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Abstract In almost all examples available in the literature, while introducing fuzzy concepts, certain

properties like intelligence and beauty are considered on objects like students and flowers. The properties

are fuzzy in nature whereas the objects are crisp in nature. The motive for introducing fuzzy mathematics

is to discuss about the fuzzy properties on crisp objects. But no significant separate theory of fuzzy

properties on crisp objects is available in the literature. In this paper we develop a theory, named co-

smooth fuzzy theory, exclusively to study fuzzy properties of crisp objects. We investigate co-smooth

fuzzy topology, basis, sub-basis, product topology and discuss Hausdorffness in the new context.
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1. Introduction

The concept of fuzzy mathematics is well known. Intelligence, beauty, and temperature
are some of many examples available in the literature to introduce the concept fuzziness.
These properties are discussed on objects like students, flowers, and so on. It is obvious
that the properties are fuzzy in nature and the objects are crisp in nature. So naturally
the main aim of fuzzy mathematics is to discuss fuzzy properties defined on crisp objects.
But in the literature of fuzzy mathematics, mostly crisp properties on fuzzy objects are
studied.

C. Chang [1] introduced the concept of fuzzy topology on a set X as a collection
τ of fuzzy sets of X satisfying the well-known conditions for a collection of sets to be
a topology, and called each member of τ as a fuzzy open set. As a fuzzy set can be
considered as a single crisp object, the objects considered in Chang fuzzy topology are
crisp in nature and the properties like open, closed, are also crisp in nature. For example,
a fuzzy set s either open or it is not open. Hence, as rightly pointed out by A. P. Šostak
[2], there is a lack of fuzziness in Chang’s approach.
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In 1985, A. P. Šostak [2] developed a theory by declaring fuzzy topology as a function
τ , called degree of openness, from the collection of all fuzzy subsets of X to [0, 1] satisfying
some properties. Ramadan [3] gave a similar definition of fuzzy topology on a fuzzy set
in Šostak’s sense under the name of “smooth fuzzy topological spaces”. Many others like
Rekha Srivastava, Kalaivani and Roopkumar [4, 5] studied the concept of fuzzy topological
spaces in Šostak’s sense. Gregori and Vidal [6] gave some sort of fuzziness to open sets of
a Chang’s fuzzy topology by giving a gradation of openness to each fuzzy set in Šostak
sense. Mingsheng Ying [7] cruised the theory of Šostak in the context of crisp sets in the
name of fuzzyfying topology.

Höhle [8] developed a theory by defining a function D from the collection P(X) of all
subsets of a set X to a complete lattice L with interval topology to study fuzzy measurable
spaces; he also defined L-stochastic topology as a L-fuzzy subsets of X ×P(X). Rekha
Srivastava [4] studied the concept of base, subbase, product topology and separation
axioms in Šostak sense; a drawback in this theory is, the fuzzy product topology obtained
from a base is not unique. Moreover a fuzzy topology is not a base in this sense as a
base is a collection of fuzzy sets whereas a topology is a function from the collection of
all fuzzy sets.

In Section 2, we give the basic definitions and results from the literature which we
need to develop our theory; in Section 3, we study co-smooth fuzzy topology and basis,
and prove that the co-smooth fuzzy topology generated by a basis is unique and every
co-smooth fuzzy topology is a basis for itself as in the crisp theory; we prove some more
results in the same section; in Section 4, we extend the theory in the turf of product
topology and subbasis. Finally we discuss Hausdorffness in Section 5.

2. Preliminary Definitions and Results

First let us fix the notations. For any set X, by P(X) we denote the collection of all
subsets of X; by R and ∅, we denote the set of real numbers and the empty set respectively.
For a, b ∈ R the minimum of a and b is denoted by a ∧ b and the maximum of a and b is
denoted by a∨ b. If f and g are real valued function, we write f ≤ g to mean f(x) ≤ g(x)
for all x.

We now give some definitions and results available in the literature. In [4] a base (called
a basis by others) is defined as follows.

Definition 2.1 ([4]). Let (X, τ) be a fuzzy topological space. Then a family B = {B ∈
IX : τ(B) > 0} is called a base of (X, τ) if and only if for all U ∈ IX with τ(U) > 0 and
for all fuzzy points xα ∈ U , there exists a B ∈ B such that xα ∈ B ⊆ U .

In [4] a subbase of (X, τ) is defined as a family S of fuzzy sets for which the family BS

of finite intersections of members of S is a base of (X, τ). According to these definitions a
basis or a subbasis is defined only if a fuzzy topology is available on X; but the definitions
for a basis and a subbasis which we are going to give shortly do not need any topological
structure on X.

Theorem 2.2 ([4]). Let S ⊆ IX , contain 0̃ and 1̃. Let τ be any map from S to [0, 1] such
that τ(0̃) = τ(1̃) = 1 and τ(U) > 0, for all U ∈ S . Then the extension τS : IX → [0, 1]
given as follows: for each U ∈ IX ,
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τS (U) =


inf{τ(U1), τ(U2)} if U = U1 ∩ U2 where U1, U2 ∈ S

sup{τ(Wi)} if U = ∪Wi where each Wi ∈ BS

0 otherwise

defines a gradation of openness on X.

The fuzzy topological space (X, τ) described in the above theorem is called a fuzzy
topological space generated by S in [4] and in the same reference it is stated that the
fuzzy topology on X generated by S , is not unique. However, the basis and subbasis we
are going to define generate unique fuzzy topological spaces.

Definition 2.3 ([9]). A smooth fuzzy topological space (µ, τ) is said to be a fuzzy Haus-
dorff space if for each x, y ∈ X with x 6= y, there exist U, V ∈ IX with τ(U) > 0 and
τ(V ) > 0 such that U(x) = µ(x), V (y) = µ(y) and U ∧ V = 0X .

According to this definition a smooth fuzzy topological space is either fuzzy Hausdorff
or it is not fuzzy Hausdorff. So the property of being Hausdorff is crisp in nature. In
this paper we define Hausdorffness as one which is fuzzy in nature. Of course, there are
a few articles are available in the literature which deals Hausdorffness in fuzzy nature;
for example in [6], gradation of openness is assigned for the open sets of a Chang fuzzy
topological space by means of a map σ : IX → [0, 1] and a type of Hausdorffness is
discussed; but our approach is entirely different.

3. Co-Smooth Fuzzy Topological Spaces

We start the section, with the definition of co-smooth fuzzy topological space.

Definition 3.1. Let X be any set and let T : P(X) → [0, 1] be a mapping satisfying
the following conditions.

i. T (X) = 1
ii. T (∅) = 1

iii. T (A ∩B) ≥ T (A) ∧ T (B) for any two subsets A, B of X
iv. T (∪Aλ) ≥ ∧T (Aλ) for any collection {Aλ}λ∈Λ of subsets of X.

then T is called a co-smooth fuzzy topology on X and the pair (X, T ) is called a co-
smooth fuzzy topological space. If A ⊆ X, then T (A) is called the degree of openness of
the set A in (X, T ).

Let C : P(X) → [0, 1] be a mapping defined by C(A) = T (Ac) where Ac is the
complement of A in X; C(A) is called the degree of closedness of A.

Let (X, τ) be a (crisp) topological space and T : P(X)→ [0, 1] be map defined by

T (A) =

{
1 if A ∈ τ
0 otherwise

then, T is a co-smooth fuzzy topology on X. In this way we can view crisp topologies as
co-smooth fuzzy topologies. If (X, T ) is a co-smooth fuzzy topology in which T assumes
only the values 1 and 0, then the collection of all sets A for which T (A) = 1 forms a
topology on X. More generally, if (X, T ) is a co-smooth fuzzy topology then for any α,
the collection of all sets A for which T (A) ≥ α forms a (crisp) topology on X.
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Definition 3.2. If T and T ′ are two co-smooth fuzzy topologies on a given set X and if
T ′ ≥ T , we say that T ′ is finer than T or equivalently T is coarser than T ′. Strict finer
and strict coarser can be defined accordingly. We say that T is comparable with T ′ if
either T ′ ≥ T or T ≥ T ′.

We now give the definition of basis for a co-smooth fuzzy topology.

Definition 3.3. Let X be any set. Define a function B : P(X) → [0, 1] satisfying the
following conditions:

i. Given x ∈ X and ε > 0 there exists A ⊆ X such that x ∈ A and B(A) ≥ 1− ε.
ii. If x ∈ A ∩ B and ε > 0 be given then there exists C ⊆ X such that x ∈ C ⊆
A ∩B and B(C) ≥ (B(A) ∧ B(B))− ε.

then B is called a basis for a co-smooth fuzzy topology on X.

In the sequel we prove that every basis generates a unique co-smooth fuzzy topology.

Example 3.4. Let X = R, Define B : P(X)→ [0, 1] as

B(B) =


1 if A = X

1
1+(b−a) if A = (a, b)

0 otherwise

Then B is a basis for the usual topology on X in the sense as mentioned below Definition
3.1.

Example 3.5. Let X = (0, 1), Define B : P(X)→ [0, 1] as

B(A) =


1 if A = X

q if A = (q, 1) where q is rational

0 otherwise

Then B is a basis for a topology on X.

The topology generated by the above basis is different from the usual topology. We
note that B((a, 1)) = 0 and T ((a, 1)) = a if a is irrational.

Definition 3.6. A collection {Aλ}λ∈Λ of nonempty subsets of a set A is called an inner
cover for A if A = ∪

λ∈Λ
Aλ.

Definition 3.7. Let B : P(X) → [0, 1] be a basis for a co-smooth fuzzy topology on a
set X. Define T : P(X) → [0, 1] as follows. Define T (∅) = 1; let ∅ $ A ⊆ X and let
{CΛ}Λ∈Γ be the collection of all possible inner covers {Aλ}λ∈Λ of A; let

T (A) = sup
Λ∈Γ

{
inf

Aλ∈CΛ

{B(Aλ)}
}
.

Then T is a co-smooth fuzzy topology which is called the co-smooth fuzzy topology
generated by B.

The following theorem proves that the definition is well defined.

Theorem 3.8. Let B be a basis for a co-smooth fuzzy topology on a set X. If T is as
defined in Definition 3.7, then T is a co-smooth fuzzy topology on X.
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Proof. Since B takes values in [0, 1], T is well defined. Now we prove that T (X) = 1.
For each x ∈ X and ε > 0 let Ax,ε ⊆ X be such that x ∈ Ax,ε and B(Ax,ε) ≥ 1− ε. The
collection {Ax,ε}x∈X is then an inner cover for X and

inf
x∈X
{B(Ax,ε)} ≥ 1− ε.

Thus for each ε > 0 there exists an inner cover {Ax,ε} such that inf
x
{B(Ax,ε)} ≥ 1 − ε.

This implies that

T (X) ≥ sup
ε
{ inf
x∈X
{B(Ax,ε)}} ≥ 1

and hence T (X) = 1. By the definition of T , it follows that T (∅) = 1.
Now we prove that T (A ∩ B) ≥ T (A) ∧ T (B) for any two subsets A and B of X. If

A ∩ B = ∅, then there is nothing to prove. If A ∩ B 6= ∅, then let C = A ∩ B. For ε > 0
let {Aλ}λ∈Λ1 and {Bγ}γ∈Λ2 be inner covers such that

inf
λ∈Λ1

{B(Aλ)} ≥ T (A)− ε

2
and inf

γ∈Λ2

{B(Bγ)} ≥ T (A)− ε

2
.

Let Cλ,γ = Aλ ∩ Bγ for λ ∈ Λ1 and γ ∈ Λ2. Let Λ denote the set containing the pairs
(λ, γ) for which Cλ,γ 6= ∅. Since A ∩ B 6= ∅, we have Λ 6= ∅. For (λ, γ) ∈ Λ, and for
x ∈ Cλ,γ , let Dλ,γ,x be such that Dλ,γ,x ⊆ Cλ,γ and

B(Dλ,γ,x) ≥ (B(Aλ) ∧ B(Bγ))− ε

2
.

Then the collection {Dλ,γ,x/(λ, γ) ∈ Λ, x ∈ Cλ,γ} is an inner cover for C. Indeed, if
x ∈ C then x ∈ Aλ ∩Bγ for some (λ, γ) ∈ Λ and hence x ∈ Dλ,γ,x. Now,

inf
x∈Cλ,γ
(λ,γ)∈Λ

{B(Dλ,γ,x)} ≥ inf
(λ,γ)∈Λ

{B(Aλ) ∧ B(Bγ)} − ε

2

≥
{

inf
(λ,γ)∈Λ

{B(Aλ)} ∧ inf
(λ,γ)∈Λ

{B(Bγ)}
}
− ε

2

≥
{

inf
λ∈Λ1

{B(Aλ)} ∧ inf
γ∈Λ2

{B(Bγ)}
}
− ε

2

≥
(
T (A)− ε

2

)
∧
(
T (B)− ε

2

)
− ε

2

= (T (A) ∧ T (B))− ε

2
− ε

2
= (T (A) ∧ T (B))− ε.

But,

T (A ∩B) = T (C)

≥ inf
x∈Cλ,γ
(λ,γ)∈Λ

{B(Dλ,γ,x)}

≥ (T (A) ∧ T (B))− ε.

This is true for every ε > 0 and hence T (A∩B) ≥ (T (A) ∧ T (B)) for any two subsets A,
B of X.

Now we prove that T ( ∪
λ∈Λ

Aλ) ≥ ∧
λ∈Λ
T (Aλ) for any collection {Aλ}λ∈Λ of subsets of

X. For each ε > 0 and for each Aλ, let {Aλ,γ}γ∈Γλ
, where Γλ is an indexing set depending
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upon Aλ, be an inner cover for Aλ such that

inf
γ∈Γλ

{B(Aλ,γ)} ≥ T (Aλ)− ε.

Since {Aλ,γ}γ∈Γλ
is an inner cover for Aλ, we have {Aλ,γ}λ,γ is an inner cover for ∪

λ∈Λ
Aλ.

Now,

T ( ∪
λ∈Λ

Aλ) ≥ inf
λ,γ
{B(Aλ,γ)}

= inf
λ∈Λ

{
inf
γ∈Γλ

{B(Aλ,γ)}
}

≥ inf
λ∈Λ
{T (Aλ)− ε}

= inf
λ∈Λ
{T (Aλ)} − ε.

Since this is true for every ε > 0, we get T ( ∪
λ∈Λ

Aλ) ≥ inf
λ∈Λ
{T (Aλ)}. Thus T ( ∪

λ∈Λ
Aλ) ≥

∧
λ∈Λ
{T (Aλ)} for any collection {Aλ}λ∈Λ of subsets of X. Hence T is a co-smooth fuzzy

topology on X.

Theorem 3.9. If (X, T ) is a co-smooth fuzzy topological space, then T is a basis and the
co-smooth fuzzy topology generated by T is itself.

Proof. We take B = T and prove that B is a basis for the co-smooth fuzzy topology T . For
any x ∈ X and ε > 0, taking A = X, we have x ∈ A and B(A) = T (A) = T (X) ≥ 1− ε.
Let x ∈ A ∩B and ε > 0. Taking C = A ∩B, we have x ∈ C and

B(C) = T (C) = T (A ∩B) ≥ T (A) ∧ T (B) ≥ (B(A) ∧ B(B))− ε.

Thus B is a basis. Now we prove that the co-smooth fuzzy topology generated by B is
T . Let T ′ be the co-smooth fuzzy topology generated by B. Let E ⊆ X. Since T ′ is the
co-smooth fuzzy topology generated by B, we have

T ′(E) = sup
Λ∈Γ

{
inf

Eλ∈CΛ

{B(Eλ)}
}

where {CΛ}Λ∈Γ is the collection of all possible inner covers {Eλ}λ∈Λ of E. Since E itself
is an inner cover for E, we have

T ′(E) ≥ B(E) = T (E).

Therefore T ′ ≥ T . But by our assumption, T is a co-smooth fuzzy topology on X and
hence for any collection {Eλ}λ∈Λ of subsets of X, we have,

T ( ∪
λ∈Λ

Eλ) ≥ inf
λ∈Λ
{T (Eλ)} .

Thus for any inner cover CΛ = {Eλ}λ∈Λ of E, we have

T ( ∪
Eλ∈CΛ

Eλ) ≥ inf
Eλ∈CΛ

{T (Eλ)} .

This implies that,

T (E) ≥ sup
Λ∈Γ

{
inf

Eλ∈CΛ

{T (Eλ)}
}

= sup
Λ∈Γ

{
inf

Eλ∈CΛ

{B(Eλ)}
}

= T ′(E).

Therefore T ≥ T ′ and hence T = T ′.
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Theorem 3.10. Let (X, T ) be a co-smooth fuzzy topological space. Let B : P(X)→ [0, 1]
be a function satisfying

i. T (A) ≥ B(A) for all A ⊆ X
ii. if A ⊆ X, x ∈ A and ε > 0, then there exists B ⊆ X such that x ∈ B ⊆ A and
B(B) ≥ T (A)− ε.

Then B is a basis for the co-smooth fuzzy topology T on X.

Proof. First we prove that B is a basis for some co-smooth fuzzy topology on X. Taking
A = X in (ii.) we obtain that, for each x ∈ X and ε > 0 there exists B ⊆ X such that

B(B) ≥ T (X)− ε = 1− ε.

Thus (i.) of Definition 3.3 holds. If x ∈ A∩B and ε > 0, then by (ii.), there exists C ⊆ X
such that x ∈ C ⊆ A ∩B and

B(C) ≥ T (A ∩B)− ε.

This implies that,

B(C) ≥ T (A ∩B)− ε ≥ (T (A) ∧ T (B))− ε ≥ (B(A) ∧ B(B))− ε.

Thus (ii.) of Definition 3.3 holds and hence B is a basis.
Now we prove that the co-smooth fuzzy topology generated by B is T . Let T ′ be the

co-smooth fuzzy topology generated by B. Let E ⊆ X and let {CΛ}Λ∈Γ be the collection
of all possible inner covers {Eλ}λ∈Λ of E. Now let CΛ = {Eλ}λ∈Λ be an inner cover for
E. Then for each Eλ and for each x ∈ Eλ, by (ii.), there exists Eλ,x ⊆ X such that

x ∈ Eλ,x ⊆ Eλ

and

B(Eλ,x) ≥ T (Eλ)− ε.

Then the collection {Eλ,x}x∈Eλ is an inner cover for Eλ and therefore the collection
{Eλ,x}λ∈Λ,x∈Eλ is an inner cover for E. Thus for any given inner cover CΛ = {Eλ}λ∈Λ

for E, there exists an inner cover {Eλ,x}λ∈Λ,x∈Eλ for E such that

B(Eλ,x) ≥ T (Eλ)− ε,

for all λ ∈ Λ, x ∈ Eλ. This implies that

inf
Eλ∈CΛ

x∈Eλ

{B(Eλ,x)} ≥ inf
Eλ∈CΛ

{T (Eλ)− ε} ≥ inf
Eλ∈CΛ

{T (Eλ)} − ε.

Since this is true for every inner cover CΛ = {Eλ}λ∈Λ, we have

sup
Λ∈Γ

 inf
Eλ∈CΛ

x∈Eλ

{B(Eλ,x)}

 ≥ sup
Λ∈Γ

{
inf

Eλ∈CΛ

{T (Eλ)}
}
− ε.
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But by definition of T ′ we have T ′(E) ≥ sup
Λ∈Γ

 inf
Eλ∈CΛ

x∈Eλ

{B(Eλ,x)}

. This implies that,

T ′(E) ≥ sup
Λ∈Γ

 inf
Eλ∈CΛ

x∈Eλ

{B(Eλ,x)}


≥ sup

Λ∈Γ

{
inf

Eλ∈CΛ

{T (Eλ)}
}
− ε

= T (E)− ε.

Since this is true for every ε > 0, we have T ′(E) ≥ T (E) and therefore T ′ ≥ T . Let E ⊆ X
and CΛ = {Eλ}λ∈Λ be an inner cover for E. Then by (ii.), we have, T (Eλ) ≥ B(Eλ) for
all λ ∈ Λ. This implies,

inf
Eλ∈CΛ

{T (Eλ)} ≥ inf
Eλ∈CΛ

{B(Eλ)} .

Since this is true for every inner cover {Eλ}λ∈Λ, we have

sup
Λ∈Γ

{
inf

Eλ∈CΛ

{T (Eλ)}
}
≥ sup

Λ∈Γ

{
inf

Eλ∈CΛ

{B(Eλ)}
}

Thus T (E) ≥ T ′(E) for all subsets E of X, and hence T = T ′.

Theorem 3.11. Let (X, T ) be a co-smooth fuzzy topological space. Let B be a basis for
T , then

i. T (A) ≥ B(A) for all A ⊆ X
ii. if A ⊆ X, x ∈ A and ε > 0, then there exists B ⊆ X such that x ∈ B ⊆ A and
B(B) ≥ T (A)− ε.

Proof. Let A be a subset of X. Since T is a topology and B is a basis for T we have,

T (A) = sup
Λ∈Γ

{
inf

Aλ∈CΛ

{B(Aλ)}
}

where {CΛ}Λ∈Γ is the collection of all possible inner covers {Aλ}λ∈Λ of A. Since A itself
is an inner cover for A, we have T (A) ≥ B(A) for all A ⊆ X. Thus (i.) follows.

To prove (ii.), let A ⊆ X, x ∈ A and ε > 0. Then there exists an inner cover {Aλ}λ∈Λ

such that inf
λ∈Λ
{B(Aλ)} ≥ T (A) − ε. Since {Aλ}λ∈Λ is an inner cover for A, there exists

Aλ0 ∈ {Aλ}λ∈Λ such that x ∈ Aλ0 . Clearly Aλ0 ⊆ A and since Aλ0 ∈ {Aλ}λ∈Λ, we have
B(Aλ0

) ≥ T (A)− ε. Thus, (ii.) follows.

Theorem 3.10 and Theorem 3.11 together give a necessary and sufficient condition for
a function B : P(X)→ [0, 1] to be a basis for a co-smooth fuzzy topology.

Theorem 3.12. Let B and B′ be bases for the co-smooth fuzzy topologies T and T ′
respectively on X. Then the following conditions are equivalent.

i. T ′ is finer than T .
ii. if B ⊆ X, x ∈ B and ε > 0, then there exists B′ ⊆ X such that x ∈ B′ ⊆ B
and B′(B′) ≥ B(B)− ε.
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Proof. Let T ′ be finer than T . Let B ⊆ X, x ∈ B and ε > 0. Since B′ is a basis for T ′,
by Theorem 3.11, there exists B′ ⊆ X such that x ∈ B′, B′ ⊆ B and B′(B′) ≥ T ′(B)− ε.
By our assumption T ′(B) ≥ T (B), and hence we have

B′(B′) ≥ T ′(B)− ε ≥ T (B)− ε ≥ B(B)− ε.

Conversely assume that (ii.) holds. Let E be a subset of X and ε > 0. Since B is
a basis for T , there exists an inner cover CΛ = {Eλ}λ∈Λ such that inf

Eλ∈CΛ

{B(Eλ)} ≥
T (E) − ε. Then by (ii.), for each Eλ and for each x ∈ Eλ, there exists Eλ,x ⊆ X such
that x ∈ Eλ,x ⊆ Eλ and

B′(Eλ,x) ≥ B(Eλ)− ε.
Then the collection {Eλ,x}x∈Eλ is an inner cover for Eλ and therefore the collection
{Eλ,x}λ∈Λ,x∈Eλ is an inner cover for E. Thus for any given inner cover CΛ = {Eλ}λ∈Λ

of E, there exists an inner cover {Eλ,x}λ∈Λ,x∈Eλ of E such that

B′(Eλ,x) ≥ B(Eλ)− ε,

for all λ ∈ Λ, x ∈ Eλ. This implies that, inf
x∈Eλ

{B′(Eλ,x)} ≥ B(Eλ)− ε and hence

inf
Eλ∈CΛ

x∈Eλ

{B′(Eλ,x)} ≥ inf
Eλ∈CΛ

{B(Eλ)− ε} ≥ inf
Eλ∈CΛ

{B(Eλ)} − ε.

Since this is true for every inner cover CΛ = {Eλ}λ∈Λ, we have

sup
Λ∈Γ

 inf
Eλ∈CΛ

x∈Eλ

{B′(Eλ,x)}

 ≥ sup
Λ∈Γ

{
inf

Eλ∈CΛ

{B(Eλ)}
}
− ε.

But by definition of T ′ we have

T ′(E) ≥ sup
Λ∈Γ

 inf
Eλ∈CΛ

x∈Eλ

{B′(Eλ,x)}


≥ sup

Λ∈Γ

{
inf

Eλ∈CΛ

{B(Eλ)}
}
− ε

= T (E)− ε.

Since this is true for every ε > 0 we have, T ′(E) ≥ T (E), and hence T ′ ≥ T .

Theorem 3.13. If {Tλ}λ∈Λ is a family of co-smooth fuzzy topologies on X, then inf
λ∈Λ
{Tλ}

is also a co-smooth fuzzy topology on X.

Proof. Let T = inf
λ∈Λ
{Tλ}. Clearly we have T (X) = 1 and T (∅) = 1. Let A and B be

subsets of X. Then

T (A ∩B) = inf
λ∈Λ
{Tλ(A ∩B)}

≥ inf
λ∈Λ
{Tλ(A) ∧ Tλ(B)}

= inf
λ∈Λ
{Tλ(A)} ∧ inf

λ∈Λ
{Tλ(B)}

= T (A) ∧ T (B).
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Let {Aγ}γ∈Γ be any collection of subsets of X. Then

T ( ∪
γ∈Γ

Aγ) = inf
λ∈Λ
{Tλ( ∪

γ∈Γ
Aγ)}

≥ inf
λ∈Λ
{ ∧
γ∈Γ
{Tλ(Aγ)}}

= ∧
γ∈Γ
{ inf
λ∈Λ
{Tλ(Aγ)}}

= ∧
γ∈Γ
T (Aγ).

Thus T is a co-smooth fuzzy topology on X.

As in the case of crisp topology, if {Tλ}λ∈Λ is a family of co-smooth fuzzy topologies
on X, then sup

λ
{Tλ} need not be a co-smooth fuzzy topology on X.

Example 3.14. The collection {Tn}n∈N of functions P(R) defined as

Tn(A) =

{
1 if A ∈ {R, ∅, {1}, {1, 2}, . . . , {1, 2, . . . , n}}
0 otherwise

are co-smooth fuzzy topologies on R whereas T = sup{Tn} is not. Indeed, if An =

{1, 2, . . . , n}, then T (
∞
∪
n=1

An) � ∧T (An).

4. Product of Co-Smooth Fuzzy Topologies

Theorem 4.1. Let (X1, T1) and (X2, T2) be two co-smooth fuzzy topological spaces and
let X = X1 ×X2. Let B be a map from P(X) to [0, 1] defined as

B(E) =

{
inf{T1(E1), T2(E2)} if E = E1 × E2

0 otherwise

then B is a basis for a co-smooth fuzzy topology on X.

Proof. Since B(X) = inf{T1(X1), T2(X2)} = 1, (i.) of Definition 3.3 follows. Let (x, y) ∈
A ∩ B and ε > 0. Suppose any one of these sets, say A, cannot be written as A1 × A2

with A1 ⊆ X1 and A2 ⊆ X2, then B(A) = 0 and hence (ii.) of Definition 3.3 follows in
this case. Otherwise let A = A1 ×A2 and B = B1 ×B2, where A1, B1 are subsets of X1

and A2, B2 are subsets of X2. Let C = A ∩B. Clearly (x, y) ∈ C. Now,

B(C) = B(A ∩B)

= B((A1 ×A2) ∩ (B1 ×B2))

= B((A1 ∩B1)× (A2 ∩B2))

= inf{T1((A1 ∩B1), T2(A2 ∩B2))

≥ inf{T1(A1) ∧ T1(B1), T2(A2) ∧ T2(B2)}
= inf{T1(A1), T2(A2), T1(B1), T2(B2)}
= inf{T1(A1) ∧ T2(A2), T1(B1) ∧ T2(B2)}
= inf{T1(A1), T2(A2)} ∧ inf{T1(B1), T2(B2)}
= B(A) ∧ B(B)

≥ B(A) ∧ B(B)− ε
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and hence (ii.) of Definition 3.3 follows in this case also and hence B is a basis.

Definition 4.2. Let (X, T ) and (Y, T ′) be two co-smooth fuzzy topological spaces. The
function B : P(X × Y )→ [0, 1] defined as

B(E) =

{
inf{T (E1), T ′(E2)} if E = E1 × E2

0 otherwise

then B is a basis for a co-smooth fuzzy topology on X × Y and the co-smooth fuzzy
topology generated by B is called the co-smooth fuzzy product topology of T and T ′ on
X × Y .

Theorem 4.3. Let (X, T
X

) and (Y, T
Y

) be two co-smooth fuzzy topological spaces. Let
B
X
,B

Y
be bases for the co-smooth fuzzy topologies T

X
, T

Y
. Define a function

B
X×Y : P(X × Y )→ [0, 1]

as

B
X×Y (E) =

{
inf{B

X
(A),B

Y
(B)} if E = A×B

0 otherwise

then B
X×Y is a basis for the co-smooth fuzzy product topology.

Proof. Let (x, y) ∈ X × Y and ε > 0. Since B
X

and B
Y

are bases for T
X

and T
Y

, there
exists A ⊆ X and B ⊆ Y such that x ∈ A, y ∈ B with

B
X

(A) ≥ 1− ε and B
Y

(B) ≥ 1− ε.

Taking E = A×B, we have (x, y) ∈ E and

B
X×Y (E) = B

X×Y (A×B) = inf{B
X

(A),B
Y

(B)} ≥ 1− ε.

Thus (i.) of Definition 3.3 follows. Let (x, y) ∈ E1∩E2 and ε > 0. Suppose any one of these
sets, say E1, cannot be written as A × B with A ⊆ X and B ⊆ Y , then B

X×Y (E1) = 0.
Now taking E3 = E1∩E2, then clearly (x, y) ∈ E3 and B

X×Y (E1)∧B
X×Y (E2) = 0. Hence

it follows that

B
X×Y (E3) ≥ (B

X×Y (E1) ∧ B
X×Y (E2))− ε.

Now suppose that E1 = A1 × B1 and E2 = A2 × B2 where A1, A2 are subsets of X and
B1, B2 are subsets of Y . Let (x, y) ∈ E1 ∩ E2 and ε > 0. Then,

(x, y) ∈ (A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2)× (B1 ∩B2)

and hence x ∈ A1 ∩ A2 and y ∈ B1 ∩ B2. Thus there exists A3 ⊆ X and B3 ⊆ Y such
that x ∈ A3 ⊆ A1 ∩A2 and y ∈ B3 ⊆ B1 ∩B2, with

B
X

(A3) ≥ (B
X

(A1) ∧ B
X

(A2))− ε and B
Y

(B3) ≥ (B
Y

(B1) ∧ B
Y

(B2))− ε.
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Let E3 = A3 ×B3, then clearly (x, y) ∈ E3 ⊆ E1 ∩ E2. Now

B
X×Y (E3) = B

X×Y (A3 ×B3)

= inf{B
X

(A3),B
Y

(B3)}
≥ inf{(B

X
(A1) ∧ B

X
(A2))− ε, (B

Y
(B1) ∧ B

Y
(B2))− ε}

= inf{(B
X

(A1) ∧ B
X

(A2)), (B
Y

(B1) ∧ B
Y

(B2))} − ε
= inf{(B

X
(A1) ∧ B

Y
(B1)), (B

X
(A2) ∧ B

Y
(B2))} − ε

= inf{B
X×Y (A1 ×B1),B

X×Y (A2 ×B2)} − ε
= inf{B

X×Y (E1),B
X×Y (E2)} − ε

= (B
X×Y (E1) ∧ B

X×Y (E2))− ε.

Thus (ii.) of Definition 3.3 follows and hence B
X×Y is a basis for a co-smooth fuzzy

topology on X×Y . Let T be the co-smooth fuzzy topology generated by B
X×Y . let T

X×Y

be the co-smooth fuzzy product topology on X × Y and Bp
X×Y

be the basis for T
X×Y as

described in Definition 4.2. Now we prove that T
X×Y = T . Let E ⊆ X × Y ; then

T
X×Y (E) = sup

Λ∈Γ

{
inf
λ∈Λ

{
Bp
X×Y

(Eλ)
}}

where C = {CΛ}Λ∈Γ is the collection of all possible inner covers CΛ = {Eλ}λ∈Λ of E.
We divide the collection C into two subcollections C′ and C′′ where C′ is the collection all
possible inner covers {Eλ}λ∈Λ of E so that for all λ ∈ Λ, Eλ is of the form Aλ ×Bλ, and
C′′ is the complement of C′ in C. If an inner cover {Eλ}λ∈Λ is in C′′, then at least one Eλ
is not of the form Aλ ×Bλ; Therefore

inf
λ∈Λ

{
Bp
X×Y

(Eλ)
}

= 0 = inf
λ

{
B
X×Y (Eλ)

}
and hence

T
X×Y (E) = sup

C
{inf
λ
{Bp

X×Y
(Eλ)}}

= sup
C′
{inf
λ
{Bp

X×Y
(Eλ)}}

= sup
C′
{inf
λ
{Bp

X×Y
(Aλ ×Bλ)}}

= sup
C′
{inf
λ
{T

X
(Aλ) ∧ T

Y
(Bλ)}}

≥ sup
C′
{inf
λ
{B

X
(Aλ) ∧ B

Y
(Bλ)}}

= sup
C
{inf
λ
{B

X×Y (Eλ)}}

= T (E).

This implies that T
X×Y ≥ T . To prove the reverse inequality, let E ⊆ X×Y and C,C′,C′′

be as above. If an inner cover {Eλ}λ∈Λ is in C′′, then we have nothing to prove. So let
{Eλ}λ∈Λ ∈ C′. Then for all λ, let Eλ = Aλ×Bλ. Now since, B

X
,B

Y
are bases for T

X
, T

Y
,

by Theorem 3.11, for any ε > 0, λ ∈ Λ, x ∈ Aλ, y ∈ Bλ, there exist sets, Aλ,x and Bλ,y
such that,

B
X

(Aλ,x) + ε ≥ T
X

(Aλ)

B
Y

(Bλ,y) + ε ≥ T
Y

(Bλ).
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Clearly {Aλ,x}x∈Aλ and {Bλ,y}y∈Bλ are inner covers for Aλ and Bλ respectively. This
implies that,

Aλ ×Bλ = ∪
x∈Aλ,y∈Bλ

(Aλ,x ×Bλ,y).

This implies, the collection {Aλ,x × Bλ,y}λ∈Λ,x∈Aλ,y∈Bλ is an inner cover for E. Now
since this is true for all {Eλ}λ∈Λ ∈ C′, we have,

T
X×Y (E) = sup

C
{inf
λ
{T

X
(Aλ) ∧ T

Y
(Bλ)}}

= sup
C′
{inf
λ
{T

X
(Aλ) ∧ T

Y
(Bλ)}}

≤ sup
C′
{ inf
λ,x,y
{B

X
(Aλ,x) ∧ BY (Bλ,y)}}+ ε

= sup
C′
{ inf
λ,x,y
{B

X×Y (Aλ,x ×Bλ,y)}}+ ε

≤ T (E) + ε.

Since this is true for every ε > 0 we have, T
X×Y ≤ T and hence both the co-smooth fuzzy

topologies are the same.

Definition 4.4. Let X be any set and define a function S : P(X)→ [0, 1] satisfying the
following condition: Given x ∈ X and ε > 0 there exists A ⊆ X such that x ∈ A and
S(A) ≥ 1− ε. Then S is called a subbasis for a co-smooth fuzzy topology on X.

Theorem 4.5. Let S : P(X) → [0, 1] be a subbasis of a co-smooth fuzzy topology on a
set X. Define a function B : P(X)→ [0, 1] as follows:

B(A) = sup
D∈D

{
inf
i∈ID
{S(Ai)}

}
where D is the collection of all possible finite intersections D = {Ai}i∈ID of subsets of X
for some finite indexing set ID such that A = ∩

i∈ID
Ai, then B is a basis for a co-smooth

fuzzy topology on X.

Proof. Since every set A is the intersection of members of the collection consisting of A
alone, and 0 ≤ S(E) ≤ 1, B is well defined. As B clearly satisfies (i.) of Definition 3.3,
we prove (ii.) of Definition 3.3 only. Let x ∈ A ∩ B and ε > 0. By definition of B there
exists a collections {Ai}i=1,2,...,n and {Bj}j=1,2,...,m of subsets of X in D such that

inf
i
{B(Ai)} ≥ B(A)− ε and inf

j
{B(Bj)} ≥ B(B)− ε.

Then

A ∩B = (
n
∩
i=1

Ai) ∩ (
m
∩
j=1

Bj).

Now define a collection of sets Ck, for k = 1, 2, 3, . . . , n+m, as

Ck =

{
Ak if k ≤ n
Bk−n if k > n

Let C =
n+m
∩
k=1

Ck, then clearly x ∈ C. By definition of B, we have

B(C) = sup
D∈D

{
inf
i∈ID
{S(Ei)}

}
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where D is the collection of all possible finite intersections D = {Ei}i∈ID of subsets of X
for some finite indexing set ID such that C = ∩

i∈ID
Ei. Now,

B(C) = sup
D∈D

{
inf
i∈ID
{S(Ei)}

}
≥ inf{S(Ck)}
= inf

i
{S(Ai)} ∧ inf

j
{S(Bj)}

≥ (B(A)− ε) ∧ (B(B)− ε)
= (B(A) ∧ B(B))− ε.

Thus B(C) ≥ (B(A) ∧ B(B))− ε and hence, B is a basis.

Theorem 4.6. Let (X, T
X

) and (Y, T
Y

) be any two co-smooth fuzzy topological spaces.
Define S : P(X × Y )→ [0, 1] as

S(E) =


T
X

(A) if E = A× Y
T
Y

(B) if E = X ×B
0 otherwise

.

Then S is a subbasis for the co-smooth fuzzy product topology on X × Y .

Proof. As S(X × Y ) = 1, taking A = X × Y , it clearly follows that S is a subbasis for a
co-smooth fuzzy topology on X × Y . Let B′ be the basis generated by S. Then for any
set E ⊆ X × Y , we have

B′(E) = sup
D∈D

{
inf
i∈ID
{S(Ei)}

}
where D is the collection of all possible finite intersections D = {Ei}i∈ID of subsets of
X × Y for some finite indexing set ID such that E = ∩

i∈ID
Ei. Let B be the basis for the

co-smooth fuzzy product topology on X × Y as defined in Definition 4.2. Now we prove
that B = B′. Let E ⊆ X × Y . Suppose E is not of form A × B for any A ⊆ X and
B ⊆ Y . Then by Definition 4.2 we have, B(E) = 0. Now let us compute B′(E). Let
E = E1∩E2∩· · ·∩En be a representation of E as a finite intersection of subsets of X×Y .
We claim that Ej is neither of the form (Aj × Y ) nor of the form (X × Bj) for at least
one j. Suppose Ej = (Aj × Y ) or Ej = (X ×Bj) for all j. Without loss of generality, let
Ej = (Aj × Y ) for j = 1, 2, . . . ,m and Ej = (X ×Bj) for j = m+ 1,m+ 2, . . . , n, then

E = E1 ∩ E2 ∩ · · · ∩ En
= {(A1 × Y ) ∩ · · · ∩ (Am × Y )} ∩ {(X ×Bm+1) ∩ · · · ∩ (X ×Bn)}
= {(A1 ∩A2 ∩ · · · ∩Am)× Y } ∩ {X × (Bm+1 ∩Bm+2 ∩ · · · ∩Bn)}

Let A = A1∩A2∩· · ·∩Am and B = Bm+1∩Bm+2∩· · ·∩Bn, then E = (A×Y )∩(X×B) =
A×B which is a contradiction to our assumption that E is not of the form A×B. This
proves the claim and hence inf{S(Ei)} = 0. Since this is true for any representation of E
as a finite intersection, by the definition of B′ we have, B′(E) = 0. Thus B = B′ in this
case. Now let E be of the form A×B for some A ⊆ X, B ⊆ Y and let E = E1∩E2∩· · ·∩En
be a representation of E as a finite intersection of subsets of X ×Y . If, for at least one j,
Ej is neither of the form (Aj × Y ) nor of the form (X ×Bj), then inf{S(Ei)} = 0. This
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implies B(E) ≥ inf{S(Ei)}. If Ej = (Aj × Y ) for j = 1, 2, . . . ,m and Ej = (X ×Bj) for
j = m+ 1,m+ 2, . . . , n, then

E = E1 ∩ E2 ∩ · · · ∩ En
= {(A1 ∩A2 ∩ · · · ∩Am)× Y } ∩ {X × (Bm+1 ∩Bm+2 ∩ · · · ∩Bn)}

Since E = A×B, we have,

A = A1 ∩A2 ∩ · · · ∩Am and B = Bm+1 ∩Bm+2 ∩ · · · ∩Bn.

Now,

B(E) = inf{T
X

(A), T
Y

(B)}

≥ inf{
m
∧
j=1
T
X

(Aj),
n
∧

j=m+1
T
Y

(Bj)}

= inf{T
X

(A1), . . . , T
X

(Am), T
Y

(Bm+1), . . . , T
Y

(Bn)}
= inf{S(E1), . . . ,S(Em),S(Em+1), . . . ,S(En)}
= inf{S(Ei)}.

Since this is true for any representation of E as a finite intersection of subsets of X × Y ,
we have,

B(E) ≥ B′(E).

But, since E = A×B = (A× Y ) ∩ (X ×B) we have,

B′(E) ≥ inf{S(A× Y ),S(X ×B)} = inf{T
X

(A), T
Y

(B)} = B(E).

Thus B′(E) ≥ B(E) and hence B = B′ in this case also. Thus S is a subbasis for the
product topology on X × Y .

5. Hausdorffness on Co-Smooth Fuzzy Topological Spaces

As stated in Section 2, “Being Hausdorff” is a property hold by topological spaces. In
this section we give a fuzzy version of Hausdorff spaces.

Definition 5.1. A subset A of a co-smooth fuzzy topological space (X, T ) is said to be
α-open if T (A) > α and is said to be α-closed if the set X −A is α-open.

If A is α-closed, then T (X −A) > α and hence C(A) > α where C(A) is the degree of
closedness of A as defined in Definition 3.1, and conversely. So A is α-closed if and only if
C(A) > α. If U is an α-open set containing x, then we say that U is an α-neighbourhood
of x.

Definition 5.2. A co-smooth fuzzy topological space (X, T ) is said to be α-Hausdorff
if for each pair x, y of distinct points of X, there exist disjoint α-open sets U and V
containing x and y respectively. Hausdorffness of a topological space is defined as the
supremum of all α such that (X, T ) is α-Hausdorff.

If (X, T ) is a (crisp) topological space, then it can be viewed as a co-smooth fuzzy
topological space as mentioned below Definition 3.1. If (X, T ) is Hausdorff, in the crisp
sense, then it is α-Hausdorff for all α and hence its Hausdorffness is 1.

Theorem 5.3. In a α-Hausdorff space C(A) ≥ α for any finite set A.
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Proof. Let A be a finite set in the α-Hausdorff space (X, T ). It suffices to show that
C({x}) ≥ α for all x ∈ X. Let x ∈ X and y be any point of X different from x; then
there exist disjoint α-neighbourhoods Ux and Vy of x and y respectively. Let V = ∪

y 6=x
Vy.

Then V = X − {x} and T (V ) ≥ α. Hence C({x}) ≥ α.

Definition 5.4. A co-smooth fuzzy topological space (X, T ) is said to satisfy the α-T1

axiom, if C({x}) > α for all {x} ∈P(X).

Definition 5.5. A sequence (xn) of points of a co-smooth fuzzy topological space (X, T )
is said to converge to a point x ∈ X at level α if for every α-neighbourhood U of x, there
is a positive integer N such that xn ∈ U for all n ≥ N .

Theorem 5.6. If (X, T ) is a α-Hausdorff space, then a sequence of points of X converges
to at most one point of X at level α.

Since the proof follows as in the classical theory we omit the proof.

Theorem 5.7. Let (X, T
X

) be a α-Hausdorff space and (Y, T
Y

) be a β-Hausdorff space
and let γ = min{α, β}. Then X × Y is a γ-Hausdorff space.

Proof. Let (a, b), (c, d) be two distinct points in X ×Y . If a 6= c, then there exist disjoint
α-open sets Ua and Uc containing a and c. The sets Ua × Y and Uc × Y are disjoint
γ-open sets containing (a, b) and (c, d). If b 6= d, then a similar argument holds.

Corollary 5.8. If (X, T
X

) and (Y, T
Y

) are two α-Hausdorff spaces, then the product space
X × Y is also α-Hausdorff.

Conclusion

One cannot talk about the beauty, which is fuzzy in nature, of an object without
knowing the existence of the object. As any object has a sure base, the concept of
fuzziness should be build on crisp objects. The theory developed here is a good model
to study fuzzy properties of crisp objects. With this theory one may study many more
concepts in topology.
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