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Abstract In this work, we apply model reduction techniques to efficiently approximate the solution of

the Burgers-Poisson equation. The proper orthogonal decomposition (POD) framework is first used with

the Galerkin projection to reduce the number of unknowns in the discretized system obtained from a local

Discontinuous Galerkin (LDG) method. Due to nonlinearity of Burgers-Poisson equation, the complexity

in computing the resulting POD reduced system may still depend on the original discretized dimension.

The discrete empirical interpolation method (DEIM) is therefore used to solve this complexity issue.

Numerical experiments demonstrate that the combination of POD and DEIM approaches can provide

accurate approximate solution of the Burgers-Poisson equation with much less computational cost.
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1. Introduction

In this work, we are interested in reducing the computational cost for the numerical
approximation of the Burgers-Poisson system

ut + uux = φx (1.1a)

φxx − φ = u (1.1b)

derived from the conservation law

∂tu+ ∂xf(u) + ∂x[G ∗ u] = 0, (1.2)
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presented in [1]. When the kernel G is symmetry, i.e. G(x) = G(−x), it can be shown
that the solution of (1.2) admits the invariant properties∫

u(x, t) dx =

∫
u(x, 0) dx, (1.3)∫

u2(x, t) dx =

∫
u2(x, 0) dx. (1.4)

One example of such kernels G is

G(x) =
1

2π

∫ (
tanh k

k

)1/2

eikx dk, (1.5)

which yields Whitham equation. Another simple form of G is

G(x) =
1

2
e−|x|, (1.6)

which, together with f(u) = u2/2, yields the system (1.1). Under appropriate conditions,
it can be shown that the weak solution of the system (1.1) exists [2].

In [3], a local Discontinuous Garlerkin (LDG) method was proposed to solve the system
(1.1). It was proved and verified that the optimal convergence is achieved when polyno-
mials of even degree are used in the approximation. The method involves rewriting the
Burgers-Poisson system into a system of first-order PDE, then into the weak form. The
numerical approximation is then obtained from finding the solution from the set of piece-
wise continuous functions which are discontinuous across the computational cells. This
process is part of the discontinuous Galerkin (DG) framework. The DG idea was used
for the first time by Reed and Hill in 1973 to solve the neutron transport equations [4].
Since then, the DG method has been made popular by Shu and Cockburn to solve the
first-order hyperbolic conservative equation. (See [5] for introduction on general frame-
work.) On the other hand, the process of rewriting PDE’s of higher order before applying
DG belongs to LDG framework. (See [6] for a complete introductory to LDG method.)

This paper is organized as follow. In Section 2, we summarize the LDG scheme for
solving the Burgers-Poisson equations proposed in [3] and [7]. In Section 3, we describe
the model reduction process on the LDG scheme. The results and discussion are presented
in Section 4. Finally, some conclusion will be made in Section 5.

2. Study Problem

In this section, we summarize the local discontinuous Galerkin schemes for the Burgers-
Poisson system (subject to initial data u0(x) and periodic boundary conditions) proposed
in [3] and in [7]. First of all, the system (1.1) is extended to the form

ut + uux − φx = εuxx, (2.1a)

φxx − φ = u, (2.1b)

on the domain (x, t) ∈ [0, L]× (0, T ) with the periodic boundary conditions

u(0, t) = u(L, t), ux(0, t) = ux(L, t), t ∈ [0, T ], (2.2)

and initial condition

u(x, 0) = u0(x), x ∈ [0, L]. (2.3)
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First, the interval I = [0, L] is partitioned intoN equal subintervals Ij = [xj−1/2, xj+1/2],

j = 1, . . . , N . The center of the cell is xj = 1
2

(
xj−1/2 + xj+1/2

)
. The solution is from the

piecewise polynomial space V kh defined by

V kh = {v : v|Ij ∈ P k(Ij), j = 1, 2, . . . , N}. (2.4)

For the LDG framework, auxiliary variable w =
√
εux and p = φx are introduced so

we can rewrite (1.1a)-(1.1b) as:

ut +

(
u2

2

)
x

− p−
√
εwx = 0, (2.5a)

w −
√
εux = 0 (2.5b)

p− φx = 0, (2.5c)

px − φ = u. (2.5d)

Then, the scheme is defined as follows: find uh, ph, φh, wh ∈ V kh such that∫
Ij

(uh)tv dx−
∫
Ij

u2
h

2
vx dx+

û2
h

2
v
∣∣
∂Ij −

∫
Ij

phv dx

+
√
ε

∫
Ij

whvx dx−
√
εŵhv

∣∣
∂Ij = 0, (2.6a)∫

Ij

whz dx+

∫
Ij

√
εuhzx dx−

√
εûhz

∣∣
∂Ij = 0, (2.6b)∫

Ij

phψ dx+

∫
Ij

φhψx dx− φ̂hψ
∣∣
∂Ij = 0, (2.6c)

−
∫
Ij

phqx dx+ p̂hq
∣∣
∂Ij −

∫
Ij

(φh + uh)q dx = 0, (2.6d)∫
Ij

(uh − u)|t=0v dx = 0, (2.6e)

for all test functions v, z, ψ, q in the finite element space V kh . The choice for numerical

fluxes û2
h, φ̂h, p̂h is given by

û2
h =

1

3

(
(u+
h )2 + u+

h u
−
h + (u−h )2

)
, (2.7a)

φ̂h = θφ+
h + (1− θ)φ−h , (2.7b)

p̂h = (1− θ)p+
h + θp−h , (2.7c)

where θ ∈ [0, 1/2]. Here, the numerical fluxes at the endpoints of I can be defined using
U−1/2 := U−N+1/2 and U+

N+1/2 := U+
1/2 where U represents u2

h, φh, or ph.

Let ~u be a vector consisting of unknown coefficients for uh. The scheme (2.6) with flux
(2.7) can be written as system of ordinary differential equations of the form

d

dt
u = L(u), (2.8)

where the operator L is nonlinear. To further approximate the solution of the system
(2.8), one may use any ODE solver available in the literature. In [3], the third order TVD
Runge-Kutta scheme [8] is used.
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When ε = 0, it is shown in [2] that one of the stationary solutions of (2.1) is given by

u(x) =
4

3

(
cosh(x/2)

cosh(p/2)− 1

)
,

which is periodic on the interval [−p, p]. When ε is present, we use the non-homogeneous
example in [7] with sinusoidal solution.

3. Model Reduction

The main concept of model order reduction is to construct a low-dimensional sys-
tem that can provide accurate approximate solutions for the original high-dimensional
system. Since many nonlinear partial differential equations in practical applications are
often required to use high dimensional discretized system for obtaining accurate numer-
ical solutions, the simulation can be extremely long. This motivates us to apply model
reduction techniques to decrease the computational complexity.

Projection-based techniques, such as piecewise tangential interpolation [9], balanced
truncation [10–14], and transfer function interpolation [15–17] are commonly used to
obtain reduced-order systems. Most of these techniques are required to use a low-
dimensional basis, which can be optimally constructed by an approach called proper
orthogonal decomposition (POD). Due to its high efficiency in reducing the number of
variables in the original systems, POD has been used extensively with the Galerkin projec-
tion in a number of works, such as in the analysis of network modeling [18, 19], biochemical
reaction networks [20, 21], and flow dynamics [22, 23]. However, with the nonlinearity in
the original system, POD may not truly reduce the computational complexity during the
simulation of the resulting projected reduced system.

There are some existing model reduction techniques for nonlinear systems, such as
Empirical Interpolation Method (EIM) [24], Trajectory Piecewise-Linear approach [25],
Missing Point Estimation [26], and Discrete Empirical Interpolation Method (DEIM) [27].
This work focuses on POD and DEIM approaches, since it can reduce the computational
complexity of general nonlinear term, including the one appearing in the discretized sys-
tems obtained from the local Discontinuous Galerkin method. DEIM can be considered
as an improvement of the POD algorithm. It estimates nonlinear term by finding projec-
tion basis from POD and selecting the interpolation indices by a greedy algorithm which
selects the interpolation indices by heuristically minimizing the approximation error. The
approach that combines POD and DEIM techniques has been used in many applications,
such as non-linear miscible viscous fingering in porous media [28, 29], morphological struc-
ture spiking neurons [30], shallow-water equations [31], four-dimensional variational data
assimilation [32], and nonlinear aeroelasticity model [33]. Most of these existing appli-
cations employed POD and DEIM with either finite element, finite difference or finite
volume discretization of the corresponding dynamical systems. This work investigates
the applicability of POD-DEIM approach on the discretized systems obtained from the
local Discontinuous Galerkin method for Burgers-Poisson equation.

The details for each of POD and DEIM approaches, as well as the procedures for
applying them to the local discontinuous Galerkin method are provided next.

3.1. Proper Orthogonal Decomposition (POD)

POD is also known by other names, for example, Karhunen-Loève decomposition
(KLD), principal component analysis (PCA), or singular value decomposition (SVD).
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POD has been used with the Galerkin projection in many applications to construct a
low dimensional subspace that captures dominant behavior in various applications, e.g.
[34–36]. One of the most important properties of POD is that it can construct an approx-
imation that minimizes the error in 2−norm for a given fixed basis rank k. In general,
POD basis is obtained by using singular value decomposition or the method of snapshots
as discussed next.

Consider a set of snapshots {y1,y2, . . . ,yns} where yj ∈ RN , j = 1, 2, . . . , ns. In
general, yj may depend on certain parameter value or time instance. Suppose we want to
approximate a snapshot yj by using a set of orthonormal vectors {φ1, φ2, . . . , φk} ⊂ RN ,
which has rank k < N . Then the approximation is in the form

yj ≈
k∑
i=1

ciφi, (3.1)

for some constant ci, i = 1, 2, ..., k. Alternatively, we can write this approximation in
matrix form as follow:

yj ≈ Φkc, (3.2)

where Φk = [φ1, φ2, . . . , φk] ∈ RN×k is a matrix of basis vectors and c = [c1, c2, . . . , ck]T ∈
Rk is the vector of unknown coefficients. To find c, we use the fact that Φ has orthonormal
columns, i.e. ΦTΦ = I, and the minimum error occurs when the residual is orthogonal
to the column span of Φk, i.e.

ΦT
k (yj −Φkc) = 0, (3.3)

which implies that c = ΦTyj and the approximation becomes

yj ≈ ΦkΦ
T
k yj . (3.4)

Proper Orthogonal Decomposition provides an orthonormal basis that minimizes this
approximation error in 2-norm for a given basis rank k ≤ rank({y1,y2, . . . ,yns

}). In
particular, POD basis is the optimal solution to the minimization problem (3.5) given in
the definition below.

Definition 3.1 (POD basis,[37]). Let Y = [y1, . . . ,yns
] ∈ RN×ns be a snapshot matrix

with rank r ≤ min{N,ns}. POD basis of dimension k, where k ≤ r, is the solution to
the following optimization problem:

min
Φk∈Rn×k

ns∑
j=1

‖yj −ΦkΦ
T
k yj‖22 such that ΦT

kΦk = Ik, (3.5)

where Ik ∈ Rk×k is the identity matrix.

It can be shown [37] that POD basis defined above can be obtained from the left singular
vector of the snapshot matrix Y. Let Y = VΣWT be the singular value decomposition of
Y, where matrices V = [v1, . . . ,vr] ∈ RN×r and W = [w1, . . . ,wr] ∈ Rns×r are matrices
with orthonormal columns and Σ = diag(σ1, . . . , σr) ∈ Rr×r is a diagonal matrix with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then the POD basis matrix of dimension k is Vk = [v1, . . . ,vk] ∈
RN×k, k ≤ r, i.e.

Vk = arg min
Φk∈Rn×k

ns∑
j=1

‖yj −ΦkΦ
T
k yj‖22 with VT

k Vk = Ik. (3.6)
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It is well-known [37] that this minimum error is given by

ns∑
j=1

‖yj −VkV
T
k yj‖22 =

r∑
`=k+1

σ2
` , (3.7)

which is the sum of the neglected singular values σk+1, . . . , σr from the SVD of Y. The
algorithm for constructing a POD basis matrix by using SVD is summarized below.

Algorithm 1 Algorithm for constructing POD basis

• INPUT : Snapshots {yj}ns
j=1 ⊂ RN

• OUTPUT : POD basis matrix Vk ∈ RN×k

1. Create snapshot matrix : Y = [y1, . . . ,yns ] ∈ RN×nsand let r = rank(Y)
2. Compute SVD: Y = VΣWT and choose dimension k ≤ r
3. POD basis of rank k : Vk = [v1, . . . ,vk] = V(:, 1 : k)

3.2. Method of Snapshots

When the dimension N of snapshots is not too large, we can directly obtain the POD
basis from the SVD of the snapshot matrix as shown in Algorithm 1. However, in practice,
N can be extremely large and computing POD basis through SVD might not be efficient.
In this case, many previous works have used a technique called method of snapshots
described below.

Consider a snapshot matrix Y ∈ RN×ns where N � ns. As in the previous section,
suppose the SVD of Y is given by

Y = VΣWT ,

where matrices V = [v1, . . . ,vr] ∈ RN×r and W = [w1, . . . ,wr] ∈ Rns×r are matrices
with orthogonal columns and Σ = diag(σ1, . . . , σr) ∈ Rr×r is a diagonal matrix with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Consider also YTY ∈ Rns×ns :

YTY = (VΣWT )T (VΣWT ) = WΣ2WT , (3.8)

which implies that YTYwi = σ2
iwi. i.e. (σ2

i ,wi) is an eigenpair of YTY for i = 1, . . . , r.
As a result, if we compute eigendecomposition of YTY in the form

YTYZ̃ = Z̃D̃ (3.9)

and use the fact that YTY has rank r ≤ ns, we can set Z̃ = [W,W̃]Rns×ns ,

D̃ = diag(σ2
1 , σ

2
2 , . . . , σ

2
r , 0, ..., 0) ∈ Rns×ns , where W̃ is a matrix of size ns×(ns−r) whose

columns contain the eigenvectors of YTY which are corresponding to zero eigenvalue.
Using eigenpairs of YTY with nonzero eigenvalues gives

YTY = WDWT , (3.10)

where D = diag(σ2
1 , σ

2
2 , . . . , σ

2
r). Note that YTY is symmetric and any symmetric matrix

has real eigenvalues and orthogonal eigenvectors. Notice that Σ = D1/2. From Y =
VΣWT , we can compute the POD basis V by

V = YWΣ−1 = YWD−1/2. (3.11)

Algorithm 2 below is used to construct a POD basis matrix by using the method of
snapshots.
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Algorithm 2 Algorithm for constructing POD basis: Method of Snapshots

• INPUT : Snapshots {yj}ns
j=1 ⊂ RN

• OUTPUT : POD basis matrix Vk ∈ RN×k

1. Create snapshot matrix : Y = [y1, . . . ,yns ] ∈ RN×nsand let r = rank(Y)
2. Compute Eigendecomposition YTY and form : YTY = WDWT given in (3.10).

3. Compute V = YWD−1/2

4. Choose dimension k ≤ r
5. POD basis of rank k : Vk = [v1, . . . ,vk] = V(:, 1 : k)

Remark: To specify the reduced dimension k, we can consider the following ratio

R :=

k∑̀
=1

σ2
`

r∑̀
=1

σ2
`

. (3.12)

In particular, if k = r is used, we have this ratio R = 1, which can be interpreted as
capturing 100% of the characteristic of snapshot set. In many applications, we can use k
that is much smaller than r to get R around 0.9 to 0.95, i.e. to get 90% to 95% of the
overall features of the snapshot set.

3.3. An Application of POD to the Local Discontinuous Galerkin

Method

Recall from the dynamical system obtained from the local discontinuous Galerkin
method in (2.8):

d

dt
u = L(u). (3.13)

In practice, the variable u may be in a high-dimensional subspace and solving for u
numerically could be time consuming. Proper orthogonal decomposition can be applied
to above system of differential equations to reduce the number of unknowns as follows.
Suppose Vk is the POD basis of dimension k constructed from the snapshot solutions.
Then we can approximate the solution u by projecting on the subspace spanned by the k-
dimensional POD basis vectors in Vk, i.e. u ≈ Vkũ. By applying the Galerkin projection
to (2.8) on the space spanned by columns of Vk, we obtain a POD reduced system:

d

dt
ũ = VT

k L(Vkũ), (3.14)

Note that POD basis is orthonormal and therefore VT
k Vk = I.

Notice that, since L is nonlinear, computing the discretization of the term VT
k L(Vkũ)

still depends on the dimension N of the original variable u, although the number of
variables in ũ is now reduced to k. To overcome this inefficiency, we will apply an
additional nonlinear model reduction approach, called Discrete empirical interpolation
method.
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3.4. Discrete Empirical Interpolation Method (DEIM)

DEIM [27] is an efficient approach to reduce the complexity for evaluating the nonlinear
term. To illustrate this issue, we consider again the nonlinearity in (3.14)

F(t) = L(u(t))

Let {f1, f2, . . . , fm} ⊂ Rn be the set of the nonlinear snapshots fj = F(tj) = L(u(tj))
for all j = 1, 2, . . . ,m, where u(tj) is already computed from (3.13). Suppose that F =
span{f1, f2, . . . , fm} with dim(F) = rf . We denote the nonlinear snapshot matrix with
F̄ = [f1, f2, . . . , fm] ∈ Rn×m. The SVD is then used on F̄ to find the POD basis of
rank l < rf of the nonlinear term. In particular, assume that the SVD of F̄ is F̄ =

V̄Σ̄W̄
T
, where V̄ = [v̄1, v̄2, . . . , v̄rf ] ∈ Rn×rf , W̄ = [w̄1, w̄2, . . . , w̄rf ] ∈ Rm×rf and Σ̄ =

diag(σ̄1, σ̄2, . . . , σ̄rf ) ∈ Rrf×rf . Thus, the POD basis of rank l of the nonlinear term is

the first l columns of the matrix V̄, denoted by V̄l. Then the nonlinear function F(t)
can be approximated by a subspace spanned by the basis {v̄1, v̄2, . . . , v̄l}, which is of the
form

F(t) ≈ V̄lc(t), (3.15)

where c : D → Rl and c(t) is the corresponding coefficient vector at the time t ∈ D. The
DEIM technique is applied here to specify c(t) by selecting the l rows of (3.15). Let P
be a matrix used in the interpolation defined as P = [e℘1

, e℘1
, . . . , e℘l

] ∈ Rn×l, where
e℘i = [0, . . . , 0, 1, 0, . . . , 0]T is the ℘i column of the identity matrix In ∈ Rn×n for all

i = 1, 2, . . . , l. By multiplying PT both sides of Eq. (3.15), the selection of components
in the nonlinear term is made as follows

PTF(t) ≈ PT V̄l︸ ︷︷ ︸
l×l

c(t). (3.16)

Assume that PT V̄l is a nonsingular matrix. Then c(t) can be determined uniquely as

c(t) ≈ (PT V̄l)
−1PTF(t). As a result, the final approximation of (3.15) becomes

F(t) ≈ V̄l(P
T V̄l)

−1PTF(t). (3.17)

The interpolation indices ℘1, ℘2, . . . , ℘l are generated by the DEIM algorithm shown in
Algorithm 3.

Algorithm 3 DEIM

• INPUT : l < rf , {v̄}rfj=1 = {v̄1, v̄2, . . . , v̄rf } ⊂ Rn

• OUTPUT : P ∈ Rn×l, ~℘l = [℘1, ℘2, . . . , ℘l]
T ∈ Rl

1. [|ρ|, ℘1] = max{|v̄1|}
2. V̄ = [v̄1], P̄ = [e℘1 ], ~℘ = [℘1]
3. for j = 2 : rf do

c = (P̄
T
V̄)−1P̄

T
v̄j

r = v̄j − V̄c
[|ρ|, ℘j ] = max{|r|}

V̄← [V̄ v̄j ], P̄← [P̄ e℘j ], ~℘←
[
~℘
℘j

]
end for

4. P = P̄(:, 1 : l), ~℘l = ~℘(1 : l)
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From Algorithm 3, the procedure constructs a set of indices inductively on the input
basis. The process starts from selecting the first interpolation index ℘1 ∈ {1, 2, . . . , n}
corresponding to the first input basis v̄1 entry which has the largest magnitude. The
remaining indices ℘j for j = 2, 3, . . . , l are selected from the entry of the residual r =
v̄j − V̄c with the largest magnitude. This algorithm also guarantees the invertibility of

PT V̄l. More details on this procedure can be found in [27].
The output matrix P is employed to construct a low-dimensional approximation of the

nonlinear term. Then the POD technique described in Section 3.1 is used in conjunc-
tion with the DEIM technique to construct a reduced-order system that is completely
independent of the full dimension as shown below

d

dt
ũ(t) = VT

k V̄l︸ ︷︷ ︸
k×l

(PT V̄l)
−1︸ ︷︷ ︸

l×l

PTL(Vkũ(t))︸ ︷︷ ︸
l×1

. (3.18)

Note that, the above equation uses the DEIM approximation in (3.17) by setting F(t) =
L(Vkũ(t)). An error bound of the DEIM approximation can be found in [27]. Next section
demonstrates the numerical results obtained from the POD and POD-DEIM reduced
order systems.

4. Results and Discussion

The accuracy of the solution from the reduced systems is measured through the average
absolute and average relative errors computed, respectively, from the formulas:

1

nt

nt∑
j=1

‖uj − uredj ‖2 (4.1)

and

1

nt

∑nt

j=1 ‖uj − uredj ‖2∑nt

j=1 ‖uj‖2
, (4.2)

where uj is the solution from the original discretized system and uredj is the solution
of the reduced-order system at time tj , for j = 1, ..., nt. This section considers two
numerical tests: non-parametrized and parametrized systems. The first one demonstrates
the accuracy and efficiency of the POD and POD-DEIM approaches when compared with
directly solving the original LDG discretized system. The second numerical test illustrates
the applicability of the model reduction approaches when many parameter values have to
be used to obtain numerical solutions.

4.1. Non-Parametrized System

In the following numerical tests, the original dimension of LDG discretized system is
N = 500 , i.e. u ∈ R500.

Figure 1 illustrates the singular values of the solution snapshots. Notice from the decay
of the singular values that using only first 10 POD basis vectors should capture most of
the dynamics of the original system. Similar observation can be noticed from the decay
of the singular values of the nonlinear snapshots shown in Figure 4.

Average absolute error (4.1) and relative error (4.2) of the solutions from POD reduced
systems with different dimensions are shown in Figures 2. Notice that after using POD
of dimension 10, there is no significant accuracy improvement, i.e. the errors seem to
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be constant. This exactly follows from the decay of the singular values in Figure 1.
Figure 3 shows the absolute error at the each grid points of the solutions from POD basis
of dimensions 1 and 5. From Figure 3, the errors approximately decrease from order of
10−11 to 10−14 when the dimension of POD is increase from 1 to 5.

Figure 1. [Non-Parametrized System] Singular values corresponding to the POD basis
constructed from 80 solution snapshots.

Figure 2. [Non-Parametrized System] Absolute and relative errors of the solutions
from POD reduced system with different dimensions between 1 and 20.

Figure 3. [Non-Parametrized System] Absolute error of the solutions from POD re-
duced system with dimension 5.
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To further reduce the computational cost, DEIM is next applied on the nonlinear
terms of the POD reduced system. Figure 5 shows the absolute errors at the grid points
of the solutions from POD-DEIM reduced systems with dimension 1 and 5. To compare
the accuracy of the solutions from POD and POD-DEIM reduced systems, we consider
the average relative errors in Figure 6 and Table 1, which show the trends of errors as
the reduced dimensions of the bases for POD and DEIM increase. Notice that the errors
decay very fast at the beginning when the reduced dimensions are ranging from 1 to 5, and
after that they become constant and converging to O(10−13) and O(10−12), respectively,
for the POD reduced system and the POD-DEIM reduced system. Notice also that, for
small reduced dimensions, the accuracy of both POD and POD-DEIM reduced systems
seems to be equivalent. For reduced dimensions larger than 3, the POD reduced system
starts to be slightly more accurate than POD-DEIM reduced system. Table 1 also shows
the CPU times for the POD and POD-DEIM reduced systems, which are scaled with
the simulation time used for solving the full-order system. Notice that, for the error
of order O(10−12), using the POD reduced system can reduce the computational time
for solving the original systems by roughly a factor of 10, while using the POD-DEIM
reduced system can reduce by roughly a factor of 300. Figure 7 considers 3 different fixed
dimensions of POD with various DEIM dimensions. When the dimension of POD is fixed
to be 1, increasing dimension of DEIM has no effect on the accuracy. However, when the
dimension of POD is fixed to be 5 or 9, increasing dimension of DEIM can improve the
approximate solution to some certain accuracy.

Figure 4. [Non-Parametrized System] Singular values corresponding to the POD basis
(used in DEIM) constructed from 80 nonlinear solution snapshots.

Figure 5. Absolute error of the solutions from POD-DEIM reduced system with di-
mension 5.
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Figure 6. [Non-Parametrized System] Average absolute error of the solutions from
POD-DEIM reduced system with different dimensions of POD and DEIM. Dimensions of
POD and DEIM are the same for each reduced system.

Dimension Dimension Avg. Abs. Error Avg. Abs. Error CPU time CPU time

of POD of DEIM POD system POD-DEIM system POD POD-DEIM
(scaled) (scaled)

1 1 1.2927 × 10−10 1.2927 × 10−10 1/11 1/321

2 2 1.7047 × 10−11 1.7047 × 10−11 1/10 1/318

3 3 2.4411 × 10−12 2.6057 × 10−12 1/9 1/313

4 4 5.3830 × 10−13 9.8880 × 10−13 1/9 1/308

5 5 3.2666 × 10−13 9.0758 × 10−13 1/8 1/291

9 9 1.5765 × 10−13 7.8899 × 10−13 1/7 1/283

14 14 1.4003 × 10−13 7.0226 × 10−13 1/5 1/281

Table 1. [Non-Parametrized System] Average absolute error of the solutions from
POD-DEIM reduced system with different dimensions of POD and DEIM. The CPU

times for both POD and POD-DEIM reduced systems are scaled with the simulation

time used for solving the full-order system.

Figure 7. [Non-Parametrized System] Average absolute error of the solutions from
POD-DEIM reduced system with different dimensions of DEIM with fixed POD dimension

1, 5, 9.

4.2. Model Reduction for Parametrized Systems

The goal of this section is to generate one set of POD basis for state variable and
one set of basis for each of nonlinear terms, which can be used for constructing many
reduced order systems for different parameter values. In this case, we consider parameter
ε in the interval [0, 1]. We use solutions of the original full-order systems of dimension
120 with parameters ε = 0, 0.5, 1 to construct bases for POD and DEIM approximations.
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The singular values of snapshots from the solution and the three nonlinear terms in the
full-order discretized systems are shown in Figure 8. Figure 9 illustrates some of the
corresponding POD basis vectors. The solution and the corresponding absolute error of
the system with parameter ε = 0, which is used as a training parameter value, are shown
in Figure 10 from both POD and POD-DEIM reduced systems. Notice that the solutions
of these reduced systems are visibly indistinguishable when compared with the original
full-order discretized system. Therefore, the corresponding absolute errors at grid points
are also provided in Figure 10, which shows that the POD approach is more accurate
than POD-DEIM approach.

Figure 11 considers parameters values ε = 0.01, 0.3, 0.7, which are not used in a train-
ing set of snapshots to generate reduced-order bases. In particular, Figure 11 shows the
absolute errors at the grid points for the solutions corresponding to the systems with
ε = 0.01, 0.3, 0.7 when using POD approach (with POD dimension equals to 3) and POD-
DEIM approach (with POD dimension and DEIM dimension are 3). In these cases, it
can be seen that errors for POD approach is roughly O(10) times smaller than the error
from POD-DEIM approache. However, as the dimensions of POD and DEIM increase,
the errors for both POD and POD-DEIM approaches becomes equivalent as shown in Fig-
ure 12. In particular, Figure 12 displays average absolute errors computed from (4.1) for
the solutions of the POD and POD-DEIM reduced systems with parameter ε = 0, 0.3, 0.7
when different dimension of POD and DEIM are used. These plots not only confirm the
convergence of the approximate reduced-order solution, but also demonstrates that DEIM
approach can further reduce the computational complexity of the nonlinear term without
scarifying the accuracy of the numerical solutions.

Figure 8. [Parametrized System] Singular values of solution snapshots and nonlinear
snapshots from the original full-order systems with parameters ε = 0, 0.5, 1.

Figure 9. [Parametrized System] The first, third, fifth, and seventh POD basis vectors
of solution snapshots.
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Figure 10. [Parametrized System] Approximate solutions Of the original system with
parameter ε = 0 (which is used as a training parameter value) by using POD reduced system
with POD dimension = 3 and the POD-DEIM reduced system with POD dimension =3
and DEIM dimension = 3.

Figure 11. [Parametrized System] Absolute errors at the grid points of the POD re-
duced system ( POD dimension = 3 ) and POD-DEIM reduced system (POD dimension
=3 and DEIM dimension = 3) with parameter ε = 0.01, 0.3, 0.7.



Reduced-Order Modeling of a Local Discontinuous Galerkin Method ... 2067

Figure 12. [Parametrized System] Average absolute error (4.1) of the POD and POD-
DEIM reduced systems for parameter ε = 0, 0.3, 0.7 using different dimension of POD basis.
The dimension of DEIM used in POD-DEIM approach is the same as the dimension of POD
for each of these cases (i.e. m = k).

5. Conclusions

This work demonstrates how to construct a cost-efficient reduced system for approxi-
mating the solutions of Burgers-Poission equation. A local discontinuous Galerkin method
is used as a starting point to generate a semi-discretized system. POD is then used with
DEIM to decrease both the number of variables and the computational complexity. The
numerical experiments illustrate that the resulting reduced systems can accurately ap-
proximate the solutions of Burgers-Poission equation with substantially smaller dimen-
sion. In particular, when the dimension is reduced by a factor of 1/100, the corresponding
error is shown to be less than the order of O(10−12). These results reflect the possibility
of using POD and DEIM to reduce computational cost for more complicated dynamical
systems that require discontinuous Galerkin method to obtain realistic numerical solu-
tions.
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