Thai Journal of Mathematics
Volume 18 Number 4 (2020)
Pages 2041-2051

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Recursive Tube-Partitioning Algorithm for a Class
Imbalance Problem

Suebkul Kanchanasuk and Krung Sinapiromsaran*

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok
10330, Thailand
e-mail : suebkul.k@gmail.com (S. Kanchanasuk); krung.s@chula.ac.th (K. Sinapiromsaran)

Abstract A standard classifier acquired from a machine learning literature aims to categorize an instance
into a well-defined class having comparable number of instances while data from real world problems tend
to be imbalance. One way to deal with this imbalance problem is to modify the standard classification
algorithm to capture minority instances and majority instances simultaneously. This work modifies the
recursive partitioning algorithm based on a set of tubes, called the tube-tree algorithm. A tube-tree is a
collection of tubes building from the combination of the input attributes where an internal node contains
distinct class tubes corresponding to their respective classes. A tube composes of three components: a
core vector, a tube length, and a tube radius built for each class regardless of its size suitable for an
imbalance dataset. The forty six experiments are derived from the KEEL repository to compare the
performance of the tube-tree with the support vector machine, the decision tree from C4.5, the decision
tree from C5.0, and the naive Bayes classifier. The results of the tube-tree show the improvement over

other classifiers of recall, and F1-measure except precision via the Wilcoxon signed rank test.
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1. INTRODUCTION

A class imbalance problem is an interesting issue in data mining [1, 2]. Although the
amount of data at present is increasing, the number of instances for the required target
class may not be sufficient. For instance, there are a large amount of collected patient data
in a hospital, but data of rare disease patients may not be abundant enough to build an
acceptable predictive model. A class imbalance problem is a classification problem with
the highly different number of instances among classes. The minority class is defined
as a class having relatively small number of instances, called minority instances and the
other class having large number of instances, called majority instances [3]. A minority
instance is normally labeled as a positive and a majority instance is labeled as a negative
while the ratio between the total number of negatives over the total number of positives
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is defined as an imbalance ratio (IR). Since several classification algorithms are designed
to maximize the number of correct class instances, this causes the high misclassification
rate for minority instances. The class imbalance problems such as fault diagnosis [4],
anomaly detection [5], and medical diagnosis [0, 7] use different techniques to deal with
this imbalance nature. Three approaches for dealing with an imbalance problem are:

e Pre-processing approach. Pre-processing technique deals with imbalance
by balancing class instances in a dataset before it feeds as the input for a classifi-
cation algorithm. The re-sampling technique is applied by re-balancing the sam-
ple distribution: over-sampling or under-sampling or both. The over-sampling
method is the method that synthesizes the new minority instances around known
instances while the under-sampling method try to reduce majority instances ac-
cording to specific criteria. The examples of oversampling technique are SMOTE [g],
SMOTEBoost [9], Borderline-SMOTE [8], and Safe-Level SMOTE [3].

e Cost sensitive learning approach. This approach ascertains the appropri-
ate costs for both positive and negative classes. To make a classifier recognizing
a positive instance, the misclassification cost of a positive class instance is set to
be higher than the misclassification cost of a negative class instance. The publi-
cations of this approach are shown in Sun et.al. in 2007 [10] generating the cost
sensitive boosting for the class imbalance problems. Liu and Zhou in 2006 [11]
applied the cost sensitive function technique to help neural network algorithm to
determine the best weights for both positive and negative instances.

e Algorithmic approach. Some classifiers inherits a feature that can recognize
class instances of any size, such as, a support vector machine. On the other hand,
researchers attempted to modify a well-known classification algorithm to deal
with imbalance such as the boosting technique[9, 12] or the entropy technique
from Boonchuay and Sinapiromsaran in 2016 [13] and 2020 [14, 15].

In this paper, the recursive partitioning algorithm using a tube-tree has been proposed
for imbalance as “T'TIP”. A tube-tree algorithm generates the series of tubes where a
leaf node will be labeled by a single-class and an internal node will contain class tubes of
the current dataset. The concept of a tube tree replaces the concept of the best entropy
selection from the single attribute of a decision tree. Three components from each tube
are computed from instances of each class which are a core vector, a tube length, and
a tube radius. The core vector is the vector from the centroidal extreme instances to
the centroid and the tube length is the longest magnitude of the vector of the centroidal
extreme instances to all other instances, and the tube radius is the maximum of the
shortest distance of any instances to the core vector. A tube is designed to capture the
characteristic of all instances from each class and identify the boundary of the core vector
by its tube length and its tube radius.

The next section covers literature review of classifiers. In section 3, the proposed
method of a tube tree generation is given. In section 4, the results of the proposed algo-
rithm are demonstrated. At the end, the conclusion and our future works are discussed.

2. LITERATURE REVIEW

Three standard classifiers that have been used for a class imbalance problem in liter-
ature are reviewed which are a naive Bayes classifier, a support vector machine, and a
decision tree.
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2.1. NATVE BAYES

In particular, the naive Bayes classifier [16] is a typical probabilistic classifier to be
applied first. The naive Bayes classifier adopts the statistical theory based on Bayes
theorem which is described as

P(Xi|C)P(C)

(2.1)

where, P(C|X;) is the probability of the instance X; being in the class C', P(X;|C) is the
probability of having the instance X; from the given class C, P(C) is the probability of
occurrence of class C, P(D) is the probability of the instance X; occurring.

2.2. SUPPORT VECTOR MACHINE

A support vector machine (SVM) is first introduced as a supervised learning classifier
by Cortes and Vapnik in 1995 [17] for a binary classification. It is vastly used to solve a
class imbalance problem appearing in many literatures. SVM is a learning kernel-based
system that splits a high dimensional feature space using the optimal hyperplane.

2.3. DECISION TREE

A decision tree consists of a set of nodes and edges where a node of decision tree is
identified as an internal or a leaf node and the root node is just the first internal node.
All internal nodes capture the attribute which will be branched by edges according to the
result of the splitting criteria. Finally, a leaf node is the subset which labels the class of
instances belong to this node.

The most popular used decision tree algorithm during the past decade is C4.5 [18] which
uses the gain ratio. The new and improved C4.5, called C5.0 applies several additional
features, such as, creating a single classification tree, having the corresponding rule-based
model, having C5.0’s boosting procedure, and miscellaneous features of the algorithm [19].

3. TUBE TREE FOR AN IMBALANCE PROBLEM (TTIP)

The first introduction of the tube tree algorithm, RBTP, appeared in 2016 by Kan-
chanasuk and Sinapiromsaran [20], named a recursive binary tube partitioning algorithm
which applies to a general classification problem. It constructs the core vector using one
of the extreme pole and the group centroid. Moreover, it recursively applies this tube
construction on instances in an intersection of class tubes, until it reaches the terminal
criteria. The result tube tree shows the statistical significant improvement over C4.5 and
ctree [21].

To deal with a class imbalance problem, TTIP applies a different design of the core
vector. The core vector is generated from the centroid and its furthest extreme instance
instead of two extreme poles, called the centroidal extreme pole. For a binary class
dataset, TTIP generates a tree-like structure for a given training dataset by recursively
partitioning on the intersection of two “tubes”. Each internal node including the root
node contains two tubes for each class and the leaf node having only a single class will be
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labeled with the target class. A tube is constructed from a core vector from the centroidal
extreme pole while a tube length and a tube radius are constructed similar to RBTP.

(A) A tube covering x in 2D (B) A tube for a single class dataset

FIGURE 1. Tllustration of a tube where (A) a tube covers x with its
formula in 2D, and (B) a tube covers the single class instances in the
dataset using the maximum tube length and the tube radius.

The TTIP algorithm starts by generating all class tubes from a partition of class
instances as shown in Algorithm 1. A tube of a single class consists of three components:
a core vector (pc) which is a vector with the direction starting from the centroidal extreme
(p) to the centroid (c), and the magnitude of the core vector is the tube length (H), and
the maximum extent along the core vector is the tube radius (R). The figure 1 shows the
tube in 2D.

Algorithm 1 Generate a Tube(X)

Require: Subset X of size S having all NV numeric attributes
. . 1
1: Find the centroid (c) where ¢ = 5 E X.

z€X
2: Find a centroidal extreme (p) where p = argmax {d(c,x)}.
xeX
. . _ __ px-pc
3: Compute a tube length: H = Inax {hyx} where hy = Toel
4: Compute a tube radius: R = max {ryx} where ryx = pr - ITI};}?)HCPCH

VxeX
Return: Tube(X) = (pc, H, R)
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Algorithm 2 Construct a Tube tree: TubeNode(X, Target)

Require: X is a subset with N numeric attributes and s is the corresponding target
class s; or ss.
1: Partition X according to the target class as X, = {(x,s)|s = s;},7 = 1,2.
if the size of X, < 3 then
STOP. (Require more than 2 instances in the class s;).
end if
2: Construct the tubes from X,, and X,,:
Tube(X,,) = (pc,,, Hs,, Rs,) for i = 1,2.
3: Compute ApplyTube(x, Tube(X;,)) = (hx < H;,) A (rx < Rs,).
4: Find Xunknown = {X| /\ ApplyTube(x, Tube(Xj,)) = True}.
i€{1,2}
5: Recursively apply TubeNode (X ,,known)-

Instances appearing in the single tube will be classified as the intended class while
instances lie in the intersection of two tubes will be partitioned recursively by a tube
tree algorithm as shown in Algorithm 2. The algorithm stops when all instances can be
classified or the number of instances is too small to generate a reliable tube.

The frequently used performances for an imbalance problem are precision, recall, F1-
measure, and G-measure where their corresponding formulae are described in [22].

4. EXPERIMENTAL RESULTS

This section details the experimental results of TTIP from the KEEL dataset reposi-
tory [23]. The collection of these datasets contains different number of imbalance ratios
between 1.82 to 41.4. Table 1 shows the details of the datasets used in the experiments.
The columns of Table 1 contain the reference number, name of the dataset, abbreviated
name, the number of attributes, the number of instances in the positive class, the num-
ber of instances in the negative class, and imbalance ratio, respectively. All datasets are
modified to have only two classes: positive and negative class. The second column of
Table 1 shows the class of instances to be grouped as the positive class and the negative
class separated by vs in the dataset name. For example, at the second row of Table 1, the
dataset name “ecoli-0-1-4-6_vs_5” uses the target classes 0, 1, 4, 6 as the positive class
and 5 as the negative class.

In this research, all codes, TTIP, C4.5, C5.0 and SVM [24] are implemented and run in
R. C4.5 is called via the packages “J48” [25, 26], C5.0 is called via the package“C50” [27],
Naive Bayes and SVM are called via the package “e1071” [28] using different kernel
functions: linear, radial basis, sigmoid, and polynomial function.

To assess the quality of a classifier, the 5-fold cross-validation is applied on four per-
formance measures: precision, recall, Fl-measure, and G-measure (Fowlkes-Mallows in-
dex). The reported measures are generated from the average measures of all 5-fold cross-
validation. Each dataset is repeated five times using different random sampling and is
verified using the Wilcoxon signed-rank test to confirm the statistical significant.
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TABLE 1. Dataset summary: The columns are the reference
number(Ref.), the name of the dataset(dataset), the abbreviated
name(Abbr), the number of the attributes(Att), the number of in-
stances in the positive class(Pos), the number of instances in the negative
class(Neg), and imbalance ratio(IR), respectively.

Ref. Dataset Abbr Att Pos Neg IR [Ref. Dataset Abbr Att Pos Neg IR
1 ecoli-0-1-3-7_vs_2-6 ecoli-a 7 7 274 39.14] 24 glass-0-1-6_vs_5 glass-e 9 9 175 19.44
2 ecoli-0-1-4-6_vs_5 ecoli-b 6 20 260 13| 25 glass-0-4_vs_5 glass-f 9 9 83 9.22
3 ecoli-0-1-4-7 vs 2-3-5-6 ecoli-c 7 29 307 10.59| 26 glass-0-6 _vs 5 glasssg 9 9 99 11
4 ecoli-0-1-4-7_vs_5-6 ecoli-d 6 25 307 12.28]| 27 glassO glasssh 9 70 144 2.06
5 ecoli-0-1_vs_2-3-5 ecoli-e 7 24 220 9.17| 28 glassl glass-i 9 76 138 1.82
6 ecoli-0-1_vs_5 ecoli-f 6 20 220 11| 29 glass2 glass-j 9 17 197 11.59
7 ecoli-0-2-3-4 vs 5 ecoli-g 7 20 182  9.1| 30 glass4 glass-k 9 13 201 15.46
8 ecoli-0-2-6-7_vs_3-5 ecoli-h 7 22 202 9.18] 31 glassS glass-l 9 9 205 22.78
9 ecoli-0-3-4-6_vs_5 ecoli-i 7 20 185 9.25] 32 glass6 glass-m 9 29 185 6.38
10 ecoli-0-3-4-7 vs 5-6 ecolij 7 25232 9.28] 33 yeast-0-2-5-6 vs 3-7-8-9 yeast-a 8 99 905 9.14
11 ecoli-0-3-4 vs 5 ecoli-k 7 20 180 9| 34 yeast-0-2-5-7-9 vs 3-6-8 yeast-b 8 99 905 9.14
12 ecoli-0-4-6_vs_5 ecoli-l 6 20 183 9.15| 35 yeast-0-3-5-9 vs 7-8 yeast-c 8 50 456 9.12
13 ecoli-0-6-7_vs_3-5 ecoli-m 7 22 200 9.09| 36 yeast-0-5-6-7-9 vs 4 yeast-d 8 51 477 935
14 ecoli-0-6-7 vs 5 ecoli-n 6 20 200 10| 37 yeast-1-2-8-9 vs 7 yeast-e 8 30 917 30.57
15 ecoli-0_vs 1 ecoli-o 7 77 143 1.86] 38 yeast-1-4-5-8 vs 7 yeast-f 8 30 663 22.1
16 ecolil ecoli-p 7 77 259 3.36] 39 yeast-1 vs 7 yeast-g 7 30 429 143
17 ecoli2 ecoli-q 7 52 284 5.46| 40 yeast-2 vs 4 yeast-h 8 51 463 9.08
18 ecoli3 ecoli-r 7 35301 8.6] 41 yeast-2_vs_8 yeast-i 8 20 462 23.1
19 ecoli4 ecoli-s 7 20 316 15.8] 42 yeastl yeast-j 8 429 1055 2.46
20 glass-0-1-2-3_vs_4-5-6 glass-a 9 51 163  3.2| 43 yeast3 yeast-k 8 163 1321 8.1
21 glass-0-1-4-6_vs_2 glass-b 9 17 188 11.06| 44 yeast4 yeast-l 8 51 1433 28.1
22 glass-0-1-5 vs 2 glass-c 9 17 155 9.12]| 45 yeast5 yeast-m 8 44 1440 32.73
23 glass-0-1-6_vs_2 glass-d 9 17 175 10.29] 46 yeast6 yeast-n 8 351449 414

TTIP is compared with four classifiers: two decision trees from C4.5 and C5.0, one
statistical classification algorithm from the naive Bayes classifier, and four hyper-planes
classification algorithms from the support vector machine with 4 kernel functions via pre-
cision, recall, F1-measure, and G-measure. To demystify which methods are appropriate,
the non-parametric statistical hypothesis testing which was used in this comparison is
Wilcoxon signed-rank test (p < 0.05). The symbols in the result are used to indicate the
performance comparisons with the proposed algorithm where A shows the significantly
improvement of TTIP, /A shows no significantly improvement, and 57 shows the lower
performance.

4.1. TTIP vs. DECISION TREE

The results of TTIP comparing with two decision trees from C4.5 and C5.0 are shown
in Table 2. The average precision of TTIP improvement from the decision tree appears in
19 out of 46 datasets. The Wilcoxon signed rank test confirms that the precision of TTIP
are statistically significantly improved over C4.5 in 13 datasets and C5.0 in 10 datasets.
Basically, the average recall of TTIP in the fifth and twelfth columns outperform the
decision tree over 25 datasets. It improved significantly over C4.5 in 15 datasets and
for C5.0 in 12 datasets. Moreover, TTIP has the highest average Fl-measure in 19
datasets. Moreover, the significantly improvement over C4.5 in 21 datasets and of C5.0
in 14 datasets is shown. Finally, there are 20 datasets which average G-measure of TTIP
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is the largest but only 17 datasets is significantly improved over C4.5 and 13 datasets

over C5.0.
TABLE 2. TTIP vs. Decision tree
Precision Recall [Fl-measure| G-measure Precision Recall |Fl-measure| G-measure
RefjDataset] IR | 45 cs0fcas cso|cas cs0|cas csofReHP2) R 1045 50| cas csofcas csolcas cso
llecoli-a (39.14f A A | A A |V A | A A | 24glasse |1944] V ¥V - v]iVv Vv|IVv Vv
2lecoli-b [13.00f A A | A A | A A | A A | 25[glass-f | 922 V - v V|V V|V V¥V
3lecoli-c [1059f V vV | A A |V V|V V¥V [2glassg|ll00] V VIV V|V V[V V¥V
4lecoli-d |12.28) V V| A A | A V| A V| 27glass-h [ 206 V V|V V|V V|V V
Slecoli-e [ 9.17) V V|V A |V V|V V [28glassi | 182 V V| A A | A V| A V
6lecoli-f [11.00f A A | A V| A A | A A [29glassj |[11.59) A A | A A | A A| A A
Tlecoli-g [ 9.10f A V | A A | A V| A  V [30[glassk |1546] A A | A A | A A| A A
8lecoli-h [ 9.18) VvV | A A |V V|V V¥V [3lglassl 2278 V V[V V|V V[V V¥V
9lecoli-i [ 925 A A | A A | A A | A A [32glassm| 638 A A | A V| A VAV
10[ecoli-j | 9.28] V v A A A v A V | 33|yeast-a [ 9.14] V v A v A v A v
11[ecoli-k | 9.00] A A A A A A A A | 34|yeast-b | 9.14] V v A v A v A v
12[ecoli-l | 9.15] A A A A A A A A | 35|yeastc | 9.12| V v A A A A A A
13[ecoli-m| 9.09] V v v v v v v V| 36|yeast-d | 9.35] V v A v A v A v
14[ecoli-n |10.00] V v v v v v v V | 37|yeast-e [30.57] V v v v v v v v
15|ecoli-o | 1.86] V A v v v A |V A | 38|yeast-f [22.10] A A A A A A A A
16|ecoli-p | 3.36| V v A v v v v V| 39|yeast-g |14.30] V v v v v v v v
17|ecoli-q | 5.46] V v A A A A A A | 40|yeast-h | 9.08] V v A v A v A v
18|ecoli-r | 8.60] V v A A A A A A | 4lfyeast-i |23.10] A A A A A A A A
19]ecoli-s [15.80] A v A A A A A A | 42|yeast-j | 2.46] V v A v A v A v
20|glass-a | 3.20] A A A A A A A A | 43|yeast-k | 8.10] V v v v v v v v
21|glass-b |11.06] A v A A A A A A | 44|yeast-l [28.10 V A A A A A A
22|glass-c | 9.12| V v A A A A A A | 45|yeast-m|32.73| V v v v v v v v
23|glass-d [10.29] A A A A A A A A | 46|yeast-n [41.40] V A A A A A A A

4.2. TTIP vs. NAIVE BAYES

TABLE 3. TTIP vs. Naive Bayes classifier

Ref. Dataset IR |[Precision Recall F1-measure G-measure|Ref. Dataset IR |Precision Recall F1-measure G-measure
1 ecoli-a 39.14] A v A v 24 glass-e 1944 A v A A
2 ecoli-b 13] A v A A 25 glass-f 922 A v A A
3 ecoli-c 10.59] V A A A 26 glass-g 11| A v A A
4 ecoli-d 1228 V A A A 27 glass-h 206 A v A A
5 ecoli-e 9.17] A A A A 28 glass-i 1.82] A v A v
6 ecoli-f 11 A A A A 29 glass-j 11.59] A v A A
7 ecoli-g 9.1 A v A A 30 glass-k 15.46| A A A A
8 ecoli-h 9.18 A A A A 31 glass-I 22.78 A v A A
9 ecoli-i 925| A v A A 32 glass-m 638 A v A A

10 ecoli-j 928 A v A A 33 yeast-a 9.14f V A A A
11 ecoli-k 9 A v A A 34 yeast-b 9.14] A A A A
12 ecoli-1 9.15| A v A A 35 yeast-c 9.12| A A A A
13 ecoli-m 9.09] A A A A 36 yeast-d 935 A A A A
14 ecoli-n 10 A A A A 37 yeast-e  30.57| A v A v
15 ecoli-o 1.86] V A A v 38 yeast-f 22.1| A v A v
16 ecoli-p 336] A v A A 39 yeast-g 143 A v A v
17 ecoli-q 546 A v A A 40 yeast-h 9.08] A A A A
18 ecoli-r 8.6 A v A A 41 yeast-i 23.1 A A A A
19 ecoli-s 158 A v A A 42 yeast-j 246 A v A v
20 glass-a 32 A A A A 43 yeast-k 8.1 A A A A
21 glass-b 11.06)] A \ A A 44 yeast-1 28.1 A A A A
22 glass-c 9.12| A v A v 45 yeast-m  32.73| A A A A
23 glass-d 1029] A \ A A 46 yeast-n 414 A A A A

The results of TTIP comparing with two decision trees from C4.5 and C5.0 are shown
in Table 3. There are 41, 20, 46, and 39 datasets which the average precision, recall,
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Fl-measure, and G-measure of TTIP are better than those of the naive Bayes classifier,
respectively. TTIP shows no significant improvement over the naive Bayes classifier in 5
datasets via Fl-measure.

4.3. TTIP vs. SVM

The SVM is applied using four kernel functions: linear, radial basis, sigmoid, and
polynomial to compare against TTIP. The comparison results of TTIP and SVM are
shown in Table 4. TTIP outperforms in 17, 26, 23, and 20 datasets of precision, recall, F-
measure, and G-measure, respectively. Out of 17, only 10 datasets statistically improve in
precision from all four kernel functions. Out of 26 datasets in Recall, 17 datasets exhibit
statistical significant. Out of 23 datasets, only 18 datasets exhibit statistical significant
in F1l-measure and out of 20, only 14 datasets exhibit statistical significant in G-measure.

TABLE 4. TTIP vs. Support vector machine

Precision SVM Recall SVM F1-measure SVM G-measure SVM

Ref| Dataset
el Patase Lincar | RBF [Sigmoid Linear | RBF [Sigmoid Linear | RBF Linear | RBF [Sigmoid

H

~
S
=3

(<< << < (<) <A< <] <A DD (D (] D[ B[ < [ <] < << < << < <D< << <> (<
g

=~
S
=3

S
=

1{ecoli-a | 39.14
2]ecoli-b 13
3|ecoli-c | 10.59
4
3

ecoli-d | 12.28
Slecoli-e | 9.17
6|ecoli-f 11
7|ecoli-g 9.1
8lecoli-h | 9.18
9lecoli-i | 9.25
10]ecoli-j | 9.28
11]ecoli-k 9
12]ecoli-l | 9.15
13[ecoli-m| 9.09
14{ecoli-n 10
15]ecoli-o | 1.86
16]ecoli-p | 3.36
17|ecoli-q [ 5.46
18 |ecoli-r 8.6
19]ecoli-s | 158

20|glass-a 3.2
T‘Ekms»b 11.06
ﬂ'_glass-c 9.12
23[glass-d [ 10.29
7
8

D<) <

g
24|glass-e | 19.44
25|glass-f | 9.22
26|glass- 11

L'_glass-h 2.06
28 |glass-i 1.82
29|glass-j | 11.59
30|glass-k | 15.46
31|glass-l |22.78

32|glass-m| 6.38
33|yeast-a | 9.14
34|yeast-b | 9.14
35|yeast-c | 9.12
36|yeast-d | 9.35
37|yeast-e | 30.57
38|yeast-f | 22.1
39|yeast-g | 14.3
40|yeast-h | 9.08
41)yeast-i | 23.1
42|yeast-j | 2.46
43 |yeast-k 8.1
44 |yeast-1 | 28.1
45 |yeast-m| 32.73
46|yeast-n | 414

<P <Y< AP << <) <Y< << <] <D D[ [ | <D [ < << < <P | < [ <> < << <) <<
B (05| (D[ <D [ [ | D[ <1 | D (D[ | [ (D[ | (B[ (| | | 1> <1 <T| > [ [ D | D> (D[ | D[ | 1> D[
D (B[ D[ [ | D[ <T <[ (D[ D D (D | ([ D B[ | B (B[ | D (B < D> | > D> B> | > > | B> > | | > <]
44l dNINIdIdIdIdldIdERIN 4l dldIdIdIEIdIdIdIdIdI NI dIdId NN I IR IRILINIR
didldidIdididIdIdldIdI Il dldIdidldIdIdIdidIdIdIdIdIdldId Il didi i dldidl 2
D (0[] (B[ | D[ <UD <T D D] <T| <> [ | D[ | (B[ | [ (3| | D ([ | B D> <T| 1> [ D> | <[ > <1 > [ > | <1 <]
P (D[ D[ [ DD (B <T| D (D[ B[ D (| | <T(I> [ D | D [ D [ | B| D (B[ | D[> [ <1 <1 D> [ D> <1 > < B> > > > B> [ <]
P | <UD (D[ (| | D (B <T| 1> ([ | DD (B[ 1| <1 [ | D[ B 1| D (B[ | <[ <T| <T| <[ D> D > | <1 [ <1 | <1 <1
ddldidIdidIdIdIdldIdIdldlddldldIdIdldIdIdIdIdIdIdIdIdIdIdIdIdNIdIdIdldIdIdIdIdIdIdldIdle
P (0| <UD <T D (B <TI0 D | ([ B | | | D ([ < <1 <1 <T| B> | < < < << < B> | > [ <D
DD (B[ D[ [ | B D[ <T<T| D (D[ | D (D[ | <[> D D[ BB (B[ | D> D> <T| D> D> <T| D> < B> B> > > B> [ <]
D | << [ (| | D D <T| <[ <D D (D 2| <1 D[ | D[ D 2| (B[ | <[ [ <T <T| <D B> (> | <T [ < | <1 <]
didldidIdididIdidldIdI Il dIdidldIdidididididldIdi gl dIdI i didldidididldidi gl didl 2
D (0[] (D[ | <D <T| D [ <T| <[ <T{D | [ D [ 3| |D [B[ B| [| B| B| [[ <T| <1 <1 <T| B> | <1 <A <1 < <A < B> | 2> [ <D
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4.4. DISCUSSION

From the previous section, the performance measurements of TTIP are compared with
the 3 types of classifiers; the decision tree (C4.5 and C5.0), the basic classifier (naive
Bayes), and the hyper-plane classification (SVM with kernel function). Numerical values
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in Table 5 represent the average of each measure from all 46 datasets. The first column is
the name of the measure, the second to the eighth column is the pairwise different averages
between TTIP and C4.5, C5.0, Naive, and SVM with linear, radial basis, sigmoid, and
polynomial kernel function, respectively. The negative value exhibits that the performance
of TTIP is better than the performance of other classifiers. The last column shows the
average of all measures in 46 datasets of TTIP.

TABLE 5. The average predictive measure of the classifiers from 46 im-
balanced datasets.

Overall C4.5 | C5.0 | Naive | SVM.lin | SVM.rbf | SVM.sig | SVM.pol | TTIP
Precision 4.11 4.62 | -25.10 0.24 2.39 -24.32 2.10 | 62.17
Recall -6.13 | -2.39 | -0.44 -11.51 -13.17 -32.48 -17.24 | 62.91
Fl-measure | -3.45 | -0.41 | -18.52 -8.20 -8.74 -29.81 -12.53 | 60.94
G-measure | -2.11 0.57 | -17.58 -6.57 -5.87 -28.49 -8.65 | 61.62

5. CONCLUSIONS

In this research, we proposed the recursive partitioning algorithm, called TTIP, which
improved the performance of the classification algorithm in a binary-class imbalance prob-
lem. The collection of tubes is to determine the class regions and classify the member
of the dataset into the correct class. TTIP shows statistically significant improvement
compared with three traditional classifiers using precision, recall, Fl-measure, and G-
measure.

From the experimental results, TTIP shows a better performance over all other clas-
sifiers under Recall and F1-Measure but it fails in Precision. That means most positive
instances are identified via TTIP however, it predicts too many positive instances than
the tree from C4.5, C5.0, SVM with three kernel functions: linear, radial basis and poly-
nomial. Despite the low precision, Fl-measure which is the combination of recall and
precision exhibits the superior performance of TTIP over other classifiers.

Due to the maximum tube length and the tube radius, TTIP creates wide decision
boundary that includes too many negative instances. The reshaped of the tube could
alleviate the effect of those negative instances.
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