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Abstract In this paper, we propose a stochastic gradient descent algorithm, called stochastic gradi-

ent descent method-based generalized pinball twin parametric support vector machine (SG-TPSVM) to

solve data classification problems. This approach is developed by replacing hinge loss function in the

conventional twin parametric support vector machine (TPSVM) with a generalized pinball loss function.

Moreover, the numerical experiment solved by proposed method is shown.
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1. Introduction

Support vector machine (SVM) is a popular supervised binary classification algorithm
based on statistical learning theory. SVM [1] searches parallel hyperplanes with the
maximum margin between two classes of samples by minimizing structural as well as
empirical risks evaluated from the given labeled training data. Within a few years after
its introduction the SVM has already outperformed most other systems in a wide variety
of applications like financial forecasting [2], human activity recognition [3], bioinformatics
[4], and financial regression [5–8], etc.

On the one hand, a main challenge for the standard SVM is the high computational
complexity of training samples, i.e. O(m3), where m is a total number of training sam-
ples, due to the standard SVM solved a single larger-sized convex quadratic programming
problem (QPP) to find an optimal separating hyperplane. In contrast to the aforemen-
tioned idea of generate separating hyperplane in SVMs, Jayadeva [9] proposed a twin
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support vector machine (TSVM) that generating two nonparallel hyperplanes such that
each hyperplane is closer to one of two classes and is at least one far from the other
classes. The strategy of TSVM aimed at solving a pair of smaller sized QPPs, instead
of solving a large one as in the classical SVM. Therefore, it makes the computational
time of TSVM approximately four times faster than the standard SVM in theory. Many
various of the TSVMs have been proposed, such as least square twin support vector ma-
chine [10, 11], twin support vector machine regression [12, 13], twin parametric support
vector machine (TPMSVM) [14, 15], etc. Although the various forms of TSVM works
faster than the standard SVM, these are not able to handle a very large number of data
samples during training as solving the corresponding QPP becomes infeasible. This is
due to the computation of the inverse of a large matrix, in Lagrangian dual problems of
TSVMs, which needed for all dual solutions. In order to deal with the large scale problem,
many improvements were proposed, such as, for SVM, sequential minimal optimization,
coordinate decent method, trust region Newton and stochastic gradient descent algorithm
(SGD) in [16–20], and for TSVMs, successive overrelaxation technique, Newton-Armijo
algorithm, and dual coordinate decent method in [21–23]. In the spirit of the stochastic
gradient algorithm (SGD), Wang [24] recently proposed a stochastic gradient twin sup-
port vector machine (SG-TSVM). This technique partitions a large scale problem into
a series of subproblems by stochastic sampling with a suitable size. The SG-TSVM has
been shown to be the fastest method among the TSVM-type classifiers for large scale
problems.

On the other hand, the well known and common loss function that used in SVMs and
TSVMs model are hinge loss functions, which makes it essentially sensitive to noise, and
is not stable for resampling. The SVM model with pinball loss function (Pin-SVM) was
proposed by Huang [25] to treat noise sensitivity and instability to re-sampling. However,
the Pin-SVM loses sparsity needs to be corrected. To achieve sparsity, they also proposed
a modified ε-insensitive zone into the Pin-SVM. Although ε-insensitive zone Pin-SVM
improves loses sparsity of Pin-SVM, its formulation requires the value of ε to be specified
beforehand and therefore a bad choice may effect its performance. Taking motivation
from these developments, Reshma [26] proposed a modified (ε1, ε2)-insensitive zone Pin-
SVM, called generalized pinball loss SVM. This generalized pinball loss SVM model is
noise-insensitive as well as sparse in the solution obtained. Nevertheless, compared with
the TSVMs, the generalized pinball loss SVM still needs to solve a single large QPP,
which leads to a higher computational complexity and not capable to solve large scale
problem.

In order to overcome the above-mentioned limitations of large scale problem and in-
spired by the studies of the TSVMs and the generalized pinball loss function, we formulate
a twin parametric support vector machine model as a convex unconstrained minimiza-
tion problem. Further, we propose to use the stochastic gradient descent algorithm for
computing the solution to the above-mentioned convex unconstrained minimization prob-
lem. The proposed technique is an efficient algorithm for real-world datasets, especially
large-scale ones. Moreover, we show that SG-TPSVM enjoys an expected convergence
rate similar to the rate of SG-TSVM [24]. Finally, we show, by a number of numerical ex-
periments, that the proposed SG-TPSVM approach outperforms the existing approaches
in term of accuracy. The results also show the robustness of the proposed approach on
noises and re-sampling.
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The layout of the paper is as follows. Section 2, describes related works that forms
the basis of our proposed work. In Section 3, we introduce the SG-TPSVM with the
theoretical analysis. Section 4 reports experimental results on several machine learning
benchmark datasets. Section 5 concludes the paper.

2. Background

The purpose of this section is to review related methods for binary classification prob-
lems. Let us consider a binary classification problem in the n-dimensional Euclidean space
Rn. Here we denote the set of training samples by X ∈ Rm×n, where x ∈ Rn is a sample
with a label y ∈ {+1,−1}. Note that we establish m1 samples in class +1 into a matrix
A ∈ Rm1×n and m2 samples of class −1 into a matrix B ∈ Rm2×n. Below, we give a brief
outline of several related methods.

2.1. Support Vector Machine

The SVM model consists of maximizing the distance between the two bounding hy-
perplanes which bound their classes so that the SVM model is generally formulated as a
convex quadratic programming problem (QPP). Let ‖ · ‖ denote the m2-norm of a vector
in Rn. Given a training set T = {(x>i , yi) ∈ Rn × {1,−1} : i = 1, 2, 3, . . . ,m}, the SVM
model is expressed in the form

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi, (2.1)

subject to yi(x
>
i w + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, 3, . . . ,m.

where, w ∈ Rn and b ∈ R are the weight vector and bias, respectively, which define the
hyperplane f(x) : w>x + b = 0, C > 0 is a constant parameter and ξ ∈ Rm is slack
vectors. The decision function of the above formulation is based on the sign of w>x + b
where x is assigned to class +1 if the value is positive otherwise it is assigned to class −1.
In fact, the SVM problem (2.1) can rewrited into unconstrained optimization problem as
follows [27, P. 207]:

min
w,b

1

2

(
‖w‖2 + b2

)
+ C

m∑
i=1

Lhinge(1− yi(w>xi + b)), (2.2)

where Lhinge(1 − yi(w>xi + b)) = max
{

0, 1− yi(w>xi + b)
}

. The function Lhinge(·) is
a so-called hinge loss function. This loss is related to the shortest distance between the
sets and the corresponding classifier leads to its sensitivity of noise and instability for
resampling. To remediate this short coming, Huang [25] suggests using a pinball loss
function to the SVM classifier (Pin-SVM). This approach brings noise insensitivity. The
way this model works by penalizing correctly classified samples, which is evident by the
pinball loss function which is defined as follows

Lτ (u) =

u, if u ≥ 0,

−τu, if u < 0,
(2.3)

where u = 1 − yi(w>xi + b) and τ ≥ 0 is a user-defined parameter. However, the above
formulation attains noise- insensitivity which, in the process, it loses sparsity. This is
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because the pinball loss functions sub-gradient is non-zero almost everywhere. Therefore,
to get the sparsity back, in the same paper [25] proposed an ε-insensitive zone to Pin-SVM
(ε-insensitive zone pinball SVM), then sub-gradient of the this loss function turns out to
be zero in the range [τ, ε] providing sparsity to the model. Definition of pinball loss with
ε-insensitive zone as follows

Lετ (u) =


u− ε, if u > ε,

0, if − ε
τ ≤ u ≤ ε,

−τ(u+ ε
τ ), if u < − ε

τ ,

(2.4)

where u = 1 − yi(w>xi + b) and ε ≥ 0, τ ≥ 0 are user-defined parameters. However,
the ε-insensitive zone pinball SVM formulation requires an optimal choice of ε parameter
needs to be prescribed. Therefore, Reshma [26] proposed the ε-insensitive zone Pin-SVM
idea to develop the generalized pinball loss SVM. This technique allows asymmetric in-
sensitive zone by allowing ε to be different. The generalized pinball loss function is a
generalization of other exiting loss functions which handle the problems of noise insen-
sitivity and instability of re-sampling as well. The definition of generalized pinball loss
function is given as follows

Lε1,ε2τ1,τ2(u) =


τ1(u− ε1

τ1
), if u > ε1

τ1
,

0, if − ε2
τ2
≤ u ≤ ε1

τ1
,

−τ2(u+ ε2
τ2

), if u < − ε2
τ2
,

(2.5)

where u = 1 − yi(w>xi + b) and τ1, τ2, ε1, ε2 ≥ 0 are user-defined parameters. With a
generalized pinball loss function, the resulting formulation of SVM, leads to the following
constrained optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi, (2.6)

subject to yi(w
>xi + b) ≥ 1− 1

τ1
(ξi − ε1),

yi(w
>xi + b) ≤ 1 +

1

τ2
(ξi + ε2),

ξi ≥ 0, i = 1, 2, 3, . . . ,m,

where C > 0 is a constant parameter and ξ ∈ Rm is slack vectors. This problem can be
formulated as an unconstrained optimization problem given as follows:

min
w,b

1

2

(
‖w‖22 + b2

)
+ C

m∑
i=1

Lε1,ε2τ1,τ2(1− yi(w>xi + b)), (2.7)

where Lε1,ε2τ1,τ2(·) is a generalized pinball loss function.

2.2. Twin Support Vector Machine (TSVM)

To reduce the computational complexity of SVM, Jayadeva et al. [9] proposed the twin
support vector machine (TSVM) based on hinge loss function. The formulation of TSVM
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solves two smaller QPPs. The TSVM classifier aims to determine two nonparallel planes:

f1(x) : w>1 x + b1 = 0 and f2(x) : w>2 x + b2 = 0, (2.8)

where, w1,w2 ∈ Rn and b1, b2 ∈ R are the weight vectors and biases of the hyperplane
f1(x) and the hyperplane f2(x), respectively. To find the pair of nonparallel hyperplanes,
it is necessary to obtain solutions to constrained optimization problems:

min
w1,b1,ξ2

1

2
(Aw1 + e1b1)>(Aw1 + e1b1) + c1e

>
2 ξ2, (2.9)

subject to − (Bw1 + e2b1) + ξ2 ≥ e2,

ξ2 ≥ 0,

and

min
w2,b2,ξ1

1

2
(Bw2 + e2b2)>(Bw2 + e2b2) + c2e

>
1 ξ1, (2.10)

subject to (Aw2 + e1b2) + ξ1 ≥ e1,

ξ1 ≥ 0,

where c1, c2 > 0 are the penalty parameters, and ξ1 ∈ Rm1 , ξ2 ∈ Rm2 are slack vectors.
However, within the large scale classification problem, the stochastic gradient descent
method has been successfully applied to support vector machines (SVMs). Recently,
Wang [24] proposed a stochastic gradient TSVM (SG-TSVM) to solve (2.9) and (2.10) in
TWSVM. Note that these problems can be represented in the following problems:

min
w1,b1

1

2
(‖w1‖2 + b21) +

c1
2m1
‖Aw1 + b1‖2 +

c2
m2

e>2 Lhinge(e2 +Bw1 + e2b1),

(2.11)

and

min
w2,b2

1

2
(‖w2‖2 + b22) +

c3
2m2
‖Bw2 + b2‖2 +

c4
m1

e>1 Lhinge(e1 −Aw2 − e1b2),

(2.12)

where c1, c2, c3, c4 > 0 are the penalty parameters. In the t-th iteration, SG-TSVM
constructs a pair of momentary functions using subgradients with respect to w1, b1,w2

and b2 which is defined by a pair of samples (x+
t , y

+
t ) and (x−t , y

−
t ) from two classes and

iteratively updates the decision parameters with some predefined step sizes.
However, the SG-TSVM that based on a hinge loss function leads to its sensitivity of

the noise and instability for re-sampling. Moreover, the SG-TSVM might be unprofitable
if the amont of noise strongly depends on the input value.

2.3. Twin Parametric-Margin Support Vector Machine (TPSVM)

The classical SVM and TSVM assume that the probability distribution of training
data is distributed uniformly. However, this probability distribution assumption is not
always satisfied. To resolve this problem, the concept of TPSVM [15] was developed.
The process of TPSVM is generating two nonparallel hyperplanes similar to the TSVM.
Each hyperplane determines one of the parametric-margin hyperplanes. Note that f1(x)
and f2(x) (defined in (2.8)) are positive and negative parametric-margin hyperplanes,
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respectively. Therefore, the TPSVM separates data if and only if:

w>1 xi + b1 ≥ 0 ∀i = 1, 2, 3, ...,m1, (2.13)

w>2 xi + b2 ≤ 0 ∀i = 1, 2, 3, ...,m2. (2.14)

In order to obtain the positive and negative parametric-margin hyperplanes, let us
consider the following pair of constrained optimization problems:

min
w1,b1,ξ1

1

2
‖w1‖2 +

ν1
m2

e>2

(
Bw1 + e2b1

)
+

c1
m1

e>1 ξ1, (2.15)

subject to Aw1 + b1e1 ≥ 0− ξ1,
ξ1 ≥ 0,

and

min
w2,b2,ξ2

1

2
‖w2‖2 +

ν2
m1

e>1

(
Aw2 + e1b2

)
+

c2
m2

e>1 ξ2, (2.16)

subject to Bw2 + b2e2 ≤ 0 + ξ2,

ξ2 ≥ 0,

where c1, c2, ν1, ν2 > 0 are the penalty parameters, and ξ1, ξ2 are slack vectors. As
mentioned in [15], this TPMSVM is suitable for the data with a heteroscedastic error
structure, that is, the noise strongly depends on the input value. However, it is worth
noting that the TPSVM based on hinge loss function needs to be solved via quadratic
programming problems (QPPs), which might lead to its sensitivity to noise, instability
for re-sampling and its computational cost could leave a lot for large scale problems.

Therefore, in view of the SGD-based optimization in SG-TSVM [24] and motivated
with generalized pinball loss SVM and twin parametric-margin support vector machine
(TPSVM), we formulate a twin parametric support vector machine (TPMSVM) model
which is based on generalized pinball loss function by using an iterative method such as
stochastic gradient descent (SG-TPSVM).

3. Proposed Work

3.1. Linear SG-TPSVM

Following the method of formulating the TPSVM problems (discussed in (2.15) and
(2.16)), we incorporate the generalized pinball loss function in the objective function to
get the convex unconstrained minimization problems as follows:

min
ω1

1

2
‖ω1‖2 +

ν1
m2

m2∑
j=1

(
ω>1 x

−
j

)
+

c1
m1

m1∑
i=1

Lε1,ε2τ1,τ2

(
0− y+i (ω>1 x

+
i )
)
, (3.1)

min
ω2

1

2
‖ω2‖2 −

ν2
m1

m1∑
i=1

(
ω>2 x

+
i

)
+

c2
m2

m2∑
j=1

Lε3,ε4τ3,τ4

(
0− y−j (ω>2 x

−
j )
)
, (3.2)

where ω1 = [w1 b1] , ω2 = [w2 b2], x = [x 1] and w1,w2 ∈ Rn, b1, b2 ∈ R are the
weight vectors and biases, respectively, and c1, c2, ν1, ν2 > 0 are the penalty parameters.
For a linear case, the SG-TPSVM model finds two hyperplanes in Rn as follows:

f1(x) : ω>1 x = 0 and f2(x) : ω>2 x = 0. (3.3)
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Let us consider a model of stochastic optimization problems. Let θi = (x+
i , y

+
i ) and

θ̃i = (x−i , y
−
i ) be a pair of training sample from class +1 and −1, respectively. The

objective functions on these two distributions of training set θi and θ̃i as follows:

f(ω1,i, θi) =
1

2
‖ω1‖2 + ν1

(
ω>1 x

−
i

)
+ c1L

ε1,ε2
τ1,τ2

(
0− y+i (ω>1 x

+
i )
)
, (3.4)

f(ω2,i, θ̃i) =
1

2
‖ω2‖2 − ν2

(
ω>2 x

+
i

)
+ c2L

ε3,ε4
τ3,τ4

(
0− y−i (ω>2 x

−
i )
)
. (3.5)

To apply the SGD algorithm, let t > 0 be an iteration count. We assume that at time t,
a sample of random variable θt = {(x+

t ,+1)} and θ̃t = {(x−t ,−1)} are given. Let st and

s̃t be subgradients of f(ω1,t, θt) and f(ω2,t, θt) associated with the samples θt and θ̃t at
point ω1,t and point ω2,t, respectively. That is,

st ∈ ∂f(ω1,t, θt) = ω1,t + ν1x
−
t − c1∂Lε1,ε2τ1,τ2(0− y+t (ω>1 x

+
t ))y+t (x+

t ), (3.6)

s̃t ∈ ∂f(ω2,t, θ̃t) = ω2,t − ν2x+
t − c2∂Lε1,ε2τ1,τ2(0− y−t (ω>2 x

−
t ))y−t (x−t ), (3.7)

where

∂Lε1,ε2τ1,τ2(u′) =



{−τ1} if u′ > ε1
τ1
,

[−τ1, 0] if u′ = ε1
τ1
,

{0} if − ε2
τ2
≤ u′ ≤ ε1

τ1
,

[0, τ2] if u′ = − ε2
τ2
,

{τ2} if u′ < − ε2
τ2
.

(3.8)

With the above notations and the existence of lt ∈ ∂Lε1,ε2τ1,τ2(0 − y+t (ω>1 x
+
t )) and l̃t ∈

∂Lε1,ε2τ1,τ2(0− y−t (ω>2 x
−
t )), sudgradients st and s̃t can be rewritten as:

st = ω1,t + ν1x
−
t − c1lty+t (x+

t ), (3.9)

s̃t = ω2,t − ν2x+
t − c2 l̃ty−t (x−t ). (3.10)

The proposed SG-TPSVM starts from the initial w1,t and w2,t. Then, the updates are as
follows:

ω1,t+1 = ω1,t − ηtst, (3.11)

ω2,t+1 = ω2,t − ηts̃t. (3.12)

A new data sample x ∈ Rn is assigned to class y (y = −1, 1) depending on which of the
two planes given by (3.3) it lies closest to, i.e.,

ȳ = arg min
i=1,2

|x̄>wi + bi|
‖wi‖

, (3.13)

where |.| denotes the absolute value and, hence, the procedure for training a SG-SPTPSVM
model is summarized in Algorithm 1.
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Algorithm 1 SG-TPSVM

Input: Positive class A ∈ Rm1×n, negative class B ∈ Rm2×n,
positive parameters c1, c2, ν1, ν2 and tolerance: tol = 10−4

1: Set ω1,1 and ω2,1 to be zero;
2: while ‖st‖ ≥ tol do
3: Choose a pair of samples x+

t and x−t at random from A and B, respectively.
4: Compute stochastic gradient st using Eqs. (3.9)
5: Update w1,t+1 using Eqs. (3.11)
6: t = t+ 1
7: end
8: while ‖s̃t‖ ≥ tol do
9: Choose a pair of samples x+

t and x−t at random from A and B, respectively.
10: Compute stochastic gradient s̃t using Eqs. (3.10)
11: Update ω2,t+1 using Eqs. (3.12)
12: t = t+ 1
13: end

Output: ω∗1 =
1

T

T∑
t=1

ω1,t and ω∗2 =
1

T

T∑
t=1

ω2,t

3.2. Non-Linear SG-TPSVM

By employing the kernel trick, we extend our SG-TPSVM to the non-linear case.
Suppose that K(·, ·) is the predefined kernel function. The kernel counterparts of (3.1)
and (3.2) can be formulated as

min
ω1

1

2
‖ω1‖2 +

ν1
m2

m2∑
j=1

(
ω>1 K(x−j , X)

)
+

c1
m1

m1∑
i=1

Lε1,ε2τ1,τ2

(
0− y+i (ω>1 K(x+

i , X))
)
,

(3.14)

min
ω2

1

2
‖ω2‖2 −

ν2
m1

m1∑
i=1

(
ω>2 K(x+

i , X)
)

+
c2
m2

m2∑
j=1

Lε3,ε4τ3,τ4

(
0− y−j (ω>2 K(x−j , X))

)
,

(3.15)

where c1, c2, ν1, ν2 > 0 are the penalty parameters and K(x, X) = [K(x, X) e] are column
augmented matrices. For a nonlinear case, the SG-TPSVM model finds two hyperplanes
as the following:

f1(x) : ω>1 K(x, X) = 0 and f2(x) : ω>2 K(x, X) = 0, (3.16)

where X =

[
Am1×n

Bm2×n

]
. The solution to the above-mentioned optimization problems (3.14)

and (3.15) can be computed similar to the linear case using Algorithm 1. Furthermore,
a new data point x ∈ Rn is assigned to class y (y = −1,+1) according to the equation
(3.13).
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4. Convergence Analysis

In this section, we analyze the convergence of the proposed SG-TPSVM model. For
convenience, we only consider the first QPP (3.1) together with the SGD formulation of
the linear SG-TPSVM. The conclusions for another QPP (3.2) and the nonlinear algo-
rithm can be obtained similarly. From now we denote f(ω1,t, θt) = f(ωt). Given ω1 and
the step size ηt = 1

t , ωt+1 for t ≥ 1 is updated by

ωt+1 = ωt − ηtst (4.1)

i.e.,

ωt+1 = ωt − ηtst

= ωt −
1

t

(
ωt + ν1x

−
t − c1lty+t (x+

t )
)

= (1− 1

t
)ωt −

1

t

(
ν1x
−
t − c1lty+t (x+

t )
)

(4.2)

To prove the convergence of Algorithm 1, we rely on the following lemma.

Lemma 4.1. The sequence {‖ωt‖ : t = 1, 2, . . .} and the sequence {‖st‖ : t = 1, 2, . . .}
have upper bounds, where ωt and st are defined by (4.2) and (3.9), respectively.

Proof. The formulation (4.2) can be rewritten as

ωt+1 = Atωt +
1

t
vt (4.3)

where At =
( t− 1

t

)
I, I is the identity matrix, and vt = −ν1x−t + c1ltyt(x

+
t ). For t ≥ 2,

At is positive definite, and the largest eigenvalue λt of At is equal to
t− 1

t
. From (4.3),

we obtrain that

ωt+1 =

t∏
i=2

Aiω2 +

t∑
i=2

Āi, (4.4)

where

Āi =


1

i

(∏t
j=i+1Aj

)
vi if i < t,

1

i
vi if i = t.

(4.5)

For i ≥ 2,

‖Aiω2‖ ≤ ‖Ai‖‖ω2‖ ≤ λi‖ω2‖ =
i− 1

i
‖ω2‖.

Therefore,∥∥∥∥∥
t∏
i=2

Aiω2

∥∥∥∥∥ = ‖A2A3 · · ·Atω2‖

≤ ‖A2‖‖A3‖ · · · ‖At‖‖ω2‖

≤ (2− 1)

2
· (3− 1)

3
· · · · · (t− 1)

t
‖ω2‖

≤ 1

t
‖ω2‖, (4.6)
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Next, we consider ‖Āi‖, case I, for i < t we have

‖Āi‖ =

∥∥∥∥∥∥1

i

( t∏
j=i+1

Aj

)
vi

∥∥∥∥∥∥
=

1

i
‖Ai+1‖‖Ai+2‖ · · · ‖At‖‖vi‖

=
1

i
· (i+ 1)− 1

i+ 1
· (i+ 2)− 1

i+ 2
· · · t− 1

t
‖vi‖

=
1

t
‖vi‖

≤ 1

t
max
i<t
‖vi‖,

and case II, for i = t we have

‖Āi‖ =
1

t
‖vt‖ ≤

1

t
max
i=t
‖vi‖.

From case I and case II, we obtain that

‖Āi‖ ≤
1

t
max
i≤t
‖vi‖, for i ≥ 2. (4.7)

Thus, we have

‖ωt+1‖ =

∥∥∥∥∥
t∏
i=2

Aiω2 +

t∑
i=2

Āi

∥∥∥∥∥
≤

∥∥∥∥∥
t∏
i=2

Aiω2

∥∥∥∥∥+

t∑
i=2

‖Āi‖

≤ 1

t
‖ω2‖+

t∑
i=2

1

t
max
i≤t
‖vi‖+

1

t
max
i≤t
‖vi‖ −

1

t
max
i≤t
‖vi‖

=
1

t
‖ω2‖+ t

(1

t
max
i≤t
‖vi‖

)
−
(1

t
max
i≤t
‖vi‖

)
=

1

t
‖ω2‖+

t− 1

t

(
max
i≤t
‖vi‖

)
≤ ‖ω2‖+ ν1 max

x∈B
‖x‖+ c1 max{τ1, τ2}max

x∈A
‖x‖. (4.8)

Let M1 and M2 be the largest norms of the samples in the set A and set B, respectively,
and

G1 = max {‖ω1‖, ‖ω2‖+ ν1M2 + c1 max{τ1, τ2}M1} .

Therefore G1 is an upper bound of {‖ωt‖ : t = 1, 2, . . .}. Next, we consider, for any t ≥ 1

‖st‖ = ‖ωt + ν1x
−
t − c1ltyt(x+

t )‖
≤ ‖ωt‖+ ν1‖x−t ‖+ c1 max{τ1, τ2}‖x+

t ‖
≤ ‖ωt‖+ ν1M2 + c1 max{τ1, τ2}M1

≤ G1 + ν1M2 + c1 max{τ1, τ2}M1.
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We obtain that G2 = G1 + ν1M2 + c1 max{τ1, τ2}M1 being an upper bound of {‖st‖ : t =
1, 2, . . .}.

Now, we can establish a convergence of Algorithm 1.

Theorem 4.2. The sequence {ωt} generated by Algorithm 1 almost surely converge to
an optimal solution of problem (3.1).

Proof. On the one hand, from (4.6) and Lemma 4.1, we have

lim
t→∞

∥∥∥∥∥
t∏
i=2

Aiω2

∥∥∥∥∥ = 0, (4.9)

which implies that

lim
t→∞

t∏
i=2

Aiω2 = 0. (4.10)

On the other hand, from (4.7), we have

t∑
i=2

‖Āi‖ ≤
t∑
i=2

(1

t
max
i≤t
‖vi‖

)
≤ v1M2 + c1 max{τ1, τ2}M1. (4.11)

Since (4.11), we have

t∑
i=2

‖Āi‖ is bounded. And we know that

t∑
i=2

‖Āi‖ is monotone in-

creasing, this implies that

t∑
i=2

‖Āi‖ is convergent. By infinite series of vectors is convergent

if its norm series is convergent, we have

t∑
i=2

Āi is convergent. Then, since

ωt+1 =

t∏
i=2

Aiω2 +
t∑
i=2

Āi,

we have the sequence {ωt} is convergent. Then, we assume that {ωt} converges to ω∗,
for some ω∗ ∈ Rn. We will show that ω∗ is an optimal solution of problem (3.1). Let us
consider, for all ω ∈ Rn. Since st is a subgradient of f at ωt, we have

f(ωt)− f(ω) ≤ 〈st,ωt − ω〉
= 〈st,ωt − ω + ω∗ − ω∗〉
= 〈st,ωt − ω∗〉+ 〈st,ω∗ − ω〉
≤ ‖st‖‖ωt − ω∗‖+ ‖st‖‖ω∗ − ω‖.

Taking t→∞, and by Lemma 4.1, we have

lim
t→∞

(
f(ωt)− f(ω)

)
≤ 0. (4.12)

Since f is continuous and ωt → ω∗, this implies that

f(ω∗) ≤ f(ω), ∀ω ∈ Rn. (4.13)
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Thus, ω∗ is an optimal solution of problem (3.1). Hence, we conclude that the sequence
{ωt} generated by Algorithm 1 almost surely converge to an optimal solution of problem
(3.1)

Theorem 4.2 says that the first of two iterative problems in the sequence generated
by Algorithm 1 is convergent. The same conclusion can be obtained for the nonlinear
case. Thus, we immediately have the sequences generated by Algorithm 1 convergent.
Further, in order to establish a bound on the expected convergence rate of the proposed
SG-TPSVM model, we need to justify the following lemma.

Lemma 4.3. For each t = 1, 2, . . . , T , assume that SGD is run for T iterations with
ηt = 1

t . For an algorithm with an initialization ω1 = 0 we have,

T∑
t=1

〈ωt − ω∗, st〉 ≤ TG2(G1 + ‖ω∗‖) +
1

2
G2

2(1 + lnT ), (4.14)

where G1, G2 are an upper bound of {‖ωt‖} and {‖st‖}, respectively.

Proof. Consider,

〈ωt − ω∗, st〉 =
1

ηt
〈ωt − ω∗, ηtst〉 (4.15)

=
1

2ηt

(
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2 + η2t ‖st‖2

)
. (4.16)

Summing the equality over t and using Lemma 4.1, we obtain that

T∑
t=1

〈ωt − ω∗, st〉 =

T∑
t=1

( 1

2ηt

(
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2 + η2t ‖st‖2

))
=

1

2

T∑
t=1

1

ηt

(
‖ωt − ω∗‖2 − ‖ωt+1 − ω∗‖2

)
+

1

2

T∑
t=1

(
ηt‖st‖2

)
=

1

2

( T∑
t=1

t‖ωt − ω∗‖2 −
T∑
t=1

t‖ωt+1 − ω∗‖2
)

+
1

2

T∑
t=1

(
ηt‖st‖2

)
=

1

2

(
‖ω1 − ω∗‖2 + 2‖u2 − ω∗‖2 + · · ·+ T‖ωT − ω∗‖2

− ‖ω2 − ω∗‖2 − 2‖ω3 − ω∗‖2 − · · ·

− (T − 1)‖ωT − ω∗‖2 − T‖ωT+1 − ω∗‖2
)

+
1

2

T∑
t=1

(
ηt‖st‖2

)
=

1

2

(
‖ω1 − ω∗‖2 + ‖ω2 − ω∗‖2 + · · ·+ ‖ωT − ω∗‖2

− T‖ωT+1 − ω∗‖2
)

+
1

2

T∑
t=1

(
ηt‖st‖2

)
=

1

2

( T∑
t=1

‖ωt − ω∗‖2 − T‖ωT+1 − ω∗‖2
)

+
1

2

T∑
t=1

(
ηt‖st‖2

)
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≤
(
G1 + ‖ω∗‖

) T∑
t=1

‖ωT+1 − ωt‖+
1

2
G2

2

(
1 + lnT

)
=
(
G1 + ‖ω∗‖

) T∑
t=1

‖
T∑
t=1

1

t
st‖+

1

2
G2

2

(
1 + lnT

)
≤ TG2

(
G1 + ‖ω∗‖

)
+

1

2
G2

2

(
1 + lnT

)
. (4.17)

hence proving our Lemma.

Theorem 4.4. Under the assumptions of Lemma 4.3 and additional assumption that f

is convex, let ω̄ =
1

T

T∑
t=1

ωt be the solution output of SG-TPSVM. Then

f(ω̄)− f(ω∗) ≤ G2

(
G1 + ‖ω∗‖

)
+

1

2T
G2

2

(
1 + lnT

)
. (4.18)

Proof. From the definition of ω̄, we have

f(ω̄)− f(ω∗) = f
( 1

T

T∑
t=1

ωt

)
− f(ω∗)

≤ 1

T

T∑
t=1

(
f(ωt)

)
− f(ω∗)

=
1

T

T∑
t=1

(
f(ωt)− f(ω∗)

)
. (4.19)

For every t, by assumption and st = ∇f(ωt, θt), we have

f(ωt)− f(ω∗) ≤ 〈ωt − ω∗, st〉. (4.20)

Also, taking sum over t and divided by T , it follows that

1

T

T∑
t=1

(
f(ωt)− f(ω∗)

)
≤ 1

T

T∑
t=1

〈ωt − ω∗, st〉. (4.21)

By Lemma 4.3, we have

1

T

T∑
t=1

〈ωt − ω∗, st〉 ≤ G2(G1 + ‖ω∗‖) +
1

2T
G2

2(1 + lnT ). (4.22)

Combining the preceding we conclude that

f(ω̄)− f(ω∗) ≤ G2(G1 + ‖ω∗‖) +
1

2T
G2

2(1 + lnT ). (4.23)

Remark 4.5. With Theorem 4.4 we have shown that in a random iteration T , the

resulting expected error is bounded by O
(1 + lnT

T

)
. However, it is interesting to note

that SG-TPSVM enjoys an error bound similar to the SG-TSVM [24].
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5. Numerical Experiment

Here we will establish the performance of our SG-TPSVM model. The experiments
have been preformed on Python3 on a macOS with an Intel i5 Processor 2.3 GHz with
Memory 8 GB 2133 MHz LPDDR3. In order to evaluate the performance of classifiers,
we have used a 10-fold cross validation technique for all experiments. The results of each
experiment show the average CPU time and standard deviation in all tables and highlight
the best one. From now on we denote τ1 = τ3, τ2 = τ4, ε1 = ε3, and ε2 = ε4. To derive
the non-linear case, we use the Gaussian kernel K(x, y) = exp{−σ‖x− y‖2}.

5.1. Synthetic Dataset

The purpose of our SG-TPSVM model is to be able to handle noise-sensitive classifiers.
To illustrate the noise insensitivity performance consider Figure 1 and Figure 2, where we
take a two dimensional synthetic dataset with equal number of samples from two Gaussian
distributions: xi, i ∈ {i : yi = 1} ∼ N (µ1,

∑
1) and xi, i ln{i : yi = −1} ∼ N (µ2,

∑
2),

where µ1 = [1,−3]>, µ2 = [−1, 3]> and
∑

1 =
∑

2 =

[
0.2 0

0 3

]
. We add noise to the

dataset, with each noise sample drawn from the Gaussian distribution N (µn,
∑
n) where

µn = [0, 0]> and
∑
n =

[
1 −0.8

−0.8 1

]
. From Figure 1, the bar chart demonstrates

the percentages of accuracy to classify from different sectors including SG-TPSVM, SG-
TSVM [24] and PEGASOS [20] during 0 (free-noise) to 30 noise points. Overall, the
SG-TPSVM achieves the best results in all cases. This implies that the SG-TPSVM was
the strongest candidate for the method of classifying the data with noise corrupted.

0 5 10 20 30
The number of noise points

88
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92

94

96

98

100
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SG-TSVM
PEGASOS
SG-TPSVM

Figure 1. Bar graph of the accuracies for three algorithms on the 2-D
artificial data.
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Next result Figure 2 in this regard, showing when we increase the amount of noise
from 0 to 20%, the hyperplanes of SG-TSVM diverge from 0.64360, 0.77147 to 0.28428,
0.33160 while the hyperplanes of our SG-TPSVM slightly changed. This means that the
our SG-TPSVM model is insensitive to noise.

SG-TPSVM ( 0.75057, 0.74844 )

SG-TSVM ( 0.64360, 0.77147 )

(a) Systhetic Data (r=0)

SG-TPSVM ( 0.39894, 0.63162 )

SG-TSVM ( 0.29768, 0.35956 )

(b) Systhetic Data (r=0.05)

SG-TPSVM ( 0.39154, 0.62472 )

SG-TSVM ( 0.26923, 0.35218 )

(c) Systhetic Data (r=0.1)

SG-TPSVM ( 0.37780, 0.61050 )

SG-TSVM ( 0.28428, 0.33160 )

(d) Systhetic Data (r=0.2)

Figure 2. These figures demonstrate the noise insensitive properties
possessed. we have varying number of noise samples, from r = 0 (noise
free), r = 0.05, r = 0.1 and r = 0.2. Here, r is the ratio of total number
of noisy samples to the total number of samples originally in the dataset
(including both classes). The legend in each figure gives the slopes of the
separating hyperplanes in the brackets.

5.2. UCI Datasets

To test the performance of the proposed SG-TPSVM, experiments are carried out on
eight UCI datasets from binary classification. All the data are summarized in Table
1. The features of each data set are corrupted by zero-mean Gaussian noise. For each
feature, the ratio of the variance of noise denoted as r is set to be 0 (i.e., noise-free), 0.05,
and 0.1.
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In order to prove the efficacy of the proposed model, we have also compared the
proposed formulation with SG-TSVM [24]. The comparison results are shown in Table
2. Here SG-TSVM(a), SG-TPSVM(a) and SG-TSVM(b), SG-TPSVM(b) refer to linear
and nonlinear cases, respectively. One can observe from Table 2 that the proposed model
achieves better results in most cases. Figure 3 and Figure 4 show the average accuracy
obtained from Table 2. It is clear that our SG-TPSVM has accuracy performance better
than SG-TSVM. The computational time of both models are not different. The optimal
parameters used in Table 2 are summarized in Table 3.

Table 1 The details of datasets.

datasets No. of samples Dimension

Australian 690 14

Banknote 1,372 5

Coil2000 900 86

Heart 270 13

Monk2 432 7

Pima Indians 768 8

Titanic 2,201 41

Twonorm 7,400 21

0 2 4 6 8 10
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80.0

80.5

81.0
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cu
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cy SG-TSVM

SG-TPSVM

Figure 3. The average accuracy of SG-TSVM and SG-TPSVM (linear
case) on UCI data sets, where the horizontal axis denotes the amount of
noise.
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Figure 4. The average accuracy of SG-TSVM and SG-TPSVM (nonlin-
ear case) on UCI data sets, where the horizontal axis denotes the amount
of noise.
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Table 2 Testing accuracy obtained from all discussed formulation in UCI datasets.

Existing algorithms Proposed algorithms

Datasets r
SG-TSVM(a) SG-TSVM(b) SG-TPSVM(a) SG-TPSVM(b)

Time (s) Time (s) Time (s) Time (s)

Australian

0 86.81±3.27 76.09±7.73 87.83±3.12 84.49±3.37

0.0639 0.2879 0.0830 0.4139

0.05
85.65±3.52 76.67±6.53 87.10±3.14 84.78±3.68

0.0627 0.2594 0.0862 0.4638

0.1
86.23±2.69 74.78±8.58 86.38±3.12 84.78±3.26

0.0602 0.2473 0.0831 0.4397

Banknote

0
83.75±2.27 97.15±2.27 84.62±2.90 98.32±1.82
0.0656 0.4380 0.0432 0.7620

0.05
88.12±2.24 96.86±2.77 84.40±2.98 98.11±2.07
0.0610 0.4460 0.0417 0.4639

0.1
88.34±2.66 96.50±2.23 83.38±3.20 98.40±1.56
0.0599 0.4318 0.0402 0.4907

Coil2000

0
50.67±11.76 93.29±0.78 68.11±2.61 93.02±0.76

0.0642 7.1999 0.0927 9.1320

0.05
51.19±10.61 94.03±0.71 63.04±3.06 94.03±0.71
0.0621 5.2486 0.0859 5.0169

0.1
50.38±13.47 90.83±4.37 60.01±2.51 94.03±0.17
0.0568 5.0152 0.0807 5.2470

Heart

0
83.33±5.30 83.70±6.46 80.00±5.79 84.07±4.40
0.0627 0.3028 0.0844 0.3243

0.05
82.59±4.98 81.48±7.03 82.96±4.44 84.81±4.52
0.0665 0.3033 0.0863 0.3387

0.1
83.33±5.80 82.59±5.98 83.70±4.12 84.44±3.63
0.0612 0.2910 0.0870 0.3526

Monk2

0
78.93±8.09 85.64±6.14 79.60±8.54 89.58±4.91
0.0585 0.3128 0.0788 0.3434

0.05
78.22±7.68 84.73±7.64 82.86±6.17 87.04±6.83
0.0546 0.3359 0.0782 0.3666

0.1
79.85±9.54 84.48±5.72 80.06±7.42 88.42±7.71
0.0561 0.3527 0.0845 0.3783

Pima

0
72.40±4.75 75.64±6.33 73.55±4.80 74.35±5.38

0.0644 0.3690 0.0800 0.3943

0.05
72.27±6.11 73.95±4.95 74.73±4.80 73.56±5.95

0.0549 0.3522 0.0775 0.4484

0.1
72.65±4.61 73.42±6.42 74.47±4.97 73.16±5.87

0.0527 0.3461 0.0740 0.3802

Titanic

0
74.47±3.47 66.96±2.04 76.56±3.20 77.60±2.67
0.0397 0.2427 0.0791 0.5115

0.05
75.15±2.50 68.01±2.62 77.10±2.98 76.92±2.71

0.0590 0.3823 0.0789 0.5621

0.1
75.15±3.07 67.92±2.69 76.60±2.45 77.37±2.33
0.0560 0.4162 0.0833 0.5481

Twonorm

0
97.73±0.71 97.78±0.66 97.80±0.56 97.81±0.63
0.0613 1.6700 0.0813 1.7512

0.05
97.69±0.67 97.72±0.56 97.85±0.63 97.76±0.63

0.0651 1.8604 0.0889 1.7798

0.1
97.73±0.60 97.78±0.55 97.65±0.64 97.66±0.56

0.0659 2.9027 0.0822 1.8999
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Table 3 The optimal parameters of SG-TSVM, SG-GTPPSVM.

Datasets
SG-TSVM(a) SG-TSVM(b) SG-TPSVM(a) SG-TPSVM(b)

c1, c2 c1, c2, γ
c, ν, τ1, τ2,

ε1, ε2

c, ν, τ1, τ2,

ε1, ε2,γ

Australian 1,1 0.1,1,0.01
1,1,2,0.01,

0.01,0.01

1,1,1,1,

1,1,0.1

Banknote 1,1 0.1,1,10
0.05,0.1,1,1,

1.5,0.5

1,1,1,1,

1,1,10

Coil2000 1,1 0.1,1,10
2,1.5,2,1,

1.5,0.5

1,1,1,1,

1,1,1

Heart 1,1 0.1,1,0.01
1,1,2,0.01,

0.01,0.01

1,1,1,1,

1,1,0.1

Monk2 1,1 0.1,1,1
0.01,1,2,0.01,

0.01,0.01

1,0.1,1,1,

1,1,1

Pima 1,1 0.1,1,0.1
0.01,1,2,0.01,

0.01,0.01

1,0.09,1,1,

1,1,0.1

Titanic 1,1 0.1,1,0.1
1,1,2,0.01,

0.01,0.01

1,1,1,1,1,

1,1,0.1

Twonorm 1,1 0.1,1,0.1
1,1,1,1.3,

0.01,0.01

1,1,1.3,1,

1,1,0.1

5.3. Large Scale Data Set

In this section, we show that our SG-TPSVM is capable to solve large scale problems.
Note that this section has been solved on a machine equipped with an Intel CPU E5-
2658 v3 at 2.20GHz and 256 GB RAM running Ubuntu Linux operating system. The
usual SVMs are used with scikit-learn package [28]. The large scale datasets we used is
presented in Table 2. For the nonlinear case, the reduced kernel [29] was used, and the
kernel size was fixed to 100.

Table 4 The details of large scale datasets.

datasets No. of samples Dimension

Skin 245,057 3

SUSY 5,000,000 18

Kddcup 4,898,432 41

Hepmass 10,500,000 28

It is clear from the table 5 that the accuracy of SG-TPSVM is better than SVM and
SG-TSVM. However, the experimental results on the two largest datasets, i.e. KDDCup
and Hepmass, cannot be obtained due to the excessive memory requirement. This is
because the implementation of SVM needs to store the entire training set in the main
memory. Meanwhile SG-TSVM and SG-TPSVM only store a subset related to the itera-
tion. Accordingly, SG-TSVM and SG-TPSVM is capable to solve largle scale problem.



A Novel Twin Parametric Support Vector Machine for Large Scale Problem 2125

Table 5 The results for the large scale datasets.

Existing algorithms Proposed algorithms

Datasets SVM SG-TSVM(a) SG-TSVM(b) SG-TPSVM(a) SG-TPSVM(b)

Skin 78.87 85.23 84.70 92.64 92.77

Susy 78.52 75.09 68.61 75.91 68.70

Kddcup * 95.24 93.19 96.72 99.41

Hepmass * 81.10 79.59 81.92 79.16

6. Conclusion

In this paper we have proposed a stochastic gradient descent method based on gen-
eralized pinball twin parametric support vector machine (SG-TPSVM). The efficiency of
proposed method by using generated data and datasets imported from UCI is compared
to SG-TSVM. The experimental results have shown that the accuracy performance of our
method is better than the existing classifiers for different data scenarios. We have shown
that the SG-TPSVM approach is leading to insensitivity from noise and can handle large
scale problems. The results implies that the SG-TPSVM approach was the strongest
candidate for the method of a binary classification problem.

For future research, we plan to consider applications of SG-TPSVM on activity recog-
nition dataset and image retrieval dataset and also plan to improve our approach to deal
with multi-category classification scenarios.
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