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1. Introduction

The problem of finding solution of the system of nonlinear equation of the form

F (x) = 0, (1.1)

where F : Rn → Rn is mostly assumed to be continously differentiable, appears in various
disciplines such as engineering, physics, chemistry, etc. Thus, it becomes one of the most
interesting problems in numerical analysis and optimization.

Recently, a considerable attention is given to the problem (1.1) in which F is monotone
that is

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

Based on the monotonicity and Lipschitz continuity assumptions on F , several matrix-
free iterative approaches for solving (1.1) have been proposed recently (cf.[1–9, 12, 13,
18–24, 26, 27]). The main motivation on the study of these algorithms is due to the
fact that most of them achieved global convergence without differentiability assumption.
It is well known that the descent property plays a major role in achieving matrix-free
global convergence algorithms, in view of this, [17] proposed a derivative-free spectral
conjugate residual projection algorithm for nonlinear monotone equations with convex
constraints, in which the spectral parameter is chosen such that the search direction is
sufficiently descent at each iteration. For some related works on gradient methods for
split feasibility problems in Hilbert space, interested reader may refer to the following
references [14, 15, 25], among others.

Our main contribution in this paper is motivated by the success of the algorithms
that can generate descent directions for nonlinear monotone equations with convex con-
straints. We aim at studying a hybrid conjugate residual projection algorithm in which
the parameter is a convex combination of FR parameter and a new parameter. Moreover,
the convex combination parameter is chosen such that the search direction generated by
the proposed algorithm is sufficiently descent at every iteration independent on the line
search used. Under the monotonicity and Lipschitz continuity assumptions, we show that
the proposed algorithm is globally convergent.

The outstanding part of this paper is organized as follows. In Section 2, we present
the motivation and general algorithm of the proposed method. In section 3, we prove the
global convergence of the algorithm. In Section 4, we present the numerical experiments,
and conclusions in Section 5. Unless otherwise stated, throughout this paper ‖ · ‖ stands
for the Euclidean norm of vectors in Rn.

2. Motivation and Algorithm

We consider a projection method for finding the solution of the nonlinear system of
equation of the form:

F (x) = 0, s.t x ∈ Ω (2.1)

where F : Rn −→ Rn, is Lipchitz continuous and monotone. The set Ω ⊆ Rn is closed
and convex. The method can be described as follows. Given the initial iterate x0 ∈ Rn,
the next iterate is obtained as

xk+1 = PΩ[xk − ξkF (zk)], (2.2)

with
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ξk =
(xk − zk)TF (zk)

‖F (zk)‖2
,

zk = xk + αkdk, where αk = ρik is the step length usually satisfying

−F (xk + ρikdk)T dk ≥ σρik‖F (xk + ρikdk)‖‖dk‖2, (2.3)

ρ ∈ (0, 1), ik is a nonnegative integer and dk is the direction normally satisfying

F (xk)T dk ≤ −c‖F (xk)‖2, (2.4)

where c is a positive constant. The symbol PΩ(·) is the projection of a point onto the
closed and convex set Ω which is defined by

PΩ[x] = argmin{‖x− y‖ : y ∈ Ω},
and satisfies

‖PΩ[x]− PΩ[y]‖ ≤ ‖x− y‖ ∀x, y ∈ Rn. (2.5)

The direction of the proposed method is defined as,

dk =

{
−Fk, if k = 0

−Fk + βkdk−1, if k ≥ 1.
(2.6)

where Fk = F (xk),

βk = (1− τ)βFR
k + τβ∗k , (2.7)

βFR
k =

‖Fk‖2

‖Fk−1‖2
, β∗k =

‖Fk‖2

FT
k dk−1

(2.8)

and the convex combination parameter τ ∈ (0, 1) is chosen such that the direction dk
satisfies (2.4).

Next, we state the steps of the proposed algorithm.

Algorithm 1.

Hybrid conjugate residual algorithm (HCRA)
Step 0: Given x0 ∈ Ω, ρ, σ τ ∈ (0, 1), µ ∈ (0, 2) and ε > 0. Set k = 0.
Step 1: Compute ‖Fk‖, if ‖Fk‖ ≤ ε, stop.
Step 2: If k = 0, set dk = −Fk. Else compute dk = −Fk + βkdk−1, where,

βk = (1− τ)βFR
k + τβ∗k ,

βFR
k =

‖Fk‖2

‖Fk−1‖2
, β∗k =

‖Fk‖2

FT
k dk−1

,

βk = 0 provided ‖Fk−1‖2 − FT
k dk−1 < 0.

Step 3: Compute the trial point zk = xk + αkdk, where αk = ρik with ik being the
smallest nonegative integer i such that

−F (zk)T dk ≥ σαk‖F (zk)‖‖dk‖2.
Step 4: If zk ∈ Ω and F (zk) ≤ ε, set xk+1 = zk. Otherwise, compute the next iterate

xk+1 = PΩ[xk − µξkF (zk)],

where ξk =
(xk − zk)TF (zk)

‖F (zk)‖2
.
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Step 5: Set k = k + 1 and go to Step 1.

end

The following Lemma gives the descent property of the direction generated by Algo-
rithm 1

Lemma 2.1. The search direction {dk} generated by Algorithm 1 (HCGA) is sufficiently
descent. That is

FT
k dk ≤ −‖Fk‖2 ∀k ≥ 0. (2.9)

Proof. For k = 0,

FT
0 d0 = −FT

0 F0 = −‖F0‖2.

Now for k ≥ 1, we have

FT
k dk = −FT

k (Fk − βkdk−1). (2.10)

Combining (2.10), (2.8) and (2.7), we have:

FT
k dk = −

(
1−

[
(1− τ)FT

k dk−1

‖Fk−1‖2
+ τ

])
‖Fk‖2 < 0, (2.11)

if and only if

1 >
(1− τ)FT

k dk−1 + ‖Fk−1‖2τ
‖Fk−1‖2

, (2.12)

simplifying (2.12) we have

τ(‖Fk−1‖2 − FT
k dk−1) < ‖Fk−1‖2 − FT

k dk−1. (2.13)

From (2.13)

τ < 1, provided ‖Fk−1‖2 − FT
k dk−1 > 0, (2.14)

and

τ > 1, provided ‖Fk−1‖2 − FT
k dk−1 < 0. (2.15)

Inequality (2.15) cannot hold since τ ∈ (0, 1). Therefore, we choose βk = 0 in the
algorithm whenever ‖Fk−1‖2 − FT

k dk−1 < 0.
If ‖Fk−1‖2 − FT

k dk−1 > 0, then FT
k dk < 0 = (−0)‖Fk‖2.

Therefore, since max{0, 1} = 1, we have FT
k dk ≤ −‖Fk‖2 for all k ≥ 0.

The following Lemma shows that the HCGA algorithm is well-defined.

Lemma 2.2. Let the sequence {dk} and {xk} be generated by the HCGA algorithm, then
there always exists a step-size αk = ρik satisfying the line search (2.3) for some positive
number ik.

Proof. Suppose there is an iterate k0 for which inequality (2.3) does not hold for any
non-negative integer ik, that is,

−F (xk0
+ ρikdk0

)
T
dk0

< σρik‖F (xk0
+ ρikdk0

)‖‖dk0
‖2
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Since F is continuous and ρ ∈ (0, 1), let ik −→∞, it holds that

−FT
k0
dk0 ≤ 0.

This contradicts (2.9). Hence, the proof.

3. Convergence Analysis

In this section, we analyze the convergence of the proposed algorithm (HCGA), before
that, we state the following assumptions:

Assumption 3.1. The solution set of (1.1) Ω′ is nonempty.

Assumption 3.2. The mapping F : Rn −→ Rn is Lipschiz continuous, i.e., there exists
a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (3.1)

Assumption 3.3. The mapping F is monotone.

Lemma 3.4. Suppose that Assumptions (3.1)-(3.3) hold and {xk} and {zk} are sequences
generated by Algorithm 1, then {xk} and {zk} are bounded. Furthermore, it holds that
either {xk} is finite and the last iteration is the solution, or the sequence {xk} is infinite
and lim

k→+∞
‖xk − zk‖ = 0.

Proof. If the algorithm terminates at some iteration k, then ‖F (xk)‖ = 0 or ‖F (zk)‖ = 0.
This imply that either xk or zk is a solution of (2.1).

Suppose that ‖F (xk)‖ 6= 0 and ‖F (zk)‖ 6= 0 for all k. Then an infinite sequence is
generated. From Step 3 of Algorithm 1

(xk − zk)TF (zk) = −αkF (zk)T dk

≥ σα2
k‖F (zk)‖‖dk‖2

= σ‖F (zk)‖‖xk − zk‖2 (3.2)

> 0.

Let x̃ ∈ Ω such that F (x̃) = 0, then by monotonicity of F , it holds that

F (zk)T (xk − x̃) = F (zk)T (xk − zk) + F (zk)T (zk − x̃)

≥ F (zk)T (xk − zk) + F (x̃)T (zk − x̃)

= F (zk)T (xk − zk). (3.3)
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Also, using (2.5), (3.2), (3.3) and the definition of ξk given in Section 2 we have

‖xk+1 − x̃‖2 = ‖PΩ[xk − µξkF (zk)]− PΩ(x̃)‖2

≤ ‖xk − µξkF (zk)− x̃‖2

= ‖xk − x̃‖2 − 2µξkF (zk)T (xk − x̃) + ‖µξkF (zk)‖2

≤ ‖xk − x̃‖2 − µ(2− µ)

(
F (zk)T (xk − zk)

)2
‖F (zk)‖2

≤ ‖xk − x̃‖2 − µ(2− µ)
σ2‖F (zk)‖2‖xk − zk‖4

‖F (zk)‖2

= ‖xk − x̃‖2 − µ(2− µ)σ2‖xk − zk‖4. (3.4)

Thus, the sequence {‖xk − x̃‖} is nonincreasing and convergent, and hence {xk} is
bounded. In addition, from (3.4). Since µ ∈ (0, 2), we have

‖xk+1 − x̃‖2 ≤ ‖xk − x̃‖2,

which implies

‖xk − x̃‖2 ≤ ‖x0 − x̃‖2, ∀k ≥ 0.

Therefore, by Assumption 3.2 and letting κ := L‖x0 − x̃‖, we have

‖F (xk)‖ = ‖F (xk)− F (x̃)‖ ≤ L‖xk − x̃‖ ≤ κ. (3.5)

From (3.2), monotonicity of F and Cauchy-Schwarz inequality,

0 < σ‖F (zk)‖‖xk − zk‖2 ≤ F (zk)T (xk − zk) ≤ ‖F (zk)‖‖xk − zk‖,

which implies that

σ‖xk − zk‖ ≤ 1. (3.6)

Thus, from (3.6) we have that the sequence {zk} is bounded.
It follows from (3.4) that

σ2
∞∑
k=0

‖xk − zk‖4 ≤
∞∑
k=0

(‖xk − x̃‖2 − ‖xk+1 − x̃‖2) <∞. (3.7)

which implies

lim
k→+∞

‖xk − zk‖ = 0. (3.8)

Lemma 3.5. Suppose that {dk} is generated by Algorithm 1 such that ‖Fk−1‖2 ≤ |FT
k dk−1|.

If there exists a constant γ such that ‖Fk‖ ≥ γ ∀k ≥ 0, then there is a positive constant
m such that

‖dk‖ ≤ m‖Fk‖ ∀k ≥ 0. (3.9)

Proof. If k = 0, then

‖dk‖ = ‖Fk‖. (3.10)
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If k ≥ 1, then

‖dk‖ = ‖ − Fk + βkdk−1‖
≤ ‖Fk‖+ |βk|‖dk−1‖

= ‖Fk‖+
(1− τ)‖Fk‖2

‖Fk−1‖2
‖dk−1‖+

τ‖Fk‖2

|FT
k dk−1|

‖dk−1‖

= ‖Fk‖+
‖Fk‖2

‖Fk−1‖2
‖dk−1‖ −

τ‖Fk‖2

‖Fk−1‖2
‖dk−1‖+

τ‖Fk‖2

|FT
k dk−1|

‖dk−1‖

≤ ‖Fk‖+
‖Fk‖2

‖Fk−1‖2
‖dk−1‖ −

τ‖Fk‖2

|FT
k dk−1|

‖dk−1‖+
τ‖Fk‖2

|FT
k dk−1|

‖dk−1‖

=

(
1 +
‖Fk‖‖dk−1‖
‖Fk−1‖2

)
‖Fk‖.

Where the first inequality is obtained using triangular inequality, the second inequality is
due to the hypothesis that ‖Fk−1‖2 ≤ |FT

k dk−1|.

From (3.5) and the hypothesis of the Lemma, we have γ ≤ ‖Fk‖ ≤ κ, for all k ≥ 0.
Now since ‖d0‖ = ‖F0‖, for k = 1,

‖d1‖ ≤
(

1 +
‖F1‖‖d0‖
‖F0‖2

)
‖F1‖

≤
(

1 +
κ

γ

)
‖F1‖.

Also, for k = 2,

‖d2‖ ≤
(

1 +
‖F2‖‖d1‖
‖F1‖2

)
‖F2‖

≤

(
1 +

κ

γ
+

(
κ

γ

)2
)
‖F2‖.

Thus,

‖dk‖ ≤

(
1 +

κ

γ
+

(
κ

γ

)2

+ . . .+

(
κ

γ

)k
)
‖Fk‖.

Letting ` =
κ

γ
> 1 and using the sum of the geometric series formula, we have

‖dk‖ ≤
(
`k − 1

`− 1

)
‖Fk‖

≤ lk‖Fk‖. (3.11)

Taking m := max
{
`, `2, . . . , `k

}
inequality (3.11) gives (3.9).
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Theorem 3.6. Let Assumptions (3.1)-(3.3) hold and let the sequence {xk} be generated
by Algorithm 1. Then

lim inf
k→∞

‖F (xk)‖ = 0. (3.12)

Furthermore, the sequence {xk} converges.

Proof. We consider two cases.

Case 1: If

lim inf
k→∞

‖dk‖ = 0,

then by (2.9) and Cauchy-Schwarz inequality, we have

lim inf
k→∞

‖F (xk)‖ = 0.

Case 2: If

lim inf
k→∞

‖dk‖ > 0,

then by (3.9), we have

lim inf
k→∞

‖F (xk)‖ > 0.

Using (3.8), we obtain

lim
k→∞

αk = 0.

Also from (2.3), we have that

− (F (xk + ρik−1dk))T dk < σρik−1‖F (xk + ρik−1dk)‖‖dk‖2. (3.13)

Since {xk}, {dk} are bounded, we can select a sub-sequence of ({xk} and {dk}) such that
by allowing k →∞, ik →∞ in (3.13), we have

F (x̄)T d̄ ≥ 0. (3.14)

On the other hand from (2.9), we have

F (x̄)T d̄ < 0,

which contradicts (3.14). Consequently, lim inf
k→∞

‖F (xk)‖ > 0 is not possible.

As F is continuous, then the sequence {xk} has some point of accumulation x̄ such

that F (x̄) = 0, that is x̄ ∈ Ω
′
. Since the sequence {‖xk− x̄‖} converges, it must hold that

{xk} converges to x̄ as x̄ is an accumulation point.
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4. Numerical Experiments

This section reports numerical experiments conducted using the proposed algorithm
HCRA and Algorithm 2.1 proposed in [29]. The experiments compare the performance
of HCRA and Algorithm 2.1.

The parameters considered for each algorithm are as follows:

HCRA: σ = 10−4, τ = 0.1, ρ = 0.6, µ = 1.8.

Algorithm 2.1: All parameters are chosen as in [29].
All algorithms were coded in MATLAB using a windows 10 operating system of 2.4GHz
Intel(R) Core(TM) i7-7100U CPU with 8GB RAM. The experiments were carried out
on eight benchmark test problems using six initial points x1 = (0.1, 0.1, ..., 0.1)T , x2 =
(0.2, 0.2, ..., 0.2)T , x3 = (0.5, 0.5, ..., 0.5)T , x4 = (1.2, 1.2, ..., 1.2)T , x5 = (1.5, 1.5, ..., 1.5)T ,
x6 = (2, 2, ..., 2)T and five dimensions n = 1000, 5000, 10000, 50000, 100000.

The stopping condition considered is

‖F (xk)‖ ≤ 10−6

The algorithm is also terminated if the iteration exceeds 1000. The list of the benchmark
test problems considered are given below where F is taken as

F (x) = (f1(x), f2(x), ..., fn(x))T and x = (x1, x2, ..., xn)T .

Problem 1 [16] Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, . . . , n,

and Ω = Rn
+.

Problem 2 [16] Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n
, for i = 1, 2, . . . , n,

and Ω = {x ∈ Rn :

n∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [16] Strictly Convex Function II.

fi(x) = exi − 1, for i = 1, 2, . . . , n,

and Ω = Rn
+.

Problem 4 [30] Nonsmooth Function I.

fi(x) = 2xi − sin |xi|, for i = 1, 2, . . . , n,

and Ω = Rn
+.
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Problem 5 [10] Tridiagonal Exponential Function.

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, . . . , n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n+ 1
and Ω = Rn

+.

Problem 6 [28] Nonsmooth Function II.

fi(x) = xi − sin |xi − 1|, for i = 1, 2, . . . , n,

and Ω = {x ∈ Rn :

n∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 7 [16]

f1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2)

fi(x) = 3x3
i + 2xi+1 − 5 + sin(xi − xi+1) sin(xi + xi+1)

+ 4xi − xi−1e
xi−1−xi − 3,

for i = 2, 3, ..., n− 1

fn(x) = xn−1e
xn−1−xn − 4xn − 3,

and Ω = Rn
+.

Problem 8 Pursuit-Evasion Problem.

fi(x) =
√

8x1 − 1, for i = 1, 2, . . . , n,

and Ω = Rn
+.

Problem 9

fi(x) = ex
2
i + 3 sin(xi) cos(xi)− 1, for i = 1, 2, . . . , n,

and Ω =Rn
+.
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Figure 1. Performance based on the number of iterations.

Figure 2. Performance based function evaluation.
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Figure 3. Performance based on CPU time.

To show clearly the performance of each algorithm, we apply the performance profile
of Dolan and Morè [11]. The metrics considered are; number of iterations, CPU time
(in seconds) and number of function evaluations. Figures 1-3 show that the proposed
algorithm HCRA is the best solver as it stays longer on the y−axis.

5. Final Remarks

In this paper, we propose a hybrid conjugate residual algorithm for solving nonlinear
monotone equations with convex constraints. The algorithm generate a finite sequence
of iterates that converges to the solution of nonlinear systems of equations in which the
function satisfy the monotonocity and Lipschitz continuity assumptions. Numerical tests
on some problems show that the proposed algorithm is robust and efficient compared
with the recent algorithm proposed by Li et al. (Journal of Computational and Applied
Mathematics, 375:112781, 2020).
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