G)+1. This yields a linear-time algorithm for finding a near-optimal
k-hop dominating set of G with the tightly bounded error of 1.

The rest of the article is organized as follows: First, the related notations and termi-
nology are given in Section 2. Section 3 discusses the preliminaries which includes the
quadratic-time algorithm. In Section 4, we demonstrate bounds on the k-hop domination
numbers of spanning trees of unicyclic graphs. Finally, the conclusions and discussions of
this work are given in Section 5.



On the k-Hop Domination Numbers of Spanning Trees of Unicyclic Graphs 11

2. Notations and Terminology

Throughout this article, unless otherwise mentioned, let G be an undirected graph
with n vertices and m edges. Let the vertex set of G be denoted by V (G) and the edge
set be denoted by E(G).

2.1. Unicyclic Graph

A path in a graph G is a sequence of vertices (v1, v2, . . . , vp) ∈ V p such that {vi, vi+1} ∈
E, for 1 ≤ i ≤ p − 1. Let P be a path. The length of path P , denoted by |P |, is the
number of vertices in the sequence minus one. Let P (x, y,G) denote a path that starts
from vertex x ∈ V and ends at vertex y ∈ V in graph G. P (x, y,G) is called a simple
path if and only if all the intermediate vertices between x and y are distinct. A cycle is
a simple path that starts and ends at the same vertex. It is required that a cycle must
comprise at least three vertices. A graph G is called acyclic if and only if it has no cycle.
A graph G is called connected if and only if there is a path from x to y in G for all
x, y ∈ V . Note that a path from x to y is not necessarily unique. A graph G is called
a tree if and only if G is connected, and P (x, y,G) is unique for all x, y ∈ V . In other
words, a tree is a connected acyclic graph. A graph G is called a unicyclic graph if and
only if G is connected and contains exactly one cycle.

2.2. k-Hop Domination Number

Let dist(x, y,G) denote the distance or the length of a shortest path from vertex x to
vertex y in graph G, that is, dist(x, y,G) = min{|P (x, y,G)|}. For a vertex x ∈ V and
a subset U ⊆ V , let dist(x, U,G) denote the minimum distance from vertex x to some
vertex y ∈ U in G, that is, dist(x, U,G) = miny∈U{dist(x, y,G)}. A k-hop dominating
set of G is a subset D ⊆ V such that each vertex u ∈ V is either in D or dist(u,D,G) ≤ k.
Let D be a k-hop dominating set of G. A vertex in D is called a dominator of G. For
a vertex x ∈ V and a subset S ⊆ D, let dom(x, S,G) denote the set of dominator(s) in
S for x in graph G, that is, dom(x, S,G) = {y ∈ S | dist(x, y,G) ≤ k}. It is possible
that x ∈ dom(x, S,G). If y ∈ dom(x, S,G), we say that the vertex x is dominated by
node y ∈ S. Let dom(S,G) denote the set of vertices dominated by nodes in S, that is,
dom(S,G) = {u ∈ V | dom(u, S,G) 6= ∅}. A subset S ⊆ V is a k-hop dominating set if
and only if dom(S,G) = V , and dom(x, S,G) 6= ∅ for each x ∈ V . The k-hop domination
number of G, denoted by γk(G), is the number of vertices in a k-hop dominating set
of smallest cardinality of G. A k-hop dominating set D of G is optimal if and only if
|D| = γk(G). An example of an optimal k-hop dominating set of a unicyclic graph is
illustrated in Figure 1.

3. Preliminaries

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if and only if V ′ ⊆ V and
E′ ⊆ E. A spanning subgraph of G is a subgraph G′ = (V,E′) such that E′ ⊆ E. If D
is a k-hop dominating set of a spanning subgraph G′, then D is also a k-hop dominating
set of G. Thus, γk(G) ≤ γk(G′). A spanning subgraph T of G is a spanning tree if and
only if T is a tree. For any spanning tree T of G, it holds that γk(G) ≤ γk(T ). Kundu
and Majumder demonstrated the following results in [10].
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Figure 1. Illustration of a unicyclic graph G of 69 vertices with γ3(G) = 8.
The gray vertices are the dominators in an optimal 3-hop dominating set of G.

Theorem 3.1. ([10, Theorem 6]) The algorithm of Kundu and Majumder can compute
an optimal k-hop dominating set of a tree of n vertinces in O(n) time.

Theorem 3.2. ([10, Theorem 1]) For each optimal k-hop dominating set D of a con-
nected graph G, there exists a spanning tree T of G such that D is also an optimal k-hop
dominating set D of T .

The following corollary immediately follows from Theorem 3.2.

Corollary 3.3. For a connected graph G, there exists a spanning tree T of G such that
γk(T ) = γk(G).

Figure 2 gives an illustration of Corollary 3.3. By Theorem 3.2, one can determine
the k-hop domination number of a connected graph by examining the k-hop domination
numbers of its spanning trees.

Theorem 3.4. Let G be a connected graph of n vertices. Let l(n) denote the number
of unique spanning trees of G. We can compute the k-hop domination number of G in
Ω(l(n)n) time.

Typically, the number of unique spanning trees of a graph may vary that it can even
grow beyond polynomial for some graphs (for instance, complete graphs). Thus, any
algorithm whose computation is based on examining the k-hop domination numbers of
spanning trees would have worst-case exponential running time in general. For the case
of a unicyclic graph of n vertices, the computation requires just quadratic time.

Proposition 3.5. A unicyclic graph of n vertices has at most n possible unique spanning
trees.

Lemma 3.6. Let G be a unicyclic graph of n vertices. At most n possible unique spanning
trees of G can be constructed in O(n2) time; each unique spanning tree can be constructed
in O(n) time.

Proof. Since G contains exactly one cycle, at most n−1 edges of G can be tree edges. Let
C be a cycle in G. We can always find an edge in E(C) in O(n) time. Let {x, y} ∈ E(C)
be such an edge. Since C is a cycle, there are two paths that starts from x and ends at y;
the edge {x, y} itself is a path of length 1. The edge {x, y} and all of the edges along the
longer path from x to y are all the edges of E(C). To find the longer path from x to y,



On the k-Hop Domination Numbers of Spanning Trees of Unicyclic Graphs 13

we can use Depth-First-Search (DFS). On the graph of n vertices and n edges, the DFS
runs in O(n) time.

To construct all of the possible unique spanning trees of G, we make at most n copies
of graph G, one copy to construct each unique spanning tree. Let Ti be the i-th copy of
G. For each ei ∈ E(C), we remove ei from E(Ti), each edge removal makes Ti a unique
spanning tree of G. The time taken for making each copy is O(n) time. Hence, the time
taken by the entire construction is O(n2).

Theorem 3.7 (Quadratic-time Algorithm for Unicyclic Graphs). There exists an algo-
rithm that can compute the k-hop domination number of a unicyclic graph G of n vertices
in O(n2) time.

4. Bounds on the k-Hop Domination Numbers of Spanning Trees
of Unicyclic Graphs

Let G be a unicyclic graph of n vertices. The goal of this section is to show that
for any spanning tree T of G, γk(G) ≤ γk(T ) ≤ γk(G) + 1. The lower bound of the
inequalities is due to the fact that any spanning tree T of G is a spanning subgraph of G,
thus γk(G) ≤ γk(T ). Before discussing the upper bound, it is worthwhile to observe the
k-hop domination numbers of spanning trees of G for the case when G is a cycle.

Proposition 4.1. If G is a cycle of n vertices, then for any spanning tree T of G,
γk(T ) = γk(G) = dn/(2k + 1)e.

To provide the upper bound, we assume a spanning tree T of a unicyclic graph G such
that γk(T ) = γk(G) by Corollary 3.3. Then, there exists an optimal k-hop dominating set
D of T such that |D| = γk(T ). Let T ′ be an arbitrary spanning tree of G, T ′ 6= T . Since
γk(T ) = γk(G), |D| = γk(G) ≤ γk(T ′). Let b = γk(T ′)− γk(G). The extreme case where
b ≤ n is trivial. To give a tighter upper bound, we will demonstrate the construction of
a k-hop dominating set D′ of T ′ such that D′ ⊇ D and |D′| ≤ |D| + 2. This will imply
γk(T ′) ≤ |D′| ≤ γk(T ) + 2, thus b ≤ 2. Nevertheless, our objective is to prove that b ≤ 1.
Assume |D′| = |D|+ 2, we will subsequently show that |D′| is not optimal. Therefore, it
must be the case that |D′| ≤ |D| + 1. This gives us γk(T ′) ≤ |D′| ≤ γk(T ) + 1, and so
b ≤ 1. Hence, γk(G) ≤ γk(T ′) ≤ γk(G) + 1.

For the sake of the following discussions, we shall give an explicit construction of T ′

from T . Let us assume an optimal k-hop dominating set D of T . Since G is unicyclic, T ′

differs from T in one edge, and vice versa. Let {x, y} be an edge in E(T ), but not in E(T ′);
and {x′, y′} an edge in E(T ′), but not in E(T ). Clearly, both {x, y} and {x′, y′} must be
the edges of the cycle in G. Removing edge {x, y} from T would result in disconnecting
T into two subtrees. Let Tx denote such the resulting subtree which includes vertex x,
and Ty the resulting subtree that includes vertex y. The vertex sets V (Tx) and V (Ty) are
disjoint and the pair (V (Tx), V (Ty)) forms a partition of V . The spanning tree T ′ is the
result of connecting the subtrees Tx and Ty with the edge {x′, y′}. So, the construction of
T ′ is done by E(T ′) = (E(T )\{{x, y}})∪{{x′, y′}}. For additional notations, for a vertex
u, we will use D(u, T ∩ Tx) = dom(u,D, T ) ∩ V (Tx) to denote a set of dominator(s) for
u in D that are also the vertices of subtree Tx. A set of dominator(s) in D that are also
the vertices of subtree Tx is denoted by D(T ∩ Tx) = D ∩ V (Tx) =

⋃
u∈V D(u, T ∩ Tx).

The pair (D(u, T ∩ Tx), (D(u, T ∩ Ty)) forms a partition of dom(u,D, T ), and the pair
(D(T ∩ Ty), (D(T ∩ Tx)) forms a partition of D.
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Lemma 4.2. There exists a k-hop dominating set D′ of T ′ such that D′ ⊇ D and
|D′| ≤ |D|+ 2. Furthermore, |D′| = |D|+ 2 if and only if x, y /∈ D.

Proof. To prove the lemma, it suffices to show that for each u ∈ V , if u /∈ D, then
dist(u,D, T ′) ≤ k or dist(u, x, T ′) ≤ k or dist(u, y, T ′) ≤ k. This implies the existence of
a k-hop dominating set D′ of T ′ with D′ = D ∪ {x, y} ⊇ D, thus |D′| ≤ |D|+ 2.

Let u be an arbitrary vertex in V . Then, either u ∈ V (Tx) or u ∈ V (Ty). Since D is
a k-hop dominating set of T , there exists a dominator d ∈ D such that dist(u, d, T ) ≤ k,
and either d ∈ D(u, T ∩ Tx) or d ∈ D(u, T ∩ Ty). Suppose u /∈ D. Consider the following
cases:

Case 1: If u ∈ V (Tx) and d ∈ D(u, T ∩ Tx), then there exists path P (u, d, T ) with
|P (u, d, T )| = dist(u, d, T ) ≤ k. Since P (u, d, T ) is a path from u ∈ V (Tx) to d ∈ V (Tx),
P (u, d, Tx) = P (u, d, T ). Moreover, since Tx is a subtree of T ′, P (u, d, T ′) = P (u, d, Tx).
It follows that |P (u, d, T ′)| = |P (u, d, Tx)| = |P (u, d, T )| ≤ k. Therefore, dist(u,D, T ′) ≤
dist(u, d, T ′) ≤ k.

Case 2: If u ∈ V (Tx) and d ∈ D(u, T ∩ Ty), then there exists path P (u, d, T ) with
|P (u, d, T )| = dist(u, d, T ) ≤ k. Since P (u, d, T ) is a path from u ∈ V (Tx) to d ∈
V (Ty), it must include both x and y. So, P (u, d, T ) = P (u, x, T ) · (x, y) · P (y, d, T ) with
|P (u, d, T )| = |P (u, x, T )|+ 1 + |P (y, d, T )| ≤ k, thus |P (u, x, T )| < k. Since P (u, x, T ) is
a path from u ∈ V (Tx) to x ∈ V (Tx), P (u, x, Tx) = P (u, x, T ). Moreover, since Tx is a
subtree of T ′, |P (u, x, T ′)| = |P (u, x, Tx)| = |P (u, x, T )| < k. Therefore, dist(u, x, T ′) ≤
|P (u, x, T ′)| < k.

Case 3: If u ∈ V (Ty) and d ∈ D(u, T ∩ Tx), then this case is similar to Case 2. We
have that dist(u, y, T ′) ≤ |P (u, y, T ′)| < k.

Case 4: If u ∈ V (Ty) and d ∈ D(u, T ∩ Ty), then this case is similar to Case 1. We
have that dist(u,D, T ′) ≤ dist(u, d, T ′) ≤ k.

Given all the four cases above, we conclude that for each u ∈ V , if u /∈ D, then
dist(u,D, T ′) ≤ k or dist(u, x, T ′) ≤ k or dist(u, y, T ′) ≤ k. Hence, D′ = D ∪ {x, y} is a
k-hop dominating set D′ of T ′. Furthermore, |D′| = |D| if and only if x ∈ D and y ∈ D;
|D′| = |D| + 1 if and only if either x ∈ D or y ∈ D; and |D′| = |D| + 2 if and only if
x /∈ D and y /∈ D. The lemma holds.

Observe that if γk(Tx) +γk(Ty) = γk(T ), then γk(T ′) = γk(T ). Moreover, if D(T ∩Tx)
is a k-hop dominating set of Tx and D(T ∩ Ty) is a k-hop dominating set of Ty, then
|D(T ∩Tx)| ≥ γk(Tx) and |D(T ∩Ty)| ≥ γk(Ty), and so |D(T ∩Tx)|+ |D(T ∩Ty)| = |D| ≥
γk(T ′). In the following lemma, we show that it holds that if |D(T ∩ Tx)| < γk(Tx), then
|D(T ∩ Ty)| ≥ γk(Ty), and vice versa.

Lemma 4.3. If D(T ∩ Tx) is not a k-hop dominating set of Tx, then D(T ∩ Ty) is a
k-hop dominating set of Ty.

Proof. Suppose D(T ∩Tx) is not a k-hop dominating set of Tx. Then, there exists a vertex
u ∈ V (Tx) such that u /∈ D(T ∩ Tx) and dist(u,D(T ∩ Tx), Tx) > k. We now prove the
lemma by contradiction.

Suppose, to the contrary, that D(T ∩ Ty) is not a k-hop dominating set of Ty. Then,
there exists a vertex v ∈ V (Ty) such that v /∈ D(T ∩ Ty) and dist(v,D(T ∩ Ty), Ty) > k.
Note that dist(u,D(T ∩ Tx), Tx) + dist(v,D(T ∩ Ty), Ty) > 2k. Since D is a k-hop
dominating set of T , there exist a dominator du ∈ D(u, T ∩ Ty) with dist(u, du, T ) ≤ k,
and a dominator dv ∈ D(u, T ∩ Tx) with dist(v, dv, T ) ≤ k. Accordingly, there are paths
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P (u, du, T ) with |P (u, du, T )| = dist(u, du, T ) ≤ k, and P (v, dv, T ) with |P (v, dv, T )| =
dist(v, dv, T ) ≤ k. Furthermore, P (u, du, T ) is a path from u ∈ V (Tx) to du ∈ V (Ty), and
P (v, dv, T ) is a path from v ∈ V (Ty) to dv ∈ V (Tx), both paths must include x and y.
So, P (u, du, T ) = P (u, x, Tx) · (x, y) · P (y, du, Ty) with |P (u, du, T )| = |P (u, x, Tx)|+ 1 +
|P (y, du, Ty)| ≤ k, and P (v, dv, T ) = P (v, y, Ty) · (y, x) · P (x, dv, Tx) with |P (v, dv, T )| =
|P (v, y, Ty)| + 1 + |P (x, dv, Tx)| ≤ k. Let q = |P (u, x, Tx)| and r = |P (v, y, Ty)|. Then,
|P (y, du, Ty)| ≤ k − 1− q < k − q and |P (x, dv, Tx)| ≤ k − 1− r < k − r. Consider paths
P (u, dv, Tx) = P (u, x, Tx) · P (x, dv, Tx) and P (v, du, Ty) = P (v, y, Ty) · P (y, du, Ty). We
have that |P (u, dv, Tx)| = |P (u, x, Tx)| + |P (x, dv, Tx)| < q + k − r, and |P (v, du, Ty)| =
|P (v, y, Ty)|+|P (y, du, Ty)| < r+k−q. It follows that dist(u,D(T∩Tx), Tx)+dist(v,D(T∩
Ty), Ty) ≤ dist(u, dv, Tx)+dist(v, du, Ty) < (q+k−r)+(r+k−q) < 2k. This contradics the
fact that dist(u, dv, Tx)+dist(v, du, Ty) ≥ dist(u,D(T ∩Tx), Tx)+dist(v,D(T ∩Ty), Ty) >
2k. Therefore, D(T ∩ Ty) is a k-hop dominating set of Ty.

Lemma 4.4. If |D′| = |D|+ 2, then D′ is not optimal.

Proof. Suppose |D′| = |D|+2. By Lemma 4.2, x ∈ D′ and y ∈ D′; but x /∈ D and y /∈ D.
Consider D(T ∩Tx) and D(T ∩Ty). Clearly, if D(T ∩Tx) is a k-hop dominating set of Tx
and D(T ∩Ty) is a k-hop dominating set of Ty, then D(T ∩Tx)∪D(T ∩Ty) = D is a k-hop
dominating set of T ′. If this is the case, then D′ is not optimal, since |D| < |D′|. Without
loss of generality, we assume that D(T ∩ Tx) is not a k-hop dominating set of Tx. Then,
by Lemma 4.3, D(T ∩ Ty) is a k-hop dominating set of Ty. Let u be an arbitrary vertex
in V (Tx) such that u /∈ D ∩ V (Tx) and dist(u,D(T ∩ Tx), Tx) > k. Since D is a k-hop
dominating set of T , there exists a dominator d ∈ D(u, T ∩Ty) with dist(u, d, T ) ≤ k. By
Case 2 in the proof of Lemma 4.2, we have that dist(u, x, Tx) = |P (u, x, Tx)| < k. This
implies D(T ∩ Tx) ∪ {x} is a k-hop dominating set of Tx. Furthermore, (D(T ∩ Tx) ∪
{x}) ∪D(T ∩ Ty) = D ∪ {x} is a k-hop dominating set of T ′. Hence, D′ is not optimal,
since |D ∪ {x}| = |D + 1| < |D′|.

Lemma 4.5. There exists a k-hop dominating set D′ of T ′ such that D′ ⊇ D and
|D′| ≤ |D|+ 1. Furthermore, |D′| = |D|+ 1 if and only if either x ∈ D or y ∈ D.

Theorem 4.6. For any spanning tree T of a unicyclic graph G, γk(G) ≤ γk(T ) ≤
γk(G) + 1.

An example of a spanning tree T ′ of a unicyclic graph G withγk(T ′) = γk(G) + 1 is
shown in Figure 2. Note that the existence of such spanning tree has provided that the
bound b ≤ 1 is definitely tight.

Theorem 4.7. There exists an algorithm that finds a k-hop dominating set D of a uni-
cyclic graph G of n vertices with |D| ≤ γk(G) + 1 in O(n) time.

Proof. By Lemma 3.6, the algorithm constructs a spanning tree T of G in O(n) time. It
then uses the Kundu-Majumder algorithm as subroutine to compute an optimal k-hop
dominating set D of T in O(n) time. The error bound is guaranteed by Theorem 4.6.
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T T ′

Figure 2. Illustration of two spanning trees T and T ′ of the uncyclic graph
G corresponding to Figure 1. with γ3(T ) = 8 = γ3(G) and γ3(T

′) = 9 =
γ3(G) + 1. The dominators in an optimal 3-hop dominating set of both trees
are represented by the gray vertices. The bold edges are the edges of the trees.

5. Conclusions and Discussions

This article extends the work of Kundu and Majumder [10] to the class of unicyclic
graphs. Our main contribution presents the relationship among the k-hop domination
numbers of a unicyclic graph and its spanning trees. Indeed, we have shown that the
numbers can differ by at most one. This in turn yields a linear-time algorithm for deter-
mining a near-optimal k-hop dominating set of a unicyclic graph with the tightly bounded
error of 1. We notice that the algorithm by Borradaile and Le [9] that gives an optimal
k-hop dominating set can run in linear time in the case where the input graph is unicyclic.
Nonetheless, their algorithm is based on dynamic programming over tree decompositions,
which is quite complicated to implement. The linear-time algorithm by Theorem 4.7,
though produces a near-optimal k-hop dominating set, can be suggested as an alternative
because of its simple implementation (see [10, p. 201] for implementation details). For
future work, we plan to investigate possibilities to further extend the results to more
interesting graph classes such as cactus graphs, block graphs, etc.
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