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Abstract In this paper, we give a new coincidence point theorem for two operators on Hilbert spaces

for certain operators by using the weak Ekeland variational principle. Our paper extends and improves
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1. Introduction and Preliminaries

Riki and Oussaoui in [1] proved a fixed point theorem on Hilbert spaces for potential
α-positively homogeneous operators via weak Ekeland variational principle, see also [2, 3].
In this paper, we extend their works by considering two α and β-positively homogeneous
operators. We investigate the existence of the coincidence point for these operators and
express a boundary value problem to indicate the validity. For the detail of the Ekeland
variational principle refer to [4].

Let H be a real Hilbert space endowed with scalar product denoted (., .).

Definition 1.1. [5] A self-mapping T : H → H is said to be homogeneous of degree
α > 0 if there exists an α > 0 such that

T (tx) = tαT (x), ∀t > 0, x ∈ H.
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Let ψ be a Fréchet differentiable functional defined on H and let ψ′(x) denote the
differential of ψ at x ∈ H. We denote by ∇ψ(x) the unique vector of H such that

ψ′(x).y = (∇ψ(x), y) ∀x, y ∈ H.
Definition 1.2. [5] A self-mapping T : H → H is said to be a potential or gradient
operator if there exists a differentiable functional ψ on H such that T = ∇ψ. In this case,
the mapping ψ is called the potential of T .

Let T : H → H be a potential operator and ψ be its potential, that is, T = ∇ψ. If T is
assumed to be continuous, then ψ is of class C1 and ψ and T are related by the formula

ψ(x) =

∫ 1

0

(T (tx), x)dt.

If T is α-positively homogeneous, then

ψ(x) =
1

1 + α
(T (x), x).

If we let G(x) = (T (x), x), we have that G is of class C1 and ∇G = (α+ 1)T .

Theorem 1.3. [6] Let E be a complete metric space and let ϕ : E → R a functional that
is lower semi-continuous, bounded from below. Then, for each ε > 0, there exists uε ∈ E
with ϕ(uε) ≤ infE ϕ+ ε and whenever v ∈ E with v 6= uε, then

ϕ(uε)− ϕ(v)

d(uε, v)
< ε.

For the next section we need the following definition.

Definition 1.4. An operator S : H → H is called strongly monotone if and only if

(Su, u) ≥ k‖u‖2 ∀u ∈ H,
for some k > 0.

For the application section, we need to following notes.
λ1 = π2 is the first eigenvalue of the linear Dirichlet problem{

−u′′(t) = λu(t), 0 < t < 1;
u(0) = u(1) = 0.

(1.1)

We will apply the Poincaré’s inequality

‖u‖2 ≤
‖u′‖2√
λ1

,

for every u ∈ H1
0 (0, 1).

2. Main Results

Theorem 2.1. Let T : U → H be a compact potential operator, S : U → H a strongly
monotone operator, with homogeneous of degrees α > 0 and β > 0, respectively, ST = TS,
where U is an open and bounded subset of a Hilbert space H with 0 ∈ U . If there exists a
constant C > 0 such that

(Tu, u) ≤ α+ 1

β + 1
(Su, u)− C‖Su‖ ∀u ∈ ∂U, (2.1)

then T and S have a coincidence point in U .
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Proof. Define

ϕ(u) :=

∫ 1

0

S(tu, u)dt−
∫ 1

0

T (tu, u)dt. (2.2)

Since T and S are homogeneous of degree α and β, respectively, then, we have

=
1

β + 1
(Su, u)− 1

α+ 1
(Tu, u). (2.3)

It is clear that Fréchet ϕ is differentiable with ϕ′ = S − T .
We shall divide the rest of the proof in four parts.

Part 1. We shall show that ϕ is bounded below. Since S is a strongly monotone operator,
we have that

(Su, u) ≥ k‖u‖2,
for some k > 0. By using Cauchy-Schwarz inequality, we find that

‖Su‖‖u‖ ≥ (Su, u) ≥ k‖u‖2

which implies the following inequality

‖Su‖ ≥ k‖u‖ for some k > 0.

On the other hand, since U is a bounded set with 0 ∈ U and since the operator T is
compact, there exists M > 0 such that ‖T (u)‖ ≤ M for all u ∈ U . Again by using
Cauchy-Schwarz inequality, we derive that

ϕ(u) :=

∫ 1

0

(S(tu, u)dt−
∫ 1

0

(T (tu, u)dt

=
1

β + 1
(Su, u)− 1

α+ 1
(Tu, u)

≥ 1

β + 1
k‖u‖2 − 1

α+ 1
‖Tu‖‖u‖

≥ 1

β + 1
k‖u‖2 − 1

α+ 1
M‖u‖.

Thus, we conclude that ϕ is bounded below.
Pick 0 < ε < kC

α+1 . By Theorem 1.3 there exists uε ∈ U with ϕ(uε) ≤ infU ϕ + ε and

whenever v ∈ U with v 6= uε, then

ϕ(uε) < ϕ(v) + ε‖uε − v‖.

Part 2. In this step, we shall indicate that uε 6∈ ∂U .
If uε ∈ ∂U , then, for v = 0, we have ϕ(uε) < ϕ(v)+ε‖uε−v‖. Due to the fact ϕ(0) = 0,

we derive that

ϕ(uε) < ε‖uε‖

≤ kC

α+ 1
‖uε‖

≤ C

α+ 1
‖Suε‖.

Note also that

ϕ(uε) =
1

β + 1
(Suε, uε)−

1

α+ 1
(Tuε, uε),
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which yields that

1

β + 1
(Suε, uε)−

1

α+ 1
(Tuε, uε) <

C

α+ 1
‖Suε‖.

It contradicts the inequality(2.1) which completes the proof of the claim.

Part 3. Here, we claim that uε is an approximate coincidence point of T and S.
Let h ∈ H. Since ϕ is Frechét differentiable, we have

|〈ϕ(uε), h〉| ≤ ε‖h‖.

Therefore, we get that

‖ϕ′(uε)‖ ≤ ε.
Thus, we obtain that

‖Suε − Tuε‖ ≤ ε
which means that uε is an approximate critical point of ϕ and then it is an approximate
coincidence point of T and S.

Part 4. In the last part, we shall prove the existence of a coincidence point.
For n ∈ N, there exists a sequence {un} in U such that ‖ϕ′(un)‖ ≤ 1

n .
Now there exists a subsequence {unk

} ⊆ {un} such that Tunk
→ u0 as k → ∞, for

some u0 ∈ U . Other hand

‖Sunk
− u0‖ ≤ ‖Sunk

− Tunk
‖+ ‖Tunk

− u0‖ → 0,

as k →∞. So TSunk
→ Tu0 and STunk

→ Su0 as k →∞, and by commuting of T and
S we get Tu0 = Su0.

We improve Theorem 2.1 [1] as follows.

Corollary 2.2. Let T : U → H be a compact potential operator, with α-positively ho-
mogeneous, where U is an open and bounded subset of a Hilbert space H with 0 ∈ U . If
there exists a constant C > 0 such that

(Tu, u) ≤ α+ 1

2
‖u‖2 − C‖u‖ ∀u ∈ ∂U. (2.4)

then T has a fixed point in U .

Proof. Put Su := u. So S is homogeneous of degree 1. Thus β + 1 = 2.

Corollary 2.3. Let T : U → H be a compact potential operator, S : U → H a strongly
monotone operator with constant k > 0, with homogeneous of degrees α > 0 and β > 0,
respectively, ST = TS, where U is an open and bounded subset of a Hilbert space H with
0 ∈ U . If there exists a constant C > 0 such that

‖Tu‖ ≤ kα+ 1

β + 1
‖u‖ − C‖Su‖/‖u‖ ∀u ∈ ∂U. (2.5)

then T and S have a coincidence point in U .

Corollary 2.4. Let T and S be compact potential operator with homogeneous of degrees
α > 0 and β > 0, respectively, ST = TS, satisfying

T (∂B(0, R)) ⊆ B
(

0, k
α+ 1

β + 1
R− Ck

)
and S(∂B(0, R)) ⊆ B(0, kR), (2.6)
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for some R > 0 and C > 0 such that C < α+1
β+1R. Then T and S has a coincidence point

in B(0, R).

Proof. It is enough we put U := B(0, R) for some R > 0.

Corollaries 2.2 and 2.3 [1] are also direct consequent of our main Theorem 2.1.

3. An Application

We consider the Dirichlet boundary value problem −u
′′(t) = p(t)f(u(t)), 0 < t < 1;

−u′′(t) = q(t)g(u(t)), 0 < t < 1;
u(0) = u(1) = 0,

(3.1)

where f, g : R → R are two continuous functions, p, q ∈ L2(0, 1) such that p(t)f(u(t)) −
q(t)g(u(t)) 6= 0. Let A, T and S be the operators defined on the standard Sobolev space

H1
0 (0, 1) endowed with inner product (u, v) =

∫ 1

0

u′(t)v′(t)dt and the norm ‖u‖2 =∫ 1

0

u′
2
(t)dt by

Au(t) =

∫ 1

0

G(t, s)(p(s)f(u(s))− q(s)g(u(s)))ds,

Tu(t) =

∫ 1

0

G(t, s)p(s)f(u(s))ds,

Su(t) =

∫ 1

0

G(t, s)q(s)g(u(s))ds,

where

G(t, s) =

{
t(1− s), t ≤ s;
s(1− t), s ≤ t. (3.2)

Then, A = S − T satisfies the problem{
−(Au)′′(t) = q(t)g(u(t))− p(t)f(u(t)), 0 < t < 1;
Au(0) = Au(1) = 0,

Operator A satisfies also the following property

(Au, v) =

∫ 1

0

(q(s)g(u(s))− p(s)f(u(s)))v(s)ds ∀u, v ∈ H1
0 (0, 1).

We know, if u be a solution of the integral equation

u(t) =

∫ 1

0

G(t, s)(p(s)f(u(s))− q(s)g(u(s)))ds,

then u is a solution of the problem (3.1) and conversely. Let ϕ be the functional defined
on H1

0 (0, 1) by

ϕ(u) = (Su, u)− (Tu, u). (3.3)



6 Thai J. Math. Vol. 19 (2021) /M. Asadi and E. Karapınar

Definition 3.1. u ∈ H1
0 (0, 1) is called a weak solution of (3.1) if∫ 1

0

[u′(t)v′(t)− (q(t)g(u)(t)− p(t)f(u(t)))v(t)]dt = 0, ∀v ∈ H1
0 (0, 1).

Lemma 3.2. [1] The operator A : H1
0 (0, 1)→ H1

0 (0, 1) is compact.

Theorem 3.3. Let that the following conditions hold:

i. Let f, g be homogenous of degrees α and β respectively.
ii. There exists R > 0 such that

M := max
|t|<R

|f(t)| ≤ π(α+ 1)R

2‖p‖2
, N := max

|t|<R
|g(t)| ≤ π(β + 1)R

2‖q‖2
.

Then the Dirichlet boundary value problem (3.1) has a solution u ∈ C2(0, 1).

By Lemma 3.2 operator A is compact. Integrating by parts, we get

ϕ′(u)v =

∫ 1

0

[u′(t)v′(t)− (q(t)g(u)(t)− p(t)f(u(t)))v(t)]dt

= −
∫ 1

0

[u′′(t)v(t)dt− (q(t)g(u)(t)− p(t)f(u(t)))v(t)]dt

= −
∫ 1

0

[(Au)′′v(t)]dt

=

∫ 1

0

[(Au)′v′(t)]dt

= (A(u), v),

for all u, v ∈ H1
0 (0, 1). Therefore ϕ′ = S − T.

Now we prove that the operator A satisfies the conditions of Corollary (2.4). We also
shall show that S is a strongly monotone operator for some k > 0.

Take any C > 0 such that

Ck ≤ kα+ 1

β + 1
R− 1

π
(‖q‖2N + ‖p‖2M)

By using the Cauchy-Schwarz inequality and Poincaré’s inequality

‖Au‖ = sup
‖v‖≤1

|(Au, v)|

= sup
‖v‖≤1

|
∫ 1

0

(q(s)g(u(s))− p(s)f(u(s)))v(s)ds|

≤ sup
‖v‖≤1

(

∫ 1

0

(q(s)g(u(s))− p(s)f(u(s)))2ds)
1
2 (

∫ 1

0

(v(s))2ds)
1
2

≤ sup
‖v‖≤1

(‖q‖2N + ‖p‖2M)√
λ1

≤ k
α+ 1

β + 1
R− Ck.
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Also we can show that

‖Su‖ ≤ ‖q‖2N√
λ1

.

Now if we take u ∈ B(0, ‖q‖2N√
λ1

) ∩ B(0, R), then S is a strongly monotone operator for

some k > 0.
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