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Abstract In the present paper, we introduce hypergeometric distribution type series and obtain some
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Further, we denote by S the subclass of A
consisting of functions of the form (1.1) which are also univalent in U.

A function f of the form (1.1) is said to be starlike of order α if it satisfies the following
condition

<
{
zf ′(z)

f(z)

}
> α, z ∈ U,

and is said to be convex of order α if it satisfies the following condition

<
{

1 +
zf ′′(z)

f ′(z)

}
> α, z ∈ U.
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The classes of all starlike and convex functions of order α are denoted by S∗(α) and
K(α), respectively, studied by Robertson [1].

Further, T be the subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2

|an|zn. (1.2)

Let T S∗(α) = S∗(α) ∩ T and T K(α) = K(α) ∩ T . The classes T S∗(α) and T K(α)
were studied by Silverman [2].

The work of Silverman motivates various researchers to introducing new subclasses of
analytic univalent and multivalent functions with negative coefficients. In 1988 Altintas
and Owa [3] generalized the classes T S∗(α) and T K(α) in to the classes T (λ, α) and
C(λ, α), respectively, which is defined in the following way

A function f of the form (1.2) is said to be in the class T (λ, α) if it satisfy the following
condition

<
{

zf ′(z)

λzf ′(z) + (1− λ)f(z)

}
> α, (1.3)

for some α(0 ≤ α < 1), λ(0 ≤ λ < 1) and for all z ∈ U.
A function f of the form (1.2) is said to be in the class C(λ, α) if it satisfy the following

condition

<
{
f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)

}
> α, (1.4)

for some α(0 ≤ α < 1), λ(0 ≤ λ < 1) and for all z ∈ U.
From (1.3) and (1.4) it is easy to verify that

f(z) ∈ C(λ, α)⇔ zf ′(z) ∈ T (λ, α).

It is worthy to note that for λ = 0 the classes T (λ, α) and C(λ, α) reduce to the classes
T S∗(α) and T K(α), respectively. The certain conditions for hypergeometric functions,
generalized Bessel functions for these classes were studied by Mostafa [4] and Porwal and
Dixit [5].

A function f ∈ A is said to be in the class Rτ (A,B) if it satisfy the following condition∣∣∣∣ f ′ (z)− 1

(A−B) τ −B (f ′ (z)− 1)

∣∣∣∣ < 1,

where τ ∈ C\ {0} ,−1 6 B < A 6 1, z ∈ U. The class Rτ (A,B) was studied by Dixit and
Pal [6].

Recently Porwal [7] gives a beautiful application of Poisson distribution series to these
classes. Motivating with the above mentioned work, we obtain necessary and sufficient
conditions for hypergeometric distribution type series belonging to these classes. First
we introduce hypergeometric type distribution as follows, for this purpose we recall the
definition of hypergeometric series. The power series

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn,
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where a, b, c are complex numbers such that c 6= 0,−1,−2, . . . and (a)n is the Pochhammer
symbol defined in terms of the Gamma function, by

(a)n =
Γ(a+ n)

Γ(a)

=

{
1 if n = 0

a(a+ 1).........(a+ n− 1) if n ∈ N = {1, 2, 3, . . .}

is called the hypergeometric series. The series converges absolutely if |z| < 1 and diverges
if |z| > 1 and for |z| = 1 the series is absolutely convergent if <(c − a − b) > 0. It is
denoted by F (a, b; c; z).

From the above definition it is easy to see that for a, b, c > 0 and 0 < m < 1 the series

F (a, b; c;m) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

mn

is convergent. The above series is also convergent if a, b, c > 0, c > a+ b and m = 1. Now
we introduce hypergeometric type distribution whose probability mass function is

P (a, b; c;m;n) =
(a)n(b)nm

n

(c)nn!F (a, b; c;m)
, n = 0, 1, 2, . . . .

It is easy to see that

P (a, b; c;m;n) ≥ 0

and
∞∑
n=0

P (a, b; c;m;n) = 1.

Now we introduce a new series I(a, b; c;m; z) in the following way

I(a, b; c;m; z) = z +

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
zn,

where a, b, c > 0 and 0 < m < 1.
The series I(a, b; c;m; z) is absolutely convergent for |z| < 1 because

|z|+
∞∑
n=2

∣∣∣∣ (a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)

∣∣∣∣ |zn|
= |z|+

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
|zn|

≤ |z|+
∞∑
n=2

|zn| , since
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)
≤ 1

=
|z|

1− |z|
.

The convolution (or Hadamard product) of two series f(z) =
∑∞
n=0 anz

n and g(z) =∑∞
n=0 bnz

n is defined as the power series

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.
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Now, we consider a linear operator K(a, b; c;m; z) : A → A defined by

K(a, b; c;m; z) = I(a, b; c;m; z) ∗ f(z)

= z +

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
anz

n.

In the present paper, we obtain necessary and sufficient condition for the function

I1(z) = 2z − I(a, b; c;m; z)

= z −
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
zn,

belonging to the classes T (λ, α) and C(λ, α) and connections for the function I2f(z) =
2z−K(a, b; c;m; z) between the classes Rτ (A,B) and C(λ, α). Finally, we give a condition
for an integral operator G(a, b; c;m; z) belonging to the class C(λ, α).

2. Main Results

To establish our main results, we shall require the following lemmas due to Dixit and
Pal [6], Altintas and Owa [3].

Lemma 2.1. ([6]) If f ∈ Rτ (A,B) is of the form (1.1) then

|an| ≤
(A−B)|τ |

n
, (n ∈ N \ {1}). (2.1)

The bounds given in (2.1) is sharp.

Lemma 2.2. ([3]) A function f(z) defined by (1.2) is in the class T (λ, α), if and only if

∞∑
n=2

[n− λαn− α+ λα] |an| ≤ 1− α.

Lemma 2.3. ([3]) A function f(z) defined by (1.2) is in the class C(λ, α), if and only if

∞∑
n=2

n [n− λαn− α+ λα] |an| ≤ 1− α.

Theorem 2.4. If a, b, c > 0 and 0 < m < 1 then I1(z) is in T (λ, α), if and only if

(1− αλ)
ab

c
mF (a+ 1, b+ 1; c+ 1;m) ≤ 1− α. (2.2)

Proof. Since

I1(z) = z −
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
zn,

according to Lemma 2.2, we must show that

∞∑
n=2

[n(1− λα)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)
≤ 1− α.

Now
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∞∑
n=2

[n(1− αλ)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)

=
1

F (a, b; c;m)

[ ∞∑
n=2

[(n− 1)(1− αλ) + (1− α)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!

]

=
1

F (a, b; c;m)

[
(1− αλ)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 2)!

+ (1− α)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!

]

=
1

F (a, b; c;m)

[
(1− αλ)

ab

c
m

∞∑
n=2

(a+ 1)n−2(b+ 1)n−2m
n−2

(c+ 1)n−2(n− 2)!

+ (1− α)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!

]

=
1

F (a, b; c;m)

[
(1−αλ)

ab

c
mF (a+1, b+1; c+1;m)+(1−α) (F (a, b; c;m)−1)

]
.

But this last expression is bounded above by 1− α if and only if (2.2) holds.
Thus the proof of Theorem 2.4 is established.

Theorem 2.5. If a, b, c > 0 and 0 < m < 1, then I1(z) is in C(λ, α), if and only if

(1− αλ)
a(a+ 1)b(b+ 1)

c(c+ 1)
m2F (a+ 2, b+ 2; c+ 2;m)

+ (3− 2αλ− α)
ab

c
mF (a+ 1, b+ 1; c+ 1;m) ≤ 1− α. (2.3)

Proof. Since

I1(z) = z −
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)
zn,

according to Lemma 2.3, we must show that

∞∑
n=2

n [n(1− λα)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)
≤ 1− α.
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Now
∞∑

n=2

n [n(1− αλ)− α(1− λ)] (a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)

=

∞∑
n=2

{(1−αλ)(n−1)(n−2)+(3−2αλ−α)(n−1)+(1−α)} (a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)

=
1

F (a, b; c;m)

[
(1− αλ)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 3)!

+(3− 2αλ− α)
∞∑

n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 2)!
+ (1− α)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!

]

=
1

F (a, b; c;m)

[
(1− αλ)a(a+ 1)b(b+ 1)

c(c+ 1)
m2F (a+ 2, b+ 2; c+ 2;m)

+(3− 2αλ− α)ab
c
mF (a+ 1, b+ 1; c+ 1;m)

+(1− α) (F (a, b; c;m)− 1)]

But this last expression is bounded above by 1− α if and only if (2.3) holds.
This completes the proof of Theorem 2.5.

Theorem 2.6. Let a, b, c > 0 and 0 < m < 1. If f ∈ Rτ (A,B) and the inequality

(A−B)|τ |
[
(1− αλ)

ab

c
mF (a+ 1, b+ 1; c+ 1;m) + (1− α) (F (a, b; c;m)− 1)

]
≤ F (a, b; c;m)(1− α), (2.4)

is satisfied then I2f(z) ∈ C(λ, α).

Proof. By Lemma 2.3, it suffices to show that

P1 =
∞∑
n=2

n [n− λαn− α+ λα]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)
|an| ≤ 1− α.

Since f ∈ Rτ (A,B) then by Lemma 2.1 we have

|an| ≤
(A−B)|τ |

n
.

Hence

P1≤(A−B)|τ |
∞∑
n=2

[n(1−αλ)−α(1−λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)

=(A−B)|τ |
∞∑
n=2

[(n− 1)(1− αλ)+(1−α)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)

=
(A−B)|τ |
F (a, b; c;m)

[
(1−αλ)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 2)!
+(1−α)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!

]

=
(A−B)|τ |
F (a, b; c;m)

[
(1−αλ)ab

c
mF (a+1, b+1; c+1;m)+(1−α) (F (a, b; c;m)−1)

]
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But this last expression is bounded above by 1− α if and only if (2.4) holds.

3. An Integral Operator

In the following theorem, we obtain analogues results in connection with a particular
integral operator G(a, b; c;m; z) as follows

G(a, b; c;m; z) =

∫ z

0

(
I1(t)

t

)
dt. (3.1)

Theorem 3.1. If a, b, c > 0 and 0 < m < 1 then G(a, b; c;m; z) defined by (3.1) is in
C(λ, α), if and only if (2.2) holds.

Proof. From the representation of (3.1), we have

G(a, b; c;m; z) = z −
∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)

zn

n

by Lemma 2.3, we need only to show that
∞∑
n=2

n [n(1− λα)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)n
≤ 1− α.

Now
∞∑
n=2

n [n(1− λα)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)n

=

∞∑
n=2

[n(1− λα)− α(1− λ)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)

=

∞∑
n=2

[(n− 1)(1− λα) + (1− α)]
(a)n−1(b)n−1m

n−1

(c)n−1(n− 1)!F (a, b; c;m)

=(1−αλ)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 2)!F (a, b; c;m)
+(1−α)

∞∑
n=2

(a)n−1(b)n−1m
n−1

(c)n−1(n− 1)!F (a, b; c;m)

=
1

F (a, b; c;m)

[
(1−αλ)

ab

c
mF (a+1, b+1; c+1;m)+(1−α)(F (a, b; c;m)−1)

]
which is bounded above by 1− α, if and only if (2.2) holds.

Remark 3.2. The results of Theorem 2.4-3.1 also holds for a, b, c > 0, c > a + b and
m = 1.
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