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Abstract This paper presents a derivative-free conjugate gradient algorithm for solving the l1-regulariza-

tion problem arising in compressive sensing. The search direction of the proposed method is bounded

and satisfies the sufficient descent condition. Under some mild assumptions, the global convergence of

the proposed algorithm is established. Numerical experiments in recovering sparse signal are performed

to illustrate the efficiency of the algorithm compared with existing algorithms.
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1. Introduction

In this paper, we consider the following unconstrained minimization problem for sparse
recovery

min
x

{
1

2
‖Ax− b‖22 + µ‖x‖1

}
(1.1)
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where A ∈ Rm×n(m << n), b ∈ Rm, ‖ · ‖1 is the `1-norm of a vector x ∈ Rn usually
called regularizer and µ ∈ R+ is a regularization parameter that can be interpreted as a
trade-off between sparsity and residual error.

There are a lot of solvers for solving the model (1.1). The iterative shrinkage thresh-
olding (IST) and the fast iterative shrinkage thresholding algorithm (FISTA) are among
the most common methods for solving (1.1) due to their simplicity and efficiency [1, 2].
Other methods for solving (1.1) includes the fixed-point continuous search method pro-
posed in [3], the Barzilai-Borwein stepsize method [4]. The Gradient descent methods are
another type of methods for solving problem (1.1). For instance, Figueiredo [5] developed
a gradient method to solve (1.1). Motivated by Figueiredo’s method, Xiao et al. [6, 7]
then proposed alternative method for solving the model (1.1) using the spectral gradient
and the conjugate gradient projection method respectively. Unlike IST and FISTA, the
model (1.1) was first transformed into a monotone system of equations. This reformula-
tion procedure can be found in several literature (Ref. [8, 9]). It is noteworthy to state
that, with the reformulation of (1.1) into a monotone system of equations, (1.1) is now
equivalent to the following convex constrained nonlinear equation

F (x) = 0, x ∈ Ω, (1.2)

where F : Ω → Rn is a continuous mapping and Ω ⊆ Rn is a convex set. Thus, solving
(1.2) is equivalent to solving (1.1). See (Refs. [10–21]) for various algorithms for solving
(1.2). Other algorithms for solving the model (1.1) can be found in the following references
[22–25].

This paper is structured as follows: In section 2, we introduce the proposed algorithm
for solving the model (2). We also give some preliminary concepts. In section 3, we
establish the global convergence of the proposed algorithm. In section 4, we illustrate the
performance of the proposed algorithm in reconstructing sparse signal. Finally, in the
last section, we give the conclusion.

2. Preliminaries and Algorithm

First, we present and describe the proposed method that will be utilized for solving
(1.1). To describe the algorithm, we recall the projection map, which is defined as a
mapping PΩ : Rn → Ω, where Ω is a nonempty closed convex set such that

PΩ(x) = arg min{‖x− y‖ |y ∈ Ω}. (2.1)

Throughout this article, we denote ‖ · ‖, to be the Euclidean norm. A well known charac-
terization of the projection map is its nonexpansive property. That is, for any x, y ∈ Rn,

‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖.
Consequently,

‖PΩ(x)− y‖ ≤ ‖x− y‖, ∀y ∈ Ω. (2.2)

In what follows, we give a step by step detail of the construction of our method, for
convenience, we abbreviated F (xk) as Fk. Now, by considering the unconstrained problem
defined by

min f(x), x ∈ Rn, (2.3)

where f : Rn → R is a nonlinear function whose gradient at xk is gk. Amini in [26]
proposed a conjugate gradient like algorithm that generates a sequence {xk} by
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xk+1 = xk + tkdk, (2.4)

where tk is the steplength, and dk is a search direction defined by

dk =

{
−gk + βkdk−1, if k > 0,

−gk, if k = 0,
(2.5)

and βk is defined as

βk = τ
‖gk‖
‖dk−1‖

, (2.6)

where τ ∈ (0, 1). As shown in [26], the following inequality always holds

gTk dk = −(1− τ)‖gk‖2. (2.7)

Motivated by the CG-method (2.4)-(2.6), we introduce our method for solving (1.1)
by defining dk as follows

dk =

{
−Fk, if k = 0,

−NkFk + βkdk−1, if k > 0,
(2.8)

where βk is defined as

βk = τ
‖Fk‖
‖dk−1‖

, (2.9)

with τ ∈ (0, 1). Note that, for the direction dk defined by (2.8) with CG-parameter given
in (2.9), it is clear that for k = 0, the inequality below holds,

FT
k dk = −(1− τ)‖Fk‖2. (2.10)

Similarly, for k ∈ N, we have,

FT
k dk = −

(
Nk − τ

FT
k dk−1

‖Fk‖‖dk−1‖

)
‖Fk‖2. (2.11)

For (2.11) to satisfy (2.10), we only need that

Nk ≥ c+ τ
FT
k dk−1

‖Fk‖‖dk−1‖
(2.12)

where c is a positive constant. Thus, without loss of generality, we choose Nk as

Nk = c+ τ
FT
k dk−1

‖Fk‖‖dk−1‖
. (2.13)

Next, we state our proposed algorithm for solving (1.1). For the direction determined by
(2.8), (2.9) and (2.13) we refer to the corresponding algorithm as the SCPM.

Algorithm 2.1.
Input. Set an initial point x0 ∈ Ω, the positive constants: Tol > 0, τ ∈ (0, 1), ρ ∈
(0, 1), κ > 0, σ > 0, c > 0. Set k = 0.

Step 0. If ‖Fk‖ ≤ Tol, stop. Otherwise, generate the search direction dk using (2.8), (2.9)
and (2.13).
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Step 1. Let tk = max{κρi|i = 0, 1, 2, · · · }, we set wk = xk + tkdk, to satisfy

F (wk)T dk ≥ σtk‖dk‖2. (2.14)

Step 2. If wk ∈ Ω and ‖F (wk)‖ = 0, stop. Otherwise, compute the next iterate by

xk+1 = PΩ[xk − ξkF (xk + tkdk)], (2.15)

where

ξk =
F (xk + tkdk)T (xk − wk)

‖F (wk)‖2
.

Step 3. Finally we set k = k + 1 and return to step 1.

Lemma 2.2. Let dk be the search direction generated by SCPM, then dk is a sufficient
descent direction. That is,

FT
k dk ≤ −c‖Fk‖2, c > 0 (2.16)

for all k ≥ 0.

Remark 2.3. Clearly,

‖Fk‖‖dk−1‖ > 0.

This indicates that the parameters (2.9)− (2.13) are well defined.

Lemma 2.4. Let {dk} and {xk} be two sequences generated by SCPM method. Then,
there exists a step size tk satisfying the line search (2.14) for all k ∈ N ∪ {0}.

Proof. For any i ≥ 0, suppose (2.14) does not hold for the iterate k0−th, then we have

−〈F (xk0
+ κρidk0

), dk0
〉 < σκρi‖dk0

‖2.
Thus, by the continuity of F and with 0 < ρ < 1, it follows that by letting i → ∞, we
have

−F (xk0
)T dk0

≤ 0,

which contradicts (2.16).
�

3. Global Convergence

The convergence analysis of our proposed method is presented in detail in this section.
To achieve our goal, two crucial assumptions are made on the mapping F.

Assumption 3.1.
• The mapping F : Rn → Rn is Lipschiz continuous, that is there exists a
positive constant L such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (3.1)

• Xiao et al. [6] proved that for the problem (1.2), F is monotone. That is,

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn. (3.2)

In the analysis that follows, Fk 6= 0 is assumed for all k ≥ 0.
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Lemma 3.2. Let the sequences {xk} and {wk} be generated by the SCPM method under
Assumption 3.1, then

tk ≥ max

{
κ,

ρc‖Fk‖2

(L+ σ)‖dk‖2

}
. (3.3)

Proof. Let ᾱk = tkρ
−1. Assume tk 6= κ, from (2.14), ᾱk does not satisfy (2.14), that is,

−F (xk + ᾱkdk)T dk < σᾱk‖dk‖2.
From (2.16) and (3.1), it can be obviously seen that

c‖Fk‖2 ≤ −FT
k dk

= (F (xk + ᾱkdk)− Fk)T dk − F (xk + ᾱkdk)T dk

≤ Lᾱk‖dk‖2 + σᾱk‖dk‖2

≤ ᾱk(L+ σ)‖dk‖2.
This gives the desired inequality (3.3). �

Lemma 3.3. Suppose that Assumption 3.1 holds. Let {xk} and {wk} be sequences gen-
erated by the SCPM method, then for any solution x̄∗ contained in the solution set Ω∗ the
inequality

‖xk+1 − x̄∗‖2 ≤ ‖xk − x̄∗‖2 − σ2‖xk − wk‖4. (3.4)

holds. In addition, {xk} is bounded and
∞∑
k=0

‖xk − wk‖4 < +∞. (3.5)

Proof. First, we begin by using the monotonicity of the mapping F . Thus, for any solution
x̄∗ ∈ Ω∗,

〈F (wk), xk − x̄∗〉 ≥ 〈F (wk), xk − wk〉.
The above inequality together with (2.14) gives

〈F (xk + tkdk), xk − wk〉 ≥ σα2
k‖dk‖2 ≥ 0. (3.6)

We have the following from (2.2) and (3.6),

‖xk+1 − x̄∗‖2 = ‖PΩ(xk − ξkF (xk + tkdk))− x̄∗‖2 ≤ ‖xk − ξkF (xk + tkdk)− x̄∗‖2

= ‖xk − x̄∗‖2 − 2ξk〈F (xk + tkdk), xk − x̄∗〉+ ‖ξkF (xk + tkdk)‖2

≤ ‖xk − x̄∗‖2 − 2ξk〈F (xk + tkdk), xk − wk〉+ ‖ξkF (xk + tkdk)‖2

= ‖xk − x̄∗‖2 −
〈F (xk + tkdk), xk − wk〉2

‖F (xk + tkdk)‖2

≤ ‖xk − x̄∗‖2 − σ2‖xk − wk‖4.
Thus, the sequence {‖xk − x̄∗‖} has a nonincreasing and convergent property. Therefore,
this makes {xk} to be bounded and therefore the following holds.

σ2
∞∑
k=0

‖xk − wk‖4 < ‖x0 − x̄∗‖2 < +∞. �
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Remark 3.4. Taking into account of the definition of wk and also by (3.5), it can be
deduced that

lim
k→∞

tk‖dk‖ = 0. (3.7)

Theorem 3.5. Suppose Assumption 3.1 holds. Let {xk} and {wk} be sequences generated
by the SCPM method, then

lim inf
k→∞

‖Fk‖ = 0. (3.8)

Proof. Suppose (3.8) is not valid, that is, there exist a constant say r > 0 such that
r ≤ ‖Fk‖, k ∈ N ∪ {0}. Then this along with (2.16) implies that

‖dk‖ ≥ cr, ∀k ≥ 0. (3.9)

It can be obviously seen from Lemma (3.3) and Remark (3.4), that the sequences {xk}
and {wk} are bounded. In addition with the continuity of F , it further implies that
{‖Fk‖} and {‖F (wk)‖} are bounded by a constant say b. From (2.8) − (2.13), it follows
that for all k ≥ 1,

‖dk‖ ≤ c‖Fk‖+ τ
‖Fk‖2

‖Fk‖‖dk−1‖
‖dk−1‖+ τ

‖Fk‖
‖dk−1‖

‖dk−1‖

= (c+ 2τ)‖Fk‖ ≤ b(c+ 2τ) , Γ.

Note that, by using Remark (2.3) and Cauchy Schwarz inequality, the first inequality is
easily obtained. Similarly, from (3.9), the second inequality follows. Now, from (3.3), we
have

tk‖dk‖ ≥ max

{
κ,

ρc‖Fk‖2

(L+ σ)‖dk‖2

}
‖dk‖

≥ max

{
κcr,

ρcr2

(L+ σ)Γ

}
> 0,

which contradicts (3.7). Hence (3.8) is valid. �

4. Numerical Experiment

In this section, we consider recovering a sparse signal of length n from k samples with
Gaussian noise. The sample is normally smaller than the actual signal. The quality of
recovered signal is assessed by the metric called mean of squared error (MSE) defined as

MSE :=
1

n
‖x̃− x∗‖2,

where x̃ is the actual signal and x∗ is the recovered signal. We select the signal size to be
n = 212, k = 210. The actual signal x̃ contains 26 randomly nonzero elements. A random
matrix B is generated using the Matlab command rand(n,k) during the experiment. The
observed measurement y is

y = Bx̃+ b,

where b is the Gaussian noise which is normally distributed with mean 0 and variance
10−4.
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To illustrate the performance of SCPM in signal recovery, we compare it with three
existing algorithms, namely, SGCS, CGD and PCG proposed in [6], [7] and [27], respec-
tively. The parameters chosen for SCPM are: κ = 1, ρ = 0.7, c = 1, τ = 0.1, σ = 10−4.
The parameters chosen for SGCS, CGD and PCG are as in their respective papers. In
order to be fair in comparing the methods, we initialize from x0 = BT y and stop when

Tol := ‖fk−fk−1‖
‖fk−1‖ < 10−5 where fk = 1

2‖y −Bx‖
2
2 + η‖x‖1 is the objective function.

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

Original (n = 4096, number of nonzeros = 64)

0 100 200 300 400 500 600 700 800 900 1000

-0.4
0

0.4
Measurement

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

SCPM (MSE = 2.61e-06,Iter=76, Time=1.80s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

SGCS (MSE = 3.64e-06, Iter=128, Time=2.94s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

CGD (MSE = 8.57e-06, Iter=115, Time=2.95s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

PCG(MSE = 2.80e-06, Iter=101, Time=2.42s)

Figure 1. Illustration of the sparse signal recovery. From the top to the
bottom is the original signal (First plot), the measurement (Second plot),
and the reconstructed signals by SCPM (Third plot), SGCS (Fourth
plot), CGD (fifth plot) and PCG (sixth plot).

Figure 1 reveal the original signal x̃, the observed measurement y and the recovered
signal x∗ by all algorithms. Figure 2 show the rate of decrease of MSE and objective
function values with respect to number of iterations and CPU time. From the Figure 1
and 2, it can be observed that the proposed algorithm SCPM prove to be more efficient as
it recover the measurement with less MSE, number of iterations and CPU time. We repeat
the experiment ten times with the original signal x̃ randomly generated. From Table 1,
it is not difficult to see that the proposed algorithm was consistently more efficient than
SGCS, CGD and PCG.
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Figure 2. The x-axes represent the number of iterations (top left and
bottom left) and the CPU time in seconds (top right and bottom right).
The y-axes represent the MSE (top left and top right) and the function
values (bottom left and right).

Table 1. Results for the signal reconstruction by the various algorithms

SCG SGCS CGD PCG
ITER TIME MSE ITER TIME MSE ITER TIME MSE ITER TIME MSE

79 2.09 2.93E-06 127 3.63 3.49E-06 129 3.48 2.92E-06 111 3.06 2.81E-06
74 2.27 3.15E-06 131 4.09 3.63E-06 117 3.7 3.03E-06 103 4 1.08E-05
72 1.98 2.98E-06 117 3.14 3.89E-06 101 2.72 3.27E-06 104 2.77 3.19E-06
75 1.94 2.86E-06 132 3.23 3.33E-06 104 2.64 2.45E-05 114 2.92 2.64E-06
81 2.45 3.01E-06 131 4.17 4.04E-06 151 4.69 3.45E-06 113 3.44 3.23E-06
73 1.88 2.78E-06 127 3.27 3.20E-06 112 2.94 3.56E-06 116 3.05 2.60E-06
72 1.98 2.07E-06 127 3.27 2.58E-06 125 3.52 2.15E-06 91 2.59 3.47E-06
79 2.14 4.53E-06 133 3.73 5.52E-06 138 3.88 4.37E-06 119 3.11 4.19E-06
74 1.94 1.87E-06 126 3.48 2.25E-06 123 3.67 3.47E-06 100 2.7 3.21E-06
90 2.81 3.66E-06 136 4.38 4.91E-06 120 3.81 1.37E-05 108 3.28 8.17E-06

Average 76.9 2.148 2.98E-06 128.7 3.639 3.68E-06 122 3.505 6.44E-06 107.9 3.092 4.43E-06
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